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a b s t r a c t

Experimental analysis of the performance of a proposed method is a crucial and necessary
task in an investigation. In this paper, we focus on the use of nonparametric statistical
inference for analyzing the results obtained in an experiment design in the field of compu-
tational intelligence. We present a case study which involves a set of techniques in classi-
fication tasks and we study a set of nonparametric procedures useful to analyze the
behavior of a method with respect to a set of algorithms, such as the framework in which
a new proposal is developed.

Particularly, we discuss some basic and advanced nonparametric approaches which
improve the results offered by the Friedman test in some circumstances. A set of post
hoc procedures for multiple comparisons is presented together with the computation of
adjusted p-values. We also perform an experimental analysis for comparing their power,
with the objective of detecting the advantages and disadvantages of the statistical tests
described. We found that some aspects such as the number of algorithms, number of data
sets and differences in performance offered by the control method are very influential in
the statistical tests studied. Our final goal is to offer a complete guideline for the use of
nonparametric statistical procedures for performing multiple comparisons in experimental
studies.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

It is not possible to find one algorithm that is the best in behavior for all problems, as the ‘‘no free lunch” theorem sug-
gests [50,51]. On the other hand, we know that we have available several degrees of knowledge associated with the problem,
which we expect to solve, and there are clear differences when working on the problem without knowledge and having par-
tial knowledge about it. This knowledge allows us to design algorithms with specific properties that can make them more
suitable to the solution of the problem. Having the previous premise in mind, the question about deciding when an algorithm
is better than another one is suggested. This question has given rise to the growing interest in the analysis of experiments in
the field of computational intelligence (CI) [15] or the field of data mining (DM) [24,45]. This interest has brought in the use
of statistical inference in the analysis of empirical results obtained by the algorithms. Inferential statistics show how well a
. All rights reserved.
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sample of results supports a certain hypothesis and whether the conclusions achieved can be generalized beyond what was
tested.

In some recent papers, the researchers have used statistical techniques to contrast the results offered by their proposals
[33,37,46,48,53]. Due to the fact that statistical analysis is highly demanded in any research work, we can find recent studies
that propose some methods for conducting comparisons among various approaches [11,12,22,43]. There are two main types
of statistical test in the literature: parametric tests and nonparametric tests. The decision to use the former or the latter may
depend on the properties of the sample of results to be analyzed. A parametric statistical test assumes that data comes from a
type of probability distribution and makes inferences about the parameters of the distribution. For example, the use of the
ANOVA test is only appropriate when the sample of results fulfills three required conditions: independency, normality and
homoscedasticity [42,54]. In fact, if the assumptions required for a parametric test hold, the parametric test should always be
preferred over a nonparametric one, in that it will have a lower Type I error and higher power. However, some studies involv-
ing CI algorithms in experimental comparisons show that these conditions are not easy to meet [21,23,47].

The analysis of results can be done following either one of two alternatives: single-problem analysis and multiple-prob-
lem analysis. The first one corresponds to the study of the performance of several algorithms over a unique problem case. The
second one would suppose the study of several algorithms over more than one problem case simultaneously, assimilating
the fact that each problem has a degree of difficulty and that the results obtained among different problems are not com-
parable. The single-problem analysis is well-known and is usually found in specialized literature [12]. Although the required
conditions for using parametric statistics are not usually checked, a parametric statistical study could obtain similar conclu-
sions to a nonparametric one. However, in a multiple-problem analysis, a parametric test may reach erroneous conclusions
[11].

On the other hand, a distinction between pairwise and multiple comparison tests is necessary. The former are valid pro-
cedures to compare two algorithms and the latter should be used when comparing more than two methods. The main reason
that distinguishes both kinds of test is related to the control of the family wise error, which is the probability of making one
or more false discoveries (Type I errors) [42]. Intended pairwise tests, such as the Wilcoxon test [11], do not control the error
propagation of making more than one comparison and they should not be used in multiple comparisons. If a researcher plans
to make multiple comparisons using several statistical inferences simultaneously, then he/she has to account for the mul-
tiplicative effect in order to control the Family Wise Error Rate (FWER) [42]. Demšar [11] described a set of nonparametric
test for performing multiple comparisons and he analyzed them in contrast to well-known parametric tests in terms of
power, obtaining that the nonparametric tests are more suitable for use. He explained the Friedman test [18], the Iman–Dav-
enport correction [30] and some post hoc procedures, such as Bonferroni–Dunn [14], Holm [28], Hochberg [25] and Hommel
[29].

In this paper, we extend the set of nonparametric procedures for performing multiple statistical comparisons between
more than two algorithms and we focus on the case in which a control treatment is compared against other treatments.
In other words, we focus on the usual case in which a new CI or DM algorithm is proposed and the researcher is interested
in comparing it to other similar approaches. Basic and advanced techniques for studying the differences among methods
belonging to multiple comparisons will be described. The choice of the set of computational intelligence algorithms depends
on their heterogeneity and performance obtained. This paper can be seen as a tutorial on the use of more advanced nonpara-
metric tests and the case studies used require results provided by algorithms which present low and high degrees of differ-
ences among themselves. With respect to the choice of the tests, we have considered those that are not excessively
complicated and well-known in statistics (although they are considered advanced procedures, all of them can be found in
statistical books. However, they are almost unknown among non-statisticians). There are many other procedures similar
to the ones described in this paper, but they do not offer significant differences with respect to the procedures already pre-
sented by Demšar [11] and in this paper. Thus, the choice of the tests may be influenced by a trade-off between their com-
plexity and their differences in experimental power, taking into account that they are well-known in the statistics
community.

Specifically, the paper will be focused on the following main topics:

� To present new nonparametric techniques which allow different types of comparison between various algorithms.
Within this topic, the Multiple Sign-test [44] and the Contrast Estimation based on medians [13] will be introduced.
The first is a basic procedure to conduct rapid comparison considering a control method. The second allows us to com-
pute differences in performance based on medians among a set of algorithms.

� Two alternatives to the Friedman test will be discussed: The Friedman Aligned Ranks [26] and the Quade test [38].
They differ in the ranking computation procedure and they can offer better results depending on the characteristics
of the experimental study considered.

� To extend the post hoc procedures described in [11] with the inclusion of four new procedures: Holland [27], Rom
[41], Finner [17] and Li [34]. The computation of their adjusted p-values (APVs) will be included.

� To carry out an experimental analysis to estimate the power of all the procedures presented. It will be focused on
detecting the advantages and inconveniences of each procedure, as well as to present a useful guideline for their use.

Fig. 1 schematizes the tests and procedures that are the object of study in this paper. Throughout the paper, all the pro-
cedures described will be illustrated by means of examples defined over a DM task of classification using CI techniques. Thus,



Fig. 1. Summarizing chart of procedures reviewed and presented in this paper. The procedures studied in [11] are in white and new ones are in grey.
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several classifiers in a multiple-problem analysis will be compared by using the procedures presented in an experimental
study.

In order to do that, the paper is organized as follows. In Section 2, we describe the set up of the experimental study: algo-
rithms, data sets and parameters. Section 3 presents the basic nonparametric procedures and demonstrates their use in the
experimental study. In Section 4, the two mentioned alternatives to the Friedman test are described. Section 5 enumerates a
set of post hoc procedures suitable for detecting pairwise differences between two algorithms within a multiple comparison
test. We carry out an experimental analysis in Section 6 to estimate the power and usefulness of the advanced nonparametric
tests and post hoc procedures. Some criticisms and guidelines are given in Section 7. Finally, Section 8 concludes the paper. A
URL of the software package which computes all the tests explained in this paper and the statistical table needed for the
Multiple Sign-test is given in Appendix A.
2. Experimental framework

This section defines the set up of the experimental study. The classification data sets, validation and parameters are pro-
vided. We need to specify the experimental conditions used in this paper with respect to the parameters adopted by the
algorithms, validation procedure used and classification data sets employed.

We have used 48 data sets,1 which are specified in Table 1. For each data set, the name, number of examples, number of
attributes (numeric and nominal) and number of classes are given. Some of them (24 data sets) have been used in the exper-
imental study considered in each section, whereas all data sets have been used in the experimental analysis of power in Section
6. Data sets are from the UCI machine learning repository [3], all of them valid for classification tasks.

The algorithms used for our study and their parameters are specified in Table 2. Furthermore, these methods are included
in the KEEL2 software [2]. We have used 10-fold cross-validation and we have run the algorithms three times in order to obtain
a sample of 30 results, which have been averaged, for each data set. Thus, the results, which will be further analyzed by the
statistical techniques, correspond to average accuracies in test data.

Note that, throughout the paper, the experimental study that will be used as an example in the description of the statis-
tical tests does not consider the complete set of classifiers and data sets. All of them will be used in the experimental analysis
of power conducted in Section 6.
3. Basic nonparametric tests for performing multiple comparisons: Friedman test, Multiple Sign-test and Contrast
Estimation based on medians

Frequently in CI, we are interested in detecting groups of differences among a set of results provided by various algo-
rithms. In statistics, these groups are called blocks and they are usually associated with the problems met in the experimental
1 Data sets marked with ‘*’ have been sampled for being adapted to slow algorithms, such as Ant-Miner+.
2 http://www.keel.es.

http://www.keel.es


Table 1
Summary description for classification data sets.

Data set # Ex. # Atts. # Num. # Nom. # Cl. Data set # Ex. # Atts. # Num. # Nom. # Cl.

