
REGULAR ARTICLE

Optimization of multi-classifiers for computational biology:
application to gene finding and expression

Rocı́o Romero-Zaliz • Cristina Rubio-Escudero •

Igor Zwir • Coral del Val

Received: 17 March 2009 / Accepted: 23 September 2009 / Published online: 15 October 2009

� The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Genomes of many organisms have been

sequenced over the last few years. However, transforming

such raw sequence data into knowledge remains a hard

task. A great number of prediction programs have been

developed to address part of this problem: the location of

genes along a genome and their expression. We propose a

multi-objective methodology to combine state-of-the-art

algorithms into an aggregation scheme in order to obtain

optimal methods’ aggregations. The results obtained show

a major improvement in sensitivity when our methodology

is compared to the performance of individual methods for

gene finding and gene expression problems. The methodo-

logy proposed here is an automatic method generator, and a

step forward to exploit all already existing methods, by

providing alternative optimal methods’ aggregations to

answer concrete queries for a certain biological problem

with a maximized accuracy of the prediction. As more

approaches are integrated for each of the presented prob-

lems, de novo accuracy can be expected to improve further.

Keywords Multiobjective � Gene finding �
Gene expression

1 Introduction

Genomes of many organisms have been sequenced over the

last few years. However, transforming such raw sequence

data into knowledge remains a hard task [1]. A great

number of prediction programs have been developed to

address one part of this problem: the location of genes

along a genome [2–4]. Unfortunately, finding genes in a

genomic sequence is far from being a trivial problem.

Computational gene prediction methods yet have to

achieve perfect accuracy, even in the relatively simple

prokaryotic genomes [1]. Gene prediction is one of the

most important problems in computational biology due to

the inherent value of the set of protein-coding genes for

other analyses.

Another part of the problem is determining when, where

and for how long these genes are turned on or off.

Microarray technology allows the simultaneous evaluation

of the expression of hundreds of genes in a single assay,

converting this technology in a powerful tool for expres-

sion profiling, as well as, diagnosis and classification of

cancers and other diseases. However, this technology pre-

sents a wealth of analysis problems [5] such as the inherent

variability of cDNA microarrays at the individual slide and

spot level, the large-scale nature of the data, and the fact

that the full use of expression profiles for inferring gene

function is still only partly explored. Many new methods

have been developed to address the statistical challenge of
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identifying ‘‘important’’ genes in the large sets of raw

sequence data [6–11]. However, there is still a dearth of

computational methods to facilitate understanding of dif-

ferential gene expression profiles (e.g., profiles that change

over time and/or over treatments and/or over patient) and to

decide which of the many available statistical methods is

the most reliable to identify differences across profiles.

Despite the advances in both referred problems, existing

approaches to predict genes and to analyze microarray data

have intrinsic advantages and limitations [1, 12]. Further-

more, there is no program or methodology that can provide

perfect predictions for any given input for either of these

two problems.

The problems of gene finding (identifying genes, exons

and introns, beginning and end of the genes) and analysis

of gene expression are formulated in this paper as classi-

fication problems. The gene finding problem can be inter-

preted as a simple decision between which section of a

sequence is protein coding and which is not. Concerning

the gene expression from microarray experiments, the

classification problem can be seen as a decision between

which genes are active or inactive in a given time point

and/or under a given condition. For both problems many

different programs are available, which give distinct solu-

tions. There have been previous approaches to combine

gene predictors [13–15] and microarray analyses [16, 17],

but maximizing accuracy by weighting both sensitivity and

specificity functions into a single objective. However, our

methodology uses a multi-objective approach to extract the

best methods’ aggregations by maximizing the specificity

and sensitivity of their predictions individually. This

approach combines state-of-the-art algorithms into an

aggregation scheme to provide better predictions by taking

advantage of the different methodologies’ strengths and

avoiding their weaknesses.