Abalone* 418 8 7 1 28 Monks 432 6 6 0 2
Adult* 624 14 6 8 2 Mushrooms* 813 22 0 22 2
Australian 690 14 8 6 2 Newthyroid 215 5 5 0 3
Balance 625 4 4 0 3 Nursery* 1296 8 0 8 5
Breast 286 9 0 9 2 Pageblocks* 548 10 10 0 5
Bupa 345 6 6 0 2 Penbased 1099 16 16 0 10
Car 1728 6 0 6 4 Pima 768 8 8 0 2
Cleveland 297 13 13 0 5 Optdigits 1912 63 63 0 10
Contraceptive 1473 9 6 3 3 Ring 740 20 20 0 2
Crx 125 15 6 9 2 Satimage* 643 36 36 0 7
Dermatology 366 33 1 32 6 Segment 2310 19 19 0 7
Ecoli 336 7 7 0 8 Spambase* 460 55 55 0 2
Flare 1389 10 0 10 6 Splice* 319 60 0 60 3
German 1000 20 6 14 2 Shuttle* 2175 9 9 0 7
Glass 214 9 9 0 7 Tae 151 5 5 0 3
Haberman 306 3 3 0 2 Tic-tac-toe 958 9 0 9 2
Hayes-roth 133 4 4 0 3 Thyroid* 720 21 6 15 3
Heart 270 13 6 7 2 Twonorm* 740 20 20 0 2
Ion 351 34 34 0 2 Vehicle 846 18 18 0 4
Iris 150 4 4 0 3 Vowel 990 13 11 2 11
Led7digit 500 7 0 1 10 Wine 178 13 13 0 3
Letter* 2000 16 16 0 26 Wisconsin 683 9 9 0 2
Lymphography 148 18 3 15 4 Yeast 1484 8 8 0 10
Magic* 1902 10 10 0 2 Zoo 101 17 0 17 7

Table 2
Parameter specification for the algorithms employed in the experimentation.

PDFC [8] C = 100.0, d = 0.25, tolerance = 0.001, epsilon = 1.0E�12, PDRFtype = Gaussian
NNEP [35] Hidden nodes = 4, Transfer = Product unit, Generations = 200
IS-CHC+1-NN [6,20,16] Population size = 50, Number of evaluations = 10,000, a equilibrate factor = 0.5

Percent of change in restart = 0.35, 0–1 probability in restart = 0.25
0–1 probability in diverge = 0.05, Number of neighbours = 1, Distance function = Euclidean

FH-GBML [31] Number of fuzzy rules = 20, Number of rule sets = 200, Crossover probability = 0.9,
Mutation probability = 1/d (d = dimensionality), Number of replaced rules: All rules except
the best-one (Pittsburgh-part, elitist approach), number of rules/5 (Michigan-part),

Number of generations = 1000 generations, Don’t care probability = 0.5, Probability of the
application of the Michigan iteration = 0.5

GASSIST-ADI [4,5] Threshold in Hierarchical Selection = 0,
Iteration of Activation for Rule Deletion Operator = 5,
Iteration of Activation for Hierarchical Selection = 24,
Minimum Number of Rules before Disabling the Deletion Operator = 12,
Minimum Number of Rules before Disabling the Size Penalty Operator = 4,
Number of Iterations = 750, Initial Number of Rules = 20, Population Size = 400,
Crossover Probability = 0.6, Probability of Individual Mutation = 0.6,
Probability of Value 1 in Initialization = 0.90, Tournament Size = 3,
Possible size in micro-intervals of an attribute = {4,5,6,7,8,10,15,20,25},
Maximum Number of Intervals per Attribute = 5, psplit ¼ 0:05; pmerge ¼ 0:05,
Probability of Reinitialize Begin = 0.03, Probability of Reinitialize End = 0,
Use MDL = true, Iteration MDL = 25, Initial Theory Length Ratio = 0.075,
Weight Relaxation Factor = 0.90, Class Initialization Method = cwinit, Default Class = auto,

DT-GA [7] Confidence = 0.25, Instances per leaf = 2, Threshold S to consider a Small Disjunct = 10,
Number of Gen. = 50, Number of chrom. = 200, Crossover Prob. = 0.8, Mutation Prob. = 0.01

Ant-Miner+ [36] Number of ants = 3000, Max number of uncovered examples = 10
Min number of samples by rule = 10, Max iterations without converge = 10
Max pheromone = 0.999, Min pheromone = 0.1, a ¼ 1; b ¼ 2

EvRBF [40] Neurons rate = 0.1, Variation Rate = 0.15, Population size = 100, Tournament size = 2
Replacement rate = 0.1, Max generations = 100, Crossover rate = 0.9, Mutator rate = 0.1
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study. For example, in a multiple data set comparison of classification, each block corresponds to the results offered over a
specific data set. When referring to multiple comparisons tests, a block is composed of three or more subjects or results, each
one corresponding to the performance evaluation of the algorithm over the data set.

In nonparametric statistics, the most well-known procedure for testing the differences between more than two related
samples is the Friedman test. The related samples in classification are the performances of the methods measured across
the same data sets. The Friedman test will be introduced in Section 3.1. It considers that the null hypothesis being tested
is that all methods obtain similar results with nonsignificant differences. If we want to obtain what classifiers are better/
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worse than our proposal, we have to use a post hoc procedure, which will be described in Section 5. The Friedman test could
be bypassed and directly applied to a post hoc procedure, because the latter only requires that the final rankings are com-
puted. However, from a statistical point of view, it is more correct to conduct the Friedman first and after the post hoc pro-
cedure. We have to take into account that the rankings are the required data to conduct post hoc pairwise tests and they are
obtained as part of the Friedman procedure, so it is wiser to conduct it fully and complement it after if needed.

There is a rapid procedure, not very powerful but easy to use, to compare all classifiers with a control that will be de-
scribed in Section 3.2. Finally, the researcher frequently wishes to estimate the differences between two classifiers over mul-
tiple data sets. A procedure for estimating the contrast between classifiers medians will be discussed in Section 3.3.
3.1. Friedman test and Iman–Davenport extension

The Friedman test [18,19] (Friedman two-way analysis of variances by ranks) is a nonparametric analogue of the para-
metric two-way analysis of variance. The objective of this test is to determine if we may conclude from a sample of results
that there is difference among treatment effects. The first step in calculating the test statistic is to convert the original results
to ranks. Thus, it ranks the algorithms for each problem separately, the best performing algorithm should have the rank of 1,
the second best rank 2, etc., as shown in Table 3. In case of ties, average ranks are computed.

Let rj
i be the rank of the jth of k algorithms on the ith of n data sets. The Friedman test needs the computation of the aver-

age ranks of algorithms, Rj ¼ 1
n

P
ir

j
i. Under the null hypothesis, which states that all the algorithms behave similarly and thus

their ranks Rj should be equal, the Friedman statistic
Table 3
Compar
Friedma

Data

Adul
Brea
Bupa
Car
Clev
Cont
Derm
Ecol
Germ
Glas
Habe
Iris
Lym
Mus
New
Penb
Ring
Satim
Shut
spam
Thyr
Vehi
Win
Wisc

Aver
v2
F ¼

12n
kðkþ 1Þ

X
j

R2
j �

kðkþ 1Þ2

4

" #
ð1Þ
is distributed according to v2
F with k� 1 degrees of freedom, when n and k are big enough (as a rule of a thumb, n > 10 and

k > 5). For a smaller number of algorithms and data sets, exact critical values have been computed [42,54].
In [30], Iman and Davenport showed that Friedmans v2

F presents a conservative behavior and proposed a better statistic
FF ¼
ðn� 1Þv2

F

nðk� 1Þv2
F

ð2Þ
which is distributed according to the F-distribution with k� 1 and ðk� 1Þðn� 1Þ degrees of freedom. See Table A10 in [42] to
find the critical values. Furthermore, the p-value could be computed through normal approximations [1]. If the null hypoth-
esis is rejected, we can proceed with a post hoc test, which will be explained in Section 5.
ison of accuracy among the four algorithms selected in the experimental study. The ranks in the parentheses are used in the computation of the
n test.

set PDFC NNEP IS-CHC + 1NN FH-GBML

t* 0.752 (4) 0.773 (3) 0.785 (2) 0.795 (1)
st 0.727 (2) 0.748 (1) 0.724 (3) 0.713 (4)

0.736 (1) 0.716 (2) 0.585 (4) 0.638 (3)
0.994 (1) 0.861 (3) 0.880 (2) 0.791 (4)

eland 0.508 (4) 0.553 (2) 0.575 (1) 0.515 (3)
raceptive 0.535 (2) 0.536 (1) 0.513 (3) 0.471 (4)
atology 0.967 (1) 0.871 (3) 0.954 (2) 0.532 (4)

i 0.831 (1) 0.807 (3) 0.819 (2) 0.768 (4)
an 0.745 (1) 0.702 (4) 0.719 (2) 0.705 (3)

s 0.709 (1) 0.572 (4) 0.669 (2) 0.607 (3)
rman 0.722 (4) 0.728 (2) 0.725 (3) 0.732 (1)

0.967 (1) 0.947 (4) 0.953 (3) 0.960 (2)
phography 0.832 (1) 0.752 (3) 0.802 (2) 0.691 (4)
hrooms* 0.998 (1) 0.992 (2) 0.482 (4) 0.910 (3)
thyroid 0.963 (1.5) 0.963 (1.5) 0.954 (3) 0.926 (4)
ased* 0.982 (1) 0.953 (2) 0.932 (3) 0.630 (4)

* 0.978 (1) 0.773 (4) 0.834 (3) 0.849 (2)
age* 0.854 (1) 0.787 (3) 0.841 (2) 0.779 (4)

tle* 0.965 (3) 0.984 (2) 0.995 (1) 0.947 (4)
base* 0.924 (1) 0.887 (2) 0.861 (3) 0.804 (4)

oid* 0.929 (3) 0.942 (1) 0.931 (2) 0.921 (4)
cle 0.837 (1) 0.643 (2) 0.602 (3) 0.554 (4)
e 0.972 (1) 0.956 (2) 0.944 (3) 0.922 (4)
onsin 0.958 (4) 0.959 (3) 0.964 (1.5) 0.964 (1.5)

age rank 1.771 2.479 2.479 3.271
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The procedure is illustrated by the data from Table 3, which compares the four algorithms considered as the global exper-
imental study in this paper: PDFC, NNEP, IS-CHC + 1NN and FH-GBML. Average ranks by themselves provide a useful com-
parison of the algorithms. On average, PDFC ranked the first with rank 1.771; NNEP and IS-CHC + 1NN ranked the second and
the third, with equal ranks 2.479; and the last is FH-GBML with rank 3.271. The Friedman test proves whether the measured
average ranks are significantly different from the mean rank Rj ¼ 2:5 expected under the null hypothesis:
ðFriedmanÞ v2
F ¼

12 � 24
4 � 5 ð1:7712 þ 2:4792 þ 2:4792 þ 3:2712Þ � 4 � 52

4

" #
¼ 16:225 ð3Þ

ðIman—DavenportÞ FF ¼
23 � 16:225

24 � 3� 16:225
¼ 6:691 ð4Þ
With four algorithms and 24 data sets, FF is distributed according to the F distribution with 4� 1 ¼ 3 and
ð4� 1Þ � ð24� 1Þ ¼ 69 degrees of freedom. The p-value computed by using the Fð3;69Þ distribution is 4.97 � 10�4, so the null
hypothesis is rejected at a high level of significance.

3.2. Multiple Sign-test

As discussed at the beginning of this section, it would be useful to determine which of the other algorithms exhibit a dif-
ferent performance from the control one.

The following procedure, proposed in [39,44], allows us to compare all of the other algorithms with a control labeled algo-
rithm 1. The technique, an extension of the familiar sign test [11], carries out the following steps:

1. Represent by xi1 and xij the performances of the control and the jth classifier in the ith data set.
2. Compute the signed differences dij ¼ xij � xi1. In other words, pair each performance with the control and, in each data set,

subtract the control performance from the jth classifier.
3. Let rj equal the number of differences, dij, that have the less frequently occurring sign (either positive or negative) within

a pairing of an algorithm with the control.
4. Let M1 be the median response of a sample of results of the control method and Mj be the median response of a sample of

results of the jth algorithm. Apply one of the following decision rules:
� For testing H0 : Mj P M1 against H1 : Mj < M1, reject H0 if the number of plus signs is less than or equal to the critical

value of Rj appearing in Table A.1 in Appendix A for k� 1 (number of algorithms excluding control), n and the chosen
experimentwise error rate.

� For testing H0 : Mj 6 M1 against H1 : Mj > M1, reject H0 if the number of minus signs is less than or equal to the critical
value of Rj appearing in Table A.1 for k� 1; n and the chosen experimentwise error rate.
The technique is illustrated by means of the global experimental study considered in the paper. Table 4 depicts the com-
putation of this procedure.

Suppose we choose a level of significance a ¼ 0:05 and let our hypotheses be H0 : Mj P M0 and H1 : Mj < M0; that is, our
control algorithm PDFC is better than the remaining classifiers. Reference to Table A.1 for ðk� 1Þ ¼ 3 and n ¼ 24 reveals that
the critical value of rj is 6. Since the number of pluses in the pairwise comparison between the control and IS-CHC + 1NN and
FH-GBML is less than 6, then PDFC has a better performance than them. However, the null hypothesis cannot be rejected in
the pairwise comparison among PDFC and NNEP, so we conclude that they perform similarly.

3.3. Contrast Estimation based on medians

Using the data resulting from the run of various classifiers over multiple data sets in an experiment, the researcher could
be interested in the estimation of the difference between two classifiers’ performance. A procedure for this purpose has been
proposed in [13] and it assumes that the expected differences between performances of algorithms are the same across data
sets. We assume that the performance is reflected by the magnitudes of the differences between the performances of the
algorithms. Consequently, we are interested in estimating the contrast between medians of samples of results considering
all pairwise comparisons. It obtains a quantitative difference computed through medians between two algorithms over mul-
tiple data sets, but the value obtained will change when using other data sets in the experiment.

We can proceed as follows:

1. For every pair of k algorithms in the experiment, we compute the difference between the performances of the two algo-
rithms in each of the n data sets. In other words, we compute the differences
DiðuvÞ ¼ xiu � xiv

where i ¼ 1; . . . ;n; u ¼ 1; . . . ; k; and v ¼ 1; . . . ; k. We form performance pairs only for those in which u < v .
2. We find the median of each set of differences and call it Zuv . We call Zuv the unadjusted estimator of Mu �Mv . Since

Zvu ¼ Zuv , we have only to calculate Zuv for the case where u < v . There are kðk� 1Þ=2 of these medians. Also note that
Zuu ¼ 0.



Table 4
Comparison of accuracy between the control algorithm PDFC and the rest of algorithms selected in the experimental study. The signs in the parentheses are
used in the computation of the Multiple Comparison Sign test.

Data set PDFC NNEP IS-CHC + 1NN FH-GBML
1 (Control) 2 3 4

Adult* 0.752 0.773 (+) 0.785 (+) 0.795 (+)
Breast 0.727 0.748 (+) 0.724 (�) 0.713 (�)
Bupa 0.736 0.716 (�) 0.585 (�) 0.638 (�)
Car 0.994 0.861 (�) 0.880 (�) 0.791 (�)
Cleveland 0.508 0.553 (�) 0.575 (+) 0.515 (+)
Contraceptive 0.535 0.536 (+) 0.513 (�) 0.471 (�)
Dermatology 0.967 0.871 (�) 0.954 (�) 0.532 (�)
Ecoli 0.831 0.807 (�) 0.819 (�) 0.768 (�)
German 0.745 0.702 (�) 0.719 (�) 0.705 (�)
Glass 0.709 0.572 (�) 0.669 (�) 0.607 (�)
Haberman 0.722 0.728 (+) 0.725 (+) 0.732 (+)
Iris 0.967 0.947 (�) 0.953 (�) 0.960 (�)
Lymphography 0.832 0.752 (�) 0.802 (�) 0.691 (�)
Mushrooms* 0.998 0.992 (�) 0.482 (�) 0.910 (�)
Newthyroid 0.963 0.963 (=) 0.954 (�) 0.926 (�)
Penbased* 0.982 0.953 (�) 0.932 (�) 0.630 (�)
Ring* 0.978 0.773 (�) 0.834 (�) 0.849 (�)
Satimage** 0.854 0.787 (�) 0.841 (�) 0.779 (�)
Shuttle* 0.965 0.984 (+) 0.995 (+) 0.947 (�)
Spambase* 0.924 0.887 (�) 0.861 (�) 0.804 (�)
Thyroid* 0.929 0.942 (+) 0.931 (+) 0.921 (�)
Vehicle 0.837 0.643 (�) 0.602 (�) 0.554 (�)
Wine 0.972 0.956 (�) 0.944 (�) 0.922 (�)
Wisconsin 0.958 0.959 (+) 0.964 (+) 0.964 (+)

Number of minuses 16 18 20
Number of pluses 7 6 4

rj 7 6 4

Table 5
Differences between pairs of performances in each data set for different pairs of algorithms.

Data set Dið12Þ Dið13Þ Dið14Þ Dið23Þ Dið24Þ Dið34Þ

Adult* �0.021 �0.033 �0.043 �0.012 �0.022 �0.010
Breast �0.021 0.003 0.014 0.024 0.035 0.011
Bupa 0.020 0.151 0.099 0.131 0.078 -0.053
Car 0.133 0.114 0.203 �0.019 0.071 0.089
Cleveland �0.045 �0.067 �0.007 �0.021 0.039 0.060
Contraceptive �0.001 0.022 0.064 0.023 0.065 0.042
Dermatology 0.096 0.014 0.436 �0.083 0.339 0.422
Ecoli 0.024 0.012 0.063 �0.012 0.039 0.051
German 0.043 0.026 0.040 �0.017 �0.003 0.014
Glass 0.137 0.040 0.101 �0.097 �0.036 0.062
Haberman �0.006 �0.003 �0.010 0.004 �0.003 �0.007
Iris 0.020 0.013 0.007 �0.007 �0.013 �0.007
Lymphography 0.080 0.031 0.141 �0.049 0.061 0.110
Mushrooms* 0.006 0.515 0.087 0.509 0.081 �0.428
Newthyroid 0.000 0.010 0.038 0.010 0.038 0.028
Penbased* 0.029 0.049 0.352 0.020 0.323 0.302
Ring* 0.205 0.145 0.130 �0.061 �0.076 �0.015
Satimage* 0.067 0.012 0.075 �0.054 0.008 0.062
Shuttle* �0.019 �0.030 0.018 �0.011 0.038 0.048
Spambase* 0.037 0.063 0.120 0.026 0.083 0.057
Thyroid* �0.013 �0.001 0.008 0.011 0.021 0.010
Vehicle 0.194 0.235 0.282 0.041 0.089 0.047
Wine 0.016 0.028 0.050 0.011 0.034 0.023
Wisconsin �0.001 �0.006 �0.006 �0.005 �0.005 0.000
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3. We compute the mean of each set of unadjusted medians having the same first subscript and call the result mu; that is, we
compute
mu ¼
Pk

j¼1Zuj

k
; u ¼ 1; . . . ; k



Table 6
Contrast Estimation based on medians among all algorithms of the experimental study.