We applied our methodology to the both referred

problems. In the gene finding problem, we used the

EGASP sets from the ENCODE Genome Annotation

Assessment Project (EGASP) [18, 19]. These datasets

contain manually curated fragments of the human gen-

ome originating from the ENCODE project [20]. This

data set was selected by the EGASP assessment because

the genes encoded in these regions were not used to train

any particular gene predictor. Therefore, it is not a

biased dataset. In the case of analysis of the microarrays,

we used a dataset derived from the analysis of

longitudinal blood expression profiles of human volun-

teers treated with intravenous endotoxin, compared to

those treated with a placebo in order to study the

inflammation and human response to injury. This dataset

was part of a Large-scale Collaborative Research Project

sponsored by the National Institute of General Medical

Sciences [21].

2 Materials and methods

The aggregation of the results from various methods is

accomplished using the union -[- and intersection -\-

operators [22]. All potential aggregations, termed methods’

aggregations from here on, form a space of potential

hypotheses, which can be represented as a lattice structure

(Fig. 1). We search for the best methods’ aggregations,

moving from hypothesis to hypothesis towards the most

general, the union of all methods, and the most specific,

their intersection, which are located at the top and the

bottom of the lattice, respectively [23] (Fig. 1). In Fig. 1

we can appreciate the lattice generated by the union and

intersection of methods. In the gene finding problem we

explore five methods, n = 5, termed M1 to M5, forming a

total set of 31 potential aggregations. In the analysis of

microarrays problem, ten methods are surveyed, n = 10,

termed M1 to M10, forming a total set of 1,023 potential

aggregations. The methods’ aggregations are evaluated

based on a multi-objective approach [24] to extract the best

methods’ aggregations by maximizing the specificity (Sp)

and sensitivity (Sn) of their predictions. To estimate the

sampling bias [25] of the methods’ aggregations we ran-

domly partition the original sample into ten subsamples,

and each subsample was retained as a validation data for

each methods’ aggregations.

2.1 Gene finding problem: dataset and programs

For the gene finding problem, we selected 27 ENCODE

regions to test our proposal. These ENCODE regions have

undergone an exhaustive annotation strategy prior to

EGASP by the HAVANA team [26]. They consist of 2,471

total transcripts representing 434 unique protein-coding

gene loci.

The programs used in this study are those used in the

EGASP competition, which are ab initio gene predictors

using a single genome sequence. These programs were

designed to predict gene structure, or at least a set of

spliceable exons in vertebrate or pre-human genome

sequences: GeneID [27], Genscan [28], Genemark [29],

Augustus [30] and GeneZilla [31]. GeneID combines dif-

ferent algorithms using Position Weight Arrays to detect

features such as splice sites, start and stop codons and

Markov Models to score exons and Dynamic Programming

(DP) to assemble the gene structure [27]. Genescan uses a

general probabilistic model for the gene structure of human

genomic sequences. It has the capacity to predict multiple

genes in a sequence, to deal with partial as well as com-

plete genes, and to predict consistent sets of genes occur-

ring on either or both DNA strands [32]. Genemark for

eukaryotes gathers the original Genemark models into the

naturally derived hidden Markov model framework with
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gene boundaries modeled as transitions between hidden

states [29]. Augustus is a gene predictor for eukaryotic

genomic sequences that is based on a generalized hidden

Markov model, a probabilistic model of a sequence and its

gene structure [30]. GeneZilla is based on the Generalized

Hidden Markov Model (GHMM) framework, similar to

Genscan. Graph-theoretic representations of the high

scoring open reading frames are provided, allowing for

exploration of sub-optimal gene models. It makes use of

Interpolated Markov Models (IMMs), Maximal Depen-

dence Decomposition (MDD), and includes states for sig-

nal peptides, branch points, TATA boxes and CAP sites

[31]. For each method, the closest organism available for

each gene in the dataset was selected. Predictions on both

strands were extracted.

The aggregations of the results of the different gene

prediction approaches are performed at a nucleotide

level. The aggregation of the results of different methods

joins two or more overlapping or adjacent exons into a

larger new exon (Fig. 2). Nucleotide level accuracy is

calculated as a comparison of the annotated nucleotides

with the predicted nucleotides. Individual nucleotides

appearing in more than one transcript in either the

annotation or the predictions are considered only once for

the nucleotide level statistics. Nucleotide predictions

must be on the same strand as the annotations to be

counted as correct. At the nucleotide level, Sn is the

proportion of annotated nucleotides (as being coding or

part of an mRNA molecule) that is correctly predicted,

and Sp the proportion of predicted nucleotides (as being

coding or part of an mRNA molecule) that is so anno-

tated. As a summary measure, we have computed the

correlation coefficient between the annotated and the

predicted nucleotides [19, 33].