PDFC NNEP IS-CHC + 1NN FH-GBML

PDFC 0.00000 0.02257 0.01976 0.05955
NNEP �0.02257 0.00000 �0.00281 0.03698
IS-CHC � 1NN �0.01976 0.00281 0.00000 0.03979
FH-GBML �0.05955 �0.03698 �0.03979 0.00000
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4. The estimator of Mu �Mv is mu �mv , where u and v range from 1 through k. For example, the difference between M1 and
M2 is m1 �m2.

The procedure is illustrated by using the global experimental study considered in this paper. From the performances of
the four classifiers considered we compute, for each pair of algorithms, the differences of performances in each data set. Ta-
ble 5 shows this computation.

From the differences in Table 5, we find that the six medians are Z12 ¼ 0:02; Z13 ¼ 0:018; Z14 ¼ 0:064,
Z23 ¼ �0:006; Z24 ¼ 0:038 and Z34 ¼ 0:035. We now compute the following averages for M1 and M2:
m1 ¼
0þ 0:02þ 0:018þ 0:064

4
¼ 0:026 ð5Þ

m2 ¼
�0:02þ 0þ ð�0:006Þ þ 0:038

4
¼ 0:003 ð6Þ
Our estimate of M1 �M2 is m1 �m2 ¼ 0:026� 0:003 ¼ 0:023. In other words, the difference in accuracy between PDFC
and NNEP classifiers estimated over the median in multiple data sets is equal to 0.023. Table 6 shows all the estimators
among the four algorithms.

As we can see in Table 6, PDFC method always obtains a positive difference value with respect to the other three methods
compared, indicating to us that it is the best performing method. FH-GBML is the worst one and IS-CHC � 1NN can be con-
sidered better than NNEP. These conclusions are drawn from the results offered by the table, but they cannot be considered
definitive. This procedure is especially useful to estimate how far a method in performance is over other, but it cannot pro-
vide a probability of error associated with the rejection of the null hypothesis.

4. Advanced nonparametric tests for performing multiple comparisons: Friedman Aligned Ranks and the test of
Quade

As we have seen before, nonparametric statistics can be used over real data through ranking the data. This transformation
to ranks can be made in different ways; i.e. the Friedman test uses sets of ranks whose treatments are ranked separately in
each data set. In this section, we explain two modifications to improve, in certain circumstances, the application of the Fried-
man test in an experimental analysis. The first one is the use of aligned ranks, which will be described in Section 4.1, whereas
in Section 4.2 we will present another alternative based on weighted rankings, the Quade test.

4.1. Friedman Aligned Ranks

The Friedman test is based on n sets of ranks, one set for each data set in our case; and the performances of the algorithms
analyzed are ranked separately for each data set. Such a ranking scheme allows for intra-set comparisons only, since inter-set
comparisons are not meaningful. When the number of algorithms for comparison is small, this may pose a disadvantage. In
such cases, comparability among data sets is desirable and we can employ the method of aligned ranks [26].

In this technique, a value of location is computed as the average performance achieved by all algorithms in each data set.
Then, it calculates the difference between the performance obtained by an algorithm and the value of location. This step is
repeated for algorithms and data sets. The resulting differences, called aligned observations, which keep their identities with
respect to the data set and the combination of algorithms to which they belong, are then ranked from 1 to kn relative to each
other. Then, the ranking scheme is the same as that employed by a multiple comparison procedure which employs indepen-
dent samples; such as the Kruskal–Wallis test [32]. The ranks assigned to the aligned observations are called aligned ranks.

The Friedman Aligned Ranks test statistic can be written as
T ¼
ðk� 1Þ

Pk
j¼1
bR2
:j � ðkn2

=4Þðknþ 1Þ2
h i

f½knðknþ 1Þð2knþ 1Þ�=6g � ð1=kÞ
Pn

i¼1
bR2

i:

ð7Þ
where bRi: is equal to the rank total of the ith data set and bR:j is the rank total of the jth algorithm.
The test statistic T is compared for significance with a chi-square distribution for k� 1 degrees of freedom. Critical values

can be found at Table A3 in [42]. Furthermore, the p-value could be computed through normal approximations [1]. If the null
hypothesis is rejected, we can proceed with a post hoc test. We illustrate the Friedman Aligned Ranks technique by means of
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the global experimental study considered in this paper. Table 7 displays the aligned observations and the aligned ranks in the
parentheses considering the known four algorithms and 24 data sets.

Again, average ranks by themselves provide a fair comparison of the algorithms. On average, PDFC ranked the first with
rank 29.313; NNEP and IS-CHC + 1NN ranked the second and the third, with ranks 46.729 and 47.063, respectively; and the
last is FH-GBML with rank 70.896. The Friedman Aligned Rank test checks whether the measured sum of aligned ranks are
significantly different from the total aligned rank bRj ¼ 1164 expected under the null hypothesis:
Table 7
Aligned
Aligned

Data

Adul
Brea
Bupa
Car
Clev
Cont
Derm
Ecol
Germ
Glas
Habe
Iris
Lym
Mus
New
Penb
Ring
Satim
Shut
Spam
Thyr
Vehi
Win
Wisc

Tota
Aver
Xk

j¼1

bR2
:j ¼ 703:52 þ 11212 þ 1129:52 þ 1701:52 ¼ 5;923;547 ð8Þ

Xn

i¼1

bR2
i: ¼ 1992 þ 2072 þ 1982 þ � � � þ 1992 ¼ 926;830 ð9Þ

T ¼ ð4� 1Þ½5;923;547� ð4 � 242=4Þð4 � 24þ 1Þ2�
f½4 � 24ð4 � 24þ 1Þð2 � 4 � 24þ 1Þ�=6g � ð1=4Þ � 926;830

¼ 18:837 ð10Þ
With four algorithms and 24 data sets, T is distributed according to the chi-square distribution with 4� 1 ¼ 3 degrees of
freedom. The p-value computed by using the v2ð3Þ distribution is 2.96 � 10�4, so the null hypothesis is rejected at a high
level of significance.

4.2. Quade test

The Friedman test considers all data sets to be equal in terms of importance. An alternative to this could take into account
the fact that some data sets are more difficult or the differences registered on the run of various algorithms over them are
larger. The rankings computed on each data set could be scaled depending on the differences observed in the algorithms’
performances. The Quade test conducts a weighted ranking analysis of the sample of results [38].

The procedure starts finding the ranks rj
i in the same way as the Friedman test does. The next step requires the original

values of performance of the classifiers xij. Ranks are assigned to the data sets themselves according to the size of the sample
range in each data set. The sample range within data set i is the difference between the largest and the smallest observations
within that data set:
Range in data set : i ¼max
j
fxijg �min

j
fxijg ð11Þ
Obviously, there are n sample ranges, one for each data set. Assign rank 1 to the data set with the smallest range, rank 2 to
the second smallest, and so on to the data set with the largest range, which gets rank n. Use average ranks in case of ties. Let
Q1;Q2; . . . ;Q n be the ranks assigned to data sets 1;2; . . . ;n, respectively.
observations of the four algorithms selected in the experimental study. The ranks in the parentheses are used in the computation of the Friedman
Ranks test.

set PDFC NNEP IS-CHC � 1NN FH-GBML

t* �0.024 (74) �0.003 (56) 0.009 (39) 0.019 (30)
st �0.001 (51) 0.020 (29) �0.004 (59) �0.015 (68)

0.068 (11) 0.047 (16) �0.084 (90) �0.031 (81)
0.112 (7) �0.020 (72) �0.002 (53) �0.091 (92)

eland �0.030 (80) 0.016 (32) 0.037 (19) �0.023 (73)
raceptive 0.022 (28) 0.022 (26) �0.001 (50) �0.043 (85)
atology 0.136 (4) 0.040 (17) 0.123 (5) �0.299 (95)

i 0.025 (24) 0.001 (48) 0.013 (33) �0.038 (84)
an 0.027 (22) �0.016 (69) 0.001 (47) �0.013 (67)

s 0.069 (10) �0.068 (88) 0.030 (21) �0.032 (82)
rman �0.005 (61) 0.002 (46) �0.002 (54) 0.005 (41)

0.010 (38) �0.010 (66) �0.003 (58) 0.003 (42)
phography 0.063 (13) �0.017 (71) 0.032 (20) �0.078 (89)
hrooms* 0.152 (2) 0.146 (3) �0.363 (96) 0.065 (12)
thyroid 0.012 (34.5) 0.012 (34.5) 0.002 (45) �0.026 (76)
ased* 0.108 (8) 0.078 (9) 0.058 (14) �0.244 (94)

* 0.120 (6) �0.085 (91) �0.025 (75) �0.010 (65)
age* 0.038 (18) �0.028 (79) 0.026 (23) �0.036 (83)

tle* �0.008 (62) 0.012 (36) 0.022 (27) �0.026 (77)
base* 0.055 (15) 0.018 (31) �0.008 (63) �0.065 (87)

oid* �0.001 (52) 0.011 (37) 0.000 (49) �0.010 (64)
cle 0.178 (1) �0.016 (70) �0.057 (86) �0.105 (93)
e 0.024 (25) 0.007 (40) �0.004 (60) �0.027 (78)
onsin �0.003 (57) �0.002 (55) 0.003 (43.5) 0.003 (43.5)

l 703.5 1121.5 1129.5 1701.5
age rank 29.313 46.729 47.063 70.896
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Finally, the data set rank Q i is multiplied by the difference between the rank within data set i, rj
i, and the average rank

within data sets, ðkþ 1Þ=2, to get the product Sij, where
Table 8
Compar
test. Sij

Data

Adul
Brea
Bupa
Car
Clev
Cont
Derm
Ecoli
Germ
Glas
Habe
Iris
Lym
Mus
New
Penb
Ring
Satim
Shut
Spam
Thyr
Vehi
Win
Wisc

Sum

Aver
Sij ¼ Q i rj
i �

kþ 1
2

� �
ð12Þ
is a statistic that represents the relative size of each observation within the data set, adjusted to reflect the relative signif-
icance of the data set in which it appears.

For convenience and to establish a relationship with the Friedman test, we will also use rankings without average
adjusting:
Wij ¼ Q i rj
i

h i
ð13Þ
Let Sj denote the sum for each classifier, Sj ¼
Pn

i¼1Sij and Wj ¼
Pn

i¼1Wij, for j ¼ 1;2; . . . ; k. Next we must to calculate the
terms:
A2 ¼ nðnþ 1Þð2nþ 1ÞðkÞðkþ 1Þðk� 1Þ=72 ð14Þ

B ¼ 1
n

Xk

j¼1

S2
j ð15Þ
The test statistic is
T3 ¼
ðn� 1ÞB
A2 � B

ð16Þ
which is distributed according to the F-distribution with k� 1 and ðk� 1Þðn� 1Þ degrees of freedom. The table of critical
values for the F-distribution is given in [42, Table A10]. Moreover, the p-value could be computed through normal approx-
imations [1]. If A2 ¼ B, consider the point to be in the critical region of the statistical distribution and calculate the p-value as
ð1=k!Þn�1. If the null hypothesis is rejected, we can proceed with a post hoc test, which will be explained in Section 5.

We show an example of the use of the Quade technique by means of the global experimental study considered in this
paper. Table 8 displays the aligned observations and the aligned ranks in the parentheses considering the known four algo-
rithms and 24 data sets.

Average ranks Tj could be compared with the ranks obtained by the Friedman test. In this case, PDFC ranked the first with
rank 1.393; NNEP and IS-CHC + 1NN ranked the second and the third, with ranks 2.537 and 2.592, respectively; and the last
ison of accuracy among the four algorithms selected in the experimental study. The ranks in the parentheses are used in the computation of the Quade
and Wij are displayed in this order.

set Sample range Rank Qi PDFC NNEP IS-CHC � 1NN FH-GBML

t* 0.043 8 0.752 (12)(32) 0.773 (4)(24) 0.785 (�4)(16) 0.795 (�12)(8)
st 0.035 5 0.727 (�2.5)(10) 0.748 (�7.5)(5) 0.724 (2.5)(15) 0.713 (7.5)(20)

0.151 18 0.736 (�27)(18) 0.716 (�9)(36) 0.585 (27)(72) 0.638 (9)(54)
0.203 19 0.994 (�28.5)(19) 0.861 (9.5)(57) 0.880 (�9.5)(38) 0.791 (28.5)(76)

eland 0.067 13 0.508 (19.5)(52) 0.553 (�6.5)(26) 0.575 (�19.5)(13) 0.515 (6.5)(39)
raceptive 0.065 12 0.535 (�6)(24) 0.536 (�18)(12) 0.513 (6)(36) 0.471 (18)(48)
atology 0.436 23 0.967 (�34.5)(23) 0.871 (11.5)(69) 0.954 (�11.5)(46) 0.532 (34.5)(92)

0.063 11 0.831 (�16.5)(11) 0.807 (5.5)(33) 0.819 (�5.5)(22) 0.768 (16.5)(44)
an 0.043 7 0.745 (�10.5)(7) 0.702 (10.5)(28) 0.719 (�3.5)(14) 0.705 (3.5)(21)

s 0.137 16 0.709 (�24)(16) 0.572 (24)(64) 0.669 (�8)(32) 0.607 (8)(48)
rman 0.010 2 0.722 (3)(8) 0.728 (�1)(4) 0.725 (1)(6) 0.732 (�3)(2)

0.020 3 0.967 (�4.5)(3) 0.947 (4.5)(12) 0.953 (1.5)(9) 0.960 (�1.5)(6)
phography 0.141 17 0.832 (�25.5)(17) 0.752 (8.5)(51) 0.802 (�8.5)(34) 0.691 (25.5)(68)
hrooms* 0.515 24 0.998 (�36)(24) 0.992 (�12)(48) 0.482 (36)(96) 0.910 (12)(72)
thyroid 0.038 6 0.963 (�6)(9) 0.963 (�6)(9) 0.954 (3)(18) 0.926 (9)(24)
ased* 0.352 22 0.982 (�33)(22) 0.953 (�11)(44) 0.932 (11)(66) 0.630 (33)(88)

* 0.205 20 0.978 (�30)(20) 0.773 (30)(80) 0.834 (10)(60) 0.849 (�10)(40)
age* 0.075 14 0.854 (�21)(14) 0.787 (7)(42) 0.841 (�7)(28) 0.779 (21)(56)

tle* 0.048 9 0.965 (4.5)(27) 0.984 (�4.5)(18) 0.995 (�13.5)(9) 0.947 (13.5)(36)
base* 0.120 15 0.924 (�22.5)(15) 0.887 (�7.5)(30) 0.861 (7.5)(45) 0.804 (22.5)(60)

oid* 0.021 4 0.929 (2)(12) 0.942 (�6)(4) 0.931 (�2)(8) 0.921 (6)(16)
cle 0.282 21 0.837 (�31.5)(21) 0.643 (�10.5)(42) 0.602 (10.5)(63) 0.554 (31.5)(84)
e 0.050 10 0.972 (�15)(10) 0.956 (�5)(20) 0.944 (5)(30) 0.922 (15)(40)
onsin 0.006 1 0.958 (1.5)(4) 0.959 (0.5)(3) 0.964 (�1)(1.5) 0.964 (�1)(1.5)

of ranks Sj �332 11 27.5 293.5

age ranks Tj ¼
Wj

nðnþ1Þ=2
1.393 2.537 2.592 3.478
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is FH-GBML with rank 3.487. The Quade test checks whether the measured sum of weighted ranks Sj are significantly differ-
ent from 0, expected under the null hypothesis:
A2 ¼ 24ð24þ 1Þð2 � 24þ 1Þ4ð4þ 1Þð4� 1Þ=72 ¼ 24;500 ð17Þ

B ¼ 1
24
½ð�332Þ2 þ 112 þ 27:52 þ 293:52� ¼ 4068:479 ð18Þ

T3 ¼
23 � 4068:479

24;500� 4068:479
¼ 21:967 ð19Þ
With four algorithms and 24 data sets, T3 is distributed according to the F distribution with 4� 1 ¼ 3 and
ð4� 1Þ � ð24� 1Þ ¼ 69 degrees of freedom. The p-value computed by using the Fð3;69Þ distribution is 4.28 � 10�10, so the
null hypothesis is rejected at a high level of significance.

It should be noted that the Quade test offers a different way of ranking computation. It ranks the data sets in order of
importance, so the importance can be defined. For example, instead of using the differences between the best and the worst
method, we could use the differences between our proposal and the best performing method (obviously, if our proposal is the
one with the minimum mean error or whatever other measure is used, we should take the one which has the second lowest
error). Another example is to justify an order of importance among the data sets before beginning the analysis of results.

5. A candidate set of post hoc tests: p-values and adjusted p-values

This section is devoted to presenting a set of post hoc procedures which can be used after the null hypothesis of equiv-
alence of rankings is rejected through the Friedman and Iman–Davenport extension, Friedman Aligned Ranks or Quade tests,
to explain the usefulness of APVs and the procedures to compute depending on the post hoc test and to show an example of
their use. It is organized as follows:

� Section 5.1 explains the method of conducting pairwise comparisons that involve the control algorithm within multi-
ple comparison tests and lists a set of post hoc tests. It also introduces the meaning and usefulness of using APVs and
provides the necessary computations to obtain them.

� Section 5.2 illustrates the use of the post hoc test under the Friedman, Friedman Aligned Ranks and Quade tests con-
sidering the experimental study followed in this paper.
5.1. Post hoc procedures

This paper is focused on the comparison between a control method, which is usually the proposed method, and a set of
algorithms used in the empirical study. This set of comparisons is associated with a set or family of hypotheses, all of which
are related to the control method. Any of the post hoc tests is suitable for application to nonparametric tests working over a
family of hypotheses. The test statistic for comparing the ith algorithm and jth algorithm depends on the main nonparamet-
ric procedure used:

� Friedman test: In [10] we can see that the expression for computing the test statistic in Friedman test is
z ¼ ðRi � RjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6n

r,
ð20Þ

where Ri; Rj are the average rankings by Friedman of the algorithms compared.