Sp ¼ TP

TPþ FP
Sn ¼ TP

TPþ FN
ð1Þ

CC¼ ðTP�TNÞ� ðFN�FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFNÞ� ðTNþFPÞ� ðTPþFPÞ� ðTNþFNÞ
p

ð2Þ

2.2 Gene expression profile finding: datasets

and analysis methods

The dataset used was derived from longitudinal blood

expression profiles of human volunteers treated with intra-

venous endotoxin compared to those treated with a placebo.

The data are related to the host response over time to sys-

temic inflammatory insults, as part of a large-scale colla-

borative research project sponsored by the National Institute

Fig. 1 Lattice of potential

hypothesis, methods’

aggregations of M1…Mn using

the -[- and -\- and operators.

The solid arrows show the

direction of the search in the

space of hypotheses
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of General Medical Sciences (http://www.gluegrant.org).

The data was derived from blood samples collected from

eight normal human volunteers, four treated with intra-

venous endotoxin (i.e., patients 1–4) and four with placebo

(i.e., patients 5–8) [21]. Complementary RNA was gener-

ated from circulating leukocytes at 0, 2, 4, 6, 9 and 24 h after

the intravenous infusion and hybridized with GeneChips�

HG-U133A v2.0 from Affymetryx Inc., containing a set of

22,283 probe sets. A total set of 29 gene expression profiles

(sets of genes which exhibit a common behavior throughout

the conditions of the problem under study, time, treatment

and patient in our particular case) are contained in the

dataset and forms the focus of our study [34].

The methods analyzed in this study were applied to

identify meaningful gene expression profiles from micro-

array data. The list of programs used comprises the

methods most frequently applied to the analysis of micro-

array data: Student’s t test [7], Permutation Test [10],

Analysis of Variance (ANOVA) [7] and Repeated Mea-

sures Analysis of Variance (RMANOVA) [35]. These

methods have been applied to the inflammation and host

response to injury problem to account for different experi-

mental conditions, such as treatment versus control and

different time points. Therefore, Student’s t test and Per-

mutation Test have been applied in two different ways:

considering treatment versus control and considering time.

The ANOVA and RMANOVA tests can account for more

than one experimental condition simultaneously; therefore

they have been applied in three different ways: considering

treatment versus control, considering time, and considering

treatment versus control and time simultaneously.

The aggregation of the results of different methods in

the Gene Expression Profile Finding Problem is performed

by combining the results obtained by each of the individual

methods (group of probe sets). The union of two methods,

Ma and Mb (Ma [ Mb), is defined as the group resulting

which contains all genes retrieved either by method Ma or

by Mb. The intersection of two methods, Ma and Mb (Ma \
Mb), is defined as the group resulting which contains all

genes retrieved by both methods Ma and Mb.

We evaluate the performance of each method aggrega-

tion to retrieve each of the 29 gene expression profiles

present in the inflammation and host response to injury

dataset. In our particular problem, when studying the

behavior of method Mi to retrieve a gene expression profile

Pj, we define true positives (TPs) as probe sets retrieved by

method Mi which exhibit the gene expression profile Pj,

true negatives (TNs) probe sets not retrieved by method Mi

which do not exhibit the gene expression profile Pj, false

positives (FPs) as probe sets retrieved by method Mi which

do not exhibit the gene expression profile Pj, and false

negatives (FNs) as probe sets not retrieved by method Mi

which exhibit the gene expression profile Pj.

TP, TN, FP and FN information is typically summarized

in terms of Sn, the proportion of probe sets belonging to Pj

in the dataset and correctly retrieved by the method Mi

under evaluation, and Sp, the proportion of probe sets

correctly retrieved by the method Mi from all the probe sets

Fig. 2 Aggregation of exons using the union operator a equal exons, b missed exons, c included exons, d overlapped exons
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retrieved by method Mi (see Eq. 1). These measures are

formally described as for the Gene Finding Problem.