� Friedman Aligned Ranks test: Since the set of related rankings is converted to absolute rankings, the expression for

computing the test statistic in Friedman Aligned Ranks is the same as that used by the Kruskal–Wallis test [32,10]
z ¼ ðbRi � bRjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðnþ 1Þ

6

r,
ð21Þ

where bRi; bRj are the average rankings by Friedman Aligned Ranks of the algorithms compared.

� Quade test: In [9], the test statistic for comparing two algorithms is given by using the t-student distribution, but we

can easily obtain the equivalent in a normal distribution Nð0;1Þ [42]
z ¼ ðTi � TjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þð2nþ 1Þðk� 1Þ

18nðnþ 1Þ

s,
ð22Þ

where Ti ¼ Wi
nðnþ1Þ=2 ; Tj ¼

Wj

nðnþ1Þ=2, and Wi and Wj are the rankings without average adjusting by Quade of the algorithms

compared. In fact, Ti and Tj compute the correct average magnitudes.
In statistical hypothesis testing, the p-value is the probability of obtaining a result at least as extreme as the one that was
actually observed, assuming that the null hypothesis is true. It is a useful and interesting datum for many consumers of sta-
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tistical analysis. A p-value provides information about whether a statistical hypothesis test is significant or not, and it also
indicates something about ‘‘how significant” the result is: the smaller the p-value, the stronger the evidence against the null
hypothesis. Most importantly, it does this without committing to a particular level of significance.

When a p-value is considered in a multiple comparison, it reflects the probability error of a certain comparison, but it does
not take into account the remaining comparisons belonging to the family. If one is comparing k algorithms and in each com-
parison the level of significance is a, then in a single comparison the probability of not making a Type I error is ð1� aÞ, then
the probability of not making a Type I error in the k� 1 comparison is ð1� aÞðk�1Þ. Then the probability of making one or
more Type I error is 1� ð1� aÞðk�1Þ. For instance, if a ¼ 0:05 and k ¼ 10 this is 0.37, which is rather high.

One way to solve this problem is to report adjusted p-values (APVs) which take into account that multiple tests are con-
ducted. An APV can be compared directly with any chosen significance level a. We recommend the use of APVs due to the
fact that they provide more information in a statistical analysis.

The z value in all cases is used to find the corresponding probability (p-value) from the table of normal distribution
Nð0;1Þ, which is then compared with an appropriate level of significance a (Table A1 in [42]). The post hoc tests differ in
the way they adjust the value of a to compensate for multiple comparisons.

Next, we will define a candidate set of post hoc procedures and we will explain how to compute the APVs depending on
the post hoc procedure used in the analysis, following the indications given in [52,49]. The notation used in the computation
of the APVs is as follows:

� Indexes i and j each correspond to a concrete comparison or hypothesis in the family of hypotheses, according to an
incremental order of their p-values. Index i always refers to the hypothesis in question whose APV is being computed
and index j refers to another hypothesis in the family.

� pj is the p-value obtained for the jth hypothesis.
� k is the number of classifiers being compared.

The procedures of p-value adjustment can be classified into:

� one-step

– The Bonferroni–Dunn procedure (Dunn–Sidak approximation) [14]: it adjusts the value of a in a single step by divid-

ing the value of a by the number of comparisons performed, ðk� 1Þ. This procedure is the simplest but it also has
little power.Bonferroni APVi: minfv; 1g, where v ¼ ðk� 1Þpi.

� step-down
– The Holm procedure [28]: it adjusts the value of a in a step-down manner. Let p1; p2; . . . ; pk�1 be the ordered p-values

(smallest to largest), so that p1 6 p2 6 � � � 6 pk�1, and H1;H2; . . . ;Hk�1 be the corresponding hypotheses. The Holm
procedure rejects H1 to Hi�1 if i is the smallest integer such that pi > a=ðk� iÞ. Holm’s step-down procedure starts
with the most significant p-value. If p1 is below a=ðk� 1Þ, the corresponding hypothesis is rejected and we are
allowed to compare p2 with a=ðk� 2Þ. If the second hypothesis is rejected, the test proceeds with the third, and
so on. As soon as a certain null hypothesis cannot be rejected, all the remaining hypotheses are retained as well.-
Holm APVi: minfv; 1g, where v ¼maxfðk� jÞpj : 1 6 j 6 ig.

– The Holland procedure [27]: it also adjusts the value of a in a step-down manner, as Holm’s method does. It rejects
H1 to Hi�1 if i is the smallest integer so that pi > 1� ð1� aÞk�i.Holland APVi: minfv; 1g, where
v ¼maxf1� ð1� pjÞ

k�j : 1 6 j 6 ig.
– The Finner procedure [17]: it also adjusts the value of a in a step-down manner, as Holm’s or Holland’s method do. It

rejects H1 to Hi�1 if i is the smallest integer so that pi > 1� ð1� aÞðk�1Þ=i.Finner APVi : minfv ; 1g, where
v ¼maxf1� ð1� pjÞ

ðk�1Þ=j : 1 6 j 6 ig.

� step-up

– The Hochberg procedure [25] it adjusts the value of a in a step-up manner. Hochberg’s step-up procedure works in
the opposite direction, comparing the largest p value with a, the next largest with a=2, the next with a=3, and so
forth until it encounters a hypothesis it can reject. All hypotheses with smaller p-values are then rejected as well.
Hochberg APVi: maxfðk� jÞpj : ðk� 1ÞP j P ig.

– The Hommel procedure [29] is more complicated to compute and understand. First, we need to find the largest j for
which pn�jþk > ka=j for all k ¼ 1; . . . ; j. If no such j exists, we can reject all hypotheses, otherwise we reject all for
which pi 6 a=j.
Hommel APVi: see algorithm at Fig. 2.

– The Rom procedure [41]: Rom developed a modification to Hochberg’s procedure to increase its power. It works in
exactly the same way as the Hochberg procedure, except that the a values are computed through the expression
ak�i ¼
Xi�1

j¼1

aj �
Xi�2

j¼1

i

k

� �
ai�j

k�1�j

" #,
i ð23Þ

where ak�1 ¼ a and ak�2 ¼ a=2.
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Rom APVi : maxfðrk�jÞpj : ðk� 1ÞP j P ig, where rk�j can be obtained from Eq. (23) ðr ¼ f1;2;3;3:814;
4:755;5:705;6:655; . . .gÞ.
� two-step.
– The Li procedure [34]: Li proposed a two-step rejection procedure.

* Step 1: Reject all Hi if pk�1 6 a. Otherwise, accept the hypothesis associated to pk�1 and go to Step 2.
* Step 2: Reject any remaining Hi with pi 6 ð1� pk�1Þ=ð1� aÞa.
Li APVi : pi=ðpi þ 1� pk�1Þ
5.2. Experimental study

Tables 9–11 show the results in the final form of APVs for the experimental study considered in this paper. As we can see,
this example is suitable for observing the difference of power among the test procedures. Also, these tables can provide infor-
mation about the state of retention or rejection of any hypothesis, comparing its associated APV with the level of significance
fixed at the beginning of the statistical analysis.

The statistical tests are conducted once, assuming that the results come from an aggregation based on the means of sev-
eral repetitions. In our case, we perform 3 repetitions of 10 cfv, so each result belonging to the sample analyzed by the sta-
tistical tests actually represents the mean of 30 runs of the algorithm in question. In order to do it, we use 3 different seeds in
stochastic algorithms, keeping the same cross-validation partitions. The scope of this paper is focused on the analysis by sta-
tistical tests of multiple data sets and we assume that we have available a result from each pair of data set-algorithms. The
providence of the results is not our concern, while we understand that it is a controversial question in the literature.

First of all, we can observe that the Bonferroni procedure obtains the highest APV. Theoretically, the step-down proce-
dures usually have less power than step-up ones and the Li procedure seems to be the multiple comparison test with highest
power. On the other hand, referring to a comparison between multiple comparison nonparametric tests; that is, Friedman,
Friedman Aligned Ranks and Quade; we can see that Quade’s procedure is the one which obtains the lowest unadjusted p-
value in this example.

The results offered by an experimental study could lead to erroneous conclusions. To better analyze the differences in
behavior among all the procedures, we will conduct an experimental study in the next section, where the procedures will
be analyzed, taking into account more than one scenario and set of parameters which configure the comparison between
classifiers.
6. Experimental analysis: power of the multiple comparisons tests

The power of a statistical test is the probability that the test will reject a false null hypothesis. As power increases, the
chances of a Type II error decrease. The probability of a Type II error is referred to as the false negative rate [42]. In this sec-
tion, we show an actual estimation of the power of the presented procedures through the experiments in which we repeat-
edly compared the classifiers over a number of randomly chosen data sets, recording the number of equivalence hypothesis
rejected and APVs. We follow a similar method used in [11,22].

The classifiers, data sets, parameters and validation procedure used are those described in Section 2. As was mentioned,
we measured the performance of each classifier by means of its accuracy in test data by using 3 repetitions of 10-fold cross-
validation. When comparing two classifiers, a subgroup of the complete group of data sets considered was randomly selected
so that the probability for the data set i being chosen was proportional to 1=ð1þ e�kdi Þ, where di is the (positive or negative)
difference of the two classifier accuracies in that data set and k is the bias through which we can regulate the differences
Fig. 2. Algorithm for calculating APVs based on Hommel’s procedure.



Table 10
Adjusted p-values for the Friedman Aligned Ranks test (PDFC is the control method).

i 1 2 3
Algorithm FH-GBML IS-CHC + 1NN NNEP

Unadjusted p 2.32777 � 10�7 0.02729 0.03032
pBonf 6.98332 � 10�7 0.08188 0.09097
pHolm 6.98332 � 10�7 0.05459 0.05459
pHoch 6.98332 � 10�7 0.03032 0.03032
pHomm 6.98332 � 10�7 0.03032 0.03032
pHoll 6.98332 � 10�7 0.05384 0.05384
pRom 6.98332 � 10�7 0.03032 0.03032
pFinn 6.98332 � 10�7 0.04066 0.04066
pLi 2.40057 � 10�7 0.02738 0.03032

Table 11
Adjusted p-values for the Quade test (PDFC is the control method).

i 1 2 3
Algorithm FH-GBML IS-CHC + 1NN NNEP

Unadjusted p 6.43747 � 10�4 0.02163 0.02843
pBonf 1.93124 � 10�4 0.06490 0.08528
pHolm 1.93124 � 10�4 0.04326 0.04326
pHoch 1.93124 � 10�4 0.02843 0.02843
pHomm 1.93124 � 10�4 0.02843 0.02843
pHoll 1.93112 � 10�4 0.04280 0.04280
pRom 1.93124 � 10�4 0.02843 0.02843
pFinn 1.93124 � 10�4 0.03227 0.03227
pLi 6.62538 � 10�4 0.02178 0.02843

Table 9
Adjusted p-values for the Friedman test (PDFC is the control method).

i 1 2 3
Algorithm FH-GBML IS-CHC + 1NN NNEP

Unadjusted p 5.69941 � 10�5 0.05735 0.05735
pBonf 1.70982 � 10�4 0.17204 0.17204
pHolm 1.70982 � 10�4 0.11469 0.11469
pHoch 1.70982 � 10�4 0.05735 0.05735
pHomm 1.70982 � 10�4 0.05735 0.05735
pHoll 1.70973 � 10�4 0.11141 0.11141
pRom 1.70982 � 10�4 0.05735 0.05735
pFinn 1.70982 � 10�4 0.08477 0.08477
pLi 6.04577 � 10�4 0.05735 0.05735
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between the classifiers. With k ¼ 0, the selection is purely random because its value is 0.5, hence the probability of selection
of each data set is 50% (the order of data set presentation is assumed to be random each time). As k is higher, the selected
data sets are favorable to a particular classifier, increasing the probability of selection for those data sets in which the clas-
sifier in question obtains better accuracy than the other one selected. For each k, 1000 choices of data sets and statistical
analysis are made. Depending on the characteristics of the study, we will choose two algorithms from the eight considered
in this paper.

Three studies will be carried out in order to analyze the properties of the procedures presented.

6.1. Analysis of the power of nonparametric multiple comparisons tests

The first study corresponds to the analysis of the multiple comparisons tests used in this paper: Friedman, Friedman
Aligned Ranks and Quade tests. Fig. 4 illustrates this study. Our interest is to detect differences in the behavior of these tests
when an important factor that takes part in a multiple comparison analysis changes. This factor will be the number of algo-
rithms. We study the effect and power of the tests mentioned when eight algorithms participate in the multiple comparison
and when only four methods do so. The choice of data sets is again based upon PDFC and NNEP, and the number of data sets
selected is 10 when comparing the 8 methods and 6 when comparing 4 methods. The reason for doing this is to avoid pro-
moting the rejection of hypotheses due to the elevated number of data sets with respect to the number of classifiers. The post
hoc procedures used are Holm and Li.
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Fig. 4a displays the average APVs in all comparisons when 8 classifiers take part in the multiple comparison. It is appre-
ciable that the Quade test has the best performance in terms of power and the Friedman Aligned Ranks is the test that has an
inferior power. However, in Fig. 4b, we can see that the Friedman test present a more conservative behavior, in the case when
only four algorithms take part in the multiple comparison. These graphics check an interesting feature remarked upon in
[10], where the author indicates that the power of this test depends on the number of treatments (classifiers in our case)
per block (data set), so the Friedman-AR test suffers more than the other two tests when the number of algorithms is high.
We have empirically showed that the use of 4 algorithms in the comparison allows us to improve the power of the Friedman
Aligned Ranks test. On the other hand, we have noticed that the Quade test performs better than the Friedman and Friedman
Aligned Ranks test in this study. We will see later that the Quade test is not always the best choice.
6.2. Analysis of the power of the post hoc procedures

The second study we have carried out is illustrated in Fig. 3. In this case, we employ all the classifiers described in the
paper and we carry out the procedure explained above by choosing, at each step, 10 of the 48 data sets. The methods chosen
for guiding the data set choice are PDFC and NNEP, except in the last study (Fig. 3d). The Friedman test is then used to com-
pute the rankings. The purpose of this study is to detect and quantify the differences in power observed among the 8 post hoc
procedures explained in Section 5.

Fig. 3a represents the number of hypotheses rejected between the two methods considered (at a level of significance
a ¼ 0:05) and Fig. 3b their associated average APV. It perfectly illustrates the power of the post hoc procedures when the
data sets are chosen agree that the differences between the two methods are greater; that is, data sets that favor the accuracy
of the PDFC method. The power of the Bonferroni–Dunn procedure is the lowest and far from the rest of procedures. The
Holm and Holland tests behave very similarly among themselves, which is also the case for Hochberg and Rom. However,
the second ones, which are step-up procedures, have more power than the first, step-down methods. The next, in terms
of power, is the Hommel test. The two best procedures in terms of power are Finner and Li and we should note that the dis-
tance between Hommel and Finner is very noticeable. It seems that the Li test is the most powerful of them.
(a) Number of hypotheses rejected between PDFC and NNEP

(b) Average APV between PDFC and NNEP

(c) Average APV in all comparisons (PDFC vs. NNEP) (d) Average APV between GASSIST and DT-GA

Fig. 3. Comparison between all post hoc tests.



S. García et al. / Information Sciences 180 (2010) 2044–2064 2059
Fig. 3c shows the average APV considering all comparisons between the control method PDFC and the rest of classifiers.
The results are similar to those commented in the previous graphic. However, the Li test is not always the less conservative
procedure. In Fig. 3d we can see a case in which the Li test performs even worse than Bonferroni–Dunn. This case represents
the average APV between GASSIST and DT-GA, two methods whose results obtained are very similar in terms of accuracy.
Note that the Finner methods is not able to reject the null hypothesis with a level of significance a ¼ 0:05 when k ¼ 20. This
fact indicates to us that the Li test loses effectiveness when the classifiers to be compared are very similar in behavior. More
specifically, the Li procedure is notably superior when the largest p-value is anticipated to be less than 0.5 [34].

6.3. Analysis of the stability of the Quade test

Finally, we want to study the stability of the Quade test with respect to the choice of data sets. We refer to stability as the
property of reporting similar results (number of rejections at a certain significance level or average APV) when the samples
to be analyzed do not substantially change. In this study, it can be accomplished by keeping k ¼ 0 in all repetitions. Fig. 5
shows the results of this study. In this case, as leading classifiers, we have used the two best: PDFC and GASSIST. PDFC is
much better than GASSIST in many data sets. The value of k remains unaltered throughout the experiment, so the choice
of data sets is always random and actually the graphics show the run of 1000� 21 statistical tests and it represents the aver-
age APV every 1000 runs. Our objective is to show that the Quade test is much more dependent on the choice of data sets
than the remaining tests.

Fig. 5a and b illustrates the case which works with 8 classifiers. In the first one, 20 data sets are randomly chosen, whereas
in the second one, 40 data sets are chosen. Each point in the graphics represents the average APV over 1000 runs (or data set
choices) as we have mentioned before. If the number of data sets is low with respect to the total number of them, and the
control method presents significantly better results in some data sets than in the remaining algorithms, the behavior of the
test is very dependent on the data set choice. The Quade test benefits very much from high performance values in a subset of
(a) Average APV in all comparisons considering 8 algorithms over 10 data sets

(b) Average APV in all comparisons considering 4 algorithms over 6 data sets

Fig. 4. Comparison between Friedman, Friedman Aligned Ranks and Quade (PDFC vs. NNEP).



(a) Average APV in all comparisons considering 8 algorithms over 20 data sets (b) Average APV in all comparisons considering 8 algorithms over 40 data sets

(c) Average APV in all comparisons considering 4 algorithms over 10 data sets (d) Average APV in all comparisons considering 4 algorithms over 40 data sets

Fig. 5. Comparison of stability between Friedman, Friedman Aligned Ranks and Quade (PDFC vs. GASSIST).
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data set, and the power registered could be much higher than Friedman as we can see in Fig. 5a. However, when the number
of data sets to be chosen is high with respect to the original set of data sets, the Quade test is the one that obtains the lowest
power (Fig. 5b). Note that this procedure also ranks the data sets among themselves, so the data sets in which the control
method presents the best results, influence the process even more than in other nonparametric tests.