3 Results

The results obtained applying our methodology to the two

proposed biological problems outperform in terms of

specificity and sensitivity the results obtained by classical

methods, though both gene prediction and the identification

of gene expression profiles are problems of different

nature.

3.1 Gene finding

The most updated version of the ENCODE annotations and

of each gene finding prediction algorithm was used. The

specificity, sensitivity and correlation coefficient (CC)

averages for each individual method are shown in Table 1

with values represented in the [0–1] interval (see Eqs. 1, 2).

Genscan showed the highest CC while GeneMark

obtained the lowest CC. GeneID obtained the highest

specificity and the lowest sensitivity, while GeneZilla

showed the highest sensitivity with lower specificity. The

analysis of the individual results shows that some algo-

rithms are able to predict certain genes very accurately

with CC values close to 1, but the same algorithm com-

pletely fails to predict other genes (CC below 0.7 or even

0.5). These results show that a high average CC does not

imply a good performance, and vice versa, since the

average might hide some low CCs for specific genes.

We evaluated all possible 31 methods’ aggregations

resulting from applying the union and intersection opera-

tors to the selected five gene finding programs. The results

(Fig. 3) show the general increase of sensitivity and the

decrease of specificity with the increasing number of

methods per aggregation when applying the union operator.

However, we find the opposite behavior when using the

intersection operator.

The comparison between the prediction accuracy of the

individual methods and the aggregation strategy can be

seen in Fig. 3. This figure shows that methods’ aggrega-

tions increase either prediction’s sensitivity or specificity,

and a few aggregations increase both objectives when

compared with the individual methods. The best results are

obtained in aggregations containing 2 or 3 methods via

either union or intersection. Figure 4 shows the Pareto

optimal front [36] in red, which is the best methods’

aggregation in terms of sensitivity and specificity simul-

taneously. The Pareto optimal front consists of those

methods’ aggregations for which improvement in speci-

ficity can only occur with the worsening of sensitivity and

vice versa, that is, the best method aggregations in terms of

sensitivity and specificity, simultaneously. Individual

methods are represented in blue.

The top ten methods’ aggregations are shown in

Table 2. The results show that aggregations improving the

individual methods’ performances in sensitivity and

specificity generally include Augustus. There are several

best methods’ aggregations, including union and intersec-

tion, but the one requiring the lower number of methods

and predicting the highest number of genes is the union

Augustus [ GeneID. The best combination is Genscan \
GeneZilla when considering the intersection operator. The

former correctly predicts 80.00% of the dataset, while the

latter achieves 73.33%. GeneZilla is present in many of

the best ten methods’ aggregations, providing supplemen-

tary predictions to the other methods, even though it is the

worst individual method (Table 1).

Table 1 Individual gene finding method’s performance

Method Specificity Sensitivity Correlation coefficient

Genscan 0.772 0.759 0.745

Genzilla 0.750 0.782 0.744

Augustus 0.794 0.694 0.724

GeneID 0.829 0.658 0.712

GeneMark 0.764 0.664 0.683

The methods are ordered according to their correlation coefficient; the

best result for each column is highlighted in bold and the worst in

italic

Fig. 3 Sensitivity versus specificity for all methods’ aggregations

and individual methods. The number of methods used in each

aggregation is color-coded as indicated in the legend. The five light-
yellow circles represent sensitivity and specificity values for the

individual methods
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Cross-validation techniques are often used to estimate

how accurately a predictive model will perform in practice,

and consequently, to specifically avoid overfitting [23].

Unfortunately, because the original training datasets and

some programmed code of the individual methods are not

accessible, they cannot be re-trained based on different

data partitions and tested with the remaining ones. There-

fore, to indirectly estimate the sampling bias of the meth-

ods’ aggregations [25], we randomly partition the original

sample into ten subsamples, and each subsample was used

as validation dataset for each methods’ aggregation

(Table