Fig. 5c and d illustrates the same study but now considering 4 classifiers instead of 8. Centering on this case, the effects of
superiority showed by the Quade test are stressed because in Fig. 5c the number of random data sets chosen is only 10. No-
tice the instability of the Quade test in terms of power. When the number of data sets chosen is increased to 40, we obtain a
similar result to before, but the power of the procedures follows the opposite order: Quade’s power > Friedman Aligned
Ranks’ power > Friedman’s power. In relation to the study conducted in Fig. 4, we observe that the Quade test performs bet-
ter than the Friedman and even Friedman Aligned Ranks when the number of treatments (classifiers in our case) per block
(data set) is low [9]. We have showed that in real circumstances, the Quade test is more powerful than Friedman Aligned
Ranks test when the number of algorithms to be analyzed is low, but we have to be cautious when using the Quade test,
because it is very dependant on the choice of data sets and the differences reported among algorithms could be excessive
due to the fact that the data sets chosen could benefit the computation ranking procedure.

7. Summary and suggestions

This section is dedicated to give some considerations on the use of the nonparametric and post hoc tests presented in this
paper. Their characteristics as well as suggestions on some of their aspects and details of the multiple comparisons tests are
enumerated:

� As we have suggested, multiple comparison tests must be used when we want to establish a statistical comparison of
the results reported among various algorithms. This paper focuses on procedures that work with a control method,
that is, a method to be compared against a set of algorithms. It could be carried out first by using a statistical method
for testing the differences among the related samples means, that is, the results obtained by each algorithm. In this
paper we present three alternatives: the Friedman test with the Iman–Davenport extension, the Friedman Aligned
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Ranks test and the Quade test. Once one of these tests rejects the hypothesis of equivalence of medians, the detection
of the specific differences among the algorithms can be made with the application of post hoc statistical procedures,
which are methods used for specifically comparing a control algorithm with two or more algorithms.

� An alternative to directly performing a comparison between a control algorithm and a set of algorithms is the Multiple
Sign-test. It has been described in this paper and an example of its use has been provided. We have shown that this
procedure is rapid and easy to apply, but it has low power with respect to more advanced techniques. We recommend
its use when the differences reported by the control algorithm with respect to the rest of methods are very clear for a
certain performance metric.

� Another interesting procedure presented in this paper is related to the Contrast Estimation based on medians between
two samples of results. The Contrast Estimation in nonparametric statistics is used for computing the real differences
between two algorithms, considering the median measure the most important. Taking into account that the samples
of results in CI experiments rarely fulfill the needed conditions for a safe use of parametric tests, the computation of
nonparametric contrast estimation through the use of medians is very useful. For example, a paper could provide,
apart from the average values of accuracies over various data sets reported by the classifiers compared, the contrast
estimation between them over multiple data sets, which is a safer metric in multiple-problem environments.

� Apart from the well-known Friedman test, we can use two alternatives which differ in the ranking computation. Both,
the Friedman Aligned Rank test and the Quade test, can be used under the same circumstances as the Friedman test.
We have studied their relative power and we have shown that they perform better than Friedman when the number
of algorithms is low, at not more than 4 or 5 algorithms. The differences in power between Friedman Aligned Ranks
and Quade are unknown [10,9], but we encourage the use of these tests when the number of algorithms to be com-
pared is low.

� As we have described, the Quade test adds to the ranking computation of Friedman’s test a weight factor computed
through the maximum and minimum differences in a data set. This implies that those algorithms that obtain further
positive results in diverse data sets could benefit from this test. The use of this test should be regulated because it is
very sensitive to the choice of data sets. If a researcher decided to include a subgroup of an already studied group of
data sets where in most of them the proposal obtained good results, this test would report excessive significant dif-
ferences. On the other hand, for specific problems in which we are interested in quantifying the real differences
obtained between methods, the use of this test can be justified. We recommend the use of this procedure under jus-
tified circumstances and with special caution.

� In relation to the post hoc procedures analyzed, we have seen the contrast of power among them. Actually, the dif-
ferences of power between the methods are rather small, with some exceptions. The Bonferroni–Dunn test should not
be used in spite of its simplicity, because it is a very conservative test and many differences may not be detected. Five
procedures – Holm, Hochberg, Hommel, Holland and Rom – have a similar power. Although Hommel and Rom are the
two most powerful procedures, they also are the most difficult to be applied and to be understood. A good alternative
is to use the Finner test, which is easy to comprehend and offers better results than the remaining tests, except the Li
test in some cases.

� The Li test is even simpler than the Finner, Holm or Hochberg tests. This test needs to check only two steps and to
know the greatest unadjusted p-value in the comparison, which is easy to obtain. In [34], the author declares that
the power of his test is highly influenced by the p-value and when it is lower than 0.5, the test will perform very well.
We have shown in the experimental analysis that depending on the classifiers compared, this test has the highest or
the lowest power, depending on the circumstances. We recommend that it be used with care and only when the dif-
ferences between the control algorithm and the rest seem to be high in the performance measure analyzed.

� Finally, we want to remark that the choice of any of the statistical procedures presented in this paper for conducting
an experimental analysis should be justified by the researcher. The use of the most powerful procedures does not
imply that the results obtained by his/her proposal will be better. The choice of a statistical technique is ruled by a
trade-off between its power and its complexity when it comes to being used or explained to non-expert readers in
statistics.
8. Conclusions

In this paper, we have studied the use of nonparametric statistical techniques in the analysis of the behavior of compu-
tational intelligence algorithms for data mining classification tasks, analyzing the use of multiple comparisons procedures
that use a control method.

We have presented some basic techniques for performing multiple comparisons of performance results between a pro-
posed method and a set of algorithms. Among them, we explained the Multiple Sign-test, which is a very interesting test for
carrying out rapid empirical comparisons and the Contrast based on medians, which can be used to obtain the exact differ-
ences between two algorithms over various case problems.

In addition, we have presented two advanced alternatives to the Friedman test, namely the Aligned Friedman test and
Quade test. They differ in the computation of the rankings in the set of results and they provide certain advantages depend-
ing on the properties of the experimental study. In addition, a set of post hoc procedures for detecting the differences be-
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tween two algorithms that belong to the multiple comparison have been described and analyzed in terms of power and we
have given a recommendation as to their use.
Table A.1
Critical values of minimum rj for comparison of m ¼ k� 1 algorithms against one control in n data sets. Source: A.L. Rhyne, R.G.D. Steel, Tables for a treatments
versus control multiple comparisons sign test, Technometrics 7 (1965) 293–306.

n Level of significance m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

5 0.1 0 0 – – – – – –
0.05 – – – – – – – –

6 0.1 0 0 0 0 0 – – –
0.05 0 0 – – – – – –

7 0.1 0 0 0 0 0 0 0 0
0.05 0 0 0 0 – – – –

8 0.1 1 1 0 0 0 0 0 0
0.05 0 0 0 0 0 0 0 0

9 0.1 1 1 1 1 0 0 0 0
0.05 1 0 0 0 0 0 0 0

10 0.1 1 1 1 1 1 1 1 1
0.05 1 1 1 0 0 0 0 0

11 0.1 2 2 1 1 1 1 1 1
0.05 1 1 1 1 1 1 0 0

12 0.1 2 2 2 2 1 1 1 1
0.05 2 1 1 1 1 1 1 1

13 0.1 3 2 2 2 2 2 2 2
0.05 2 2 2 1 1 1 1 1

14 0.1 3 3 2 2 2 2 2 2
0.05 2 2 2 2 2 2 1 1

15 0.1 3 3 3 3 3 2 2 2
0.05 3 3 2 2 2 2 2 2

16 0.1 4 3 3 3 3 3 3 3
0.05 3 3 3 3 2 2 2 2

17 0.1 4 4 4 3 3 3 3 3
0.05 4 3 3 3 3 3 2 2

18 0.1 5 4 4 4 4 4 3 3
0.05 4 4 3 3 3 3 3 3

19 0.1 5 5 4 4 4 4 4 4
0.05 4 4 4 4 3 3 3 3

20 0.1 5 5 5 5 4 4 4 4
0.05 5 4 4 4 4 4 3 3

21 0.1 6 5 5 5 5 5 5 5
0.05 5 5 5 4 4 4 4 4

22 0.1 6 6 6 5 5 5 5 5
0.05 6 5 5 5 4 4 4 4

23 0.1 7 6 6 6 6 5 5 5
0.05 6 6 5 5 5 5 5 5

24 0.1 7 7 6 6 6 6 6 6
0.05 6 6 6 5 5 5 5 5

25 0.1 7 7 7 7 6 6 6 6
0.05 7 6 6 6 6 6 5 5

30 0.1 10 9 9 9 8 8 8 8
0.05 9 8 8 8 8 8 7 7

35 0.1 12 11 11 11 10 10 10 10
0.05 11 10 10 10 10 9 9 9

40 0.1 14 13 13 13 13 12 12 12
0.05 13 12 12 12 12 11 11 11

45 0.1 16 16 15 15 15 14 14 14
0.05 15 14 14 14 14 13 13 13

50 0.1 18 18 17 17 17 17 16 16
0.05 17 17 16 16 16 16 15 15
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For a better understanding, all the procedures described in this paper have been applied to an example of experimental
study of classification over multiple data sets.
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Appendix A. Source code of the procedures and table for Multiple Comparison Sign test

The source code, written in JAVA, that implements all procedures described in this paper, is available at http://www.sci2-
s.ugr.es/keel/controlTest.zip. The program supports data inputs in CSV format and outputs a LATEX document. A complete
description of nonparametric tests together with software for their use can be also found in the web site available at:
http://www.sci2s.ugr.es/sicidm/.
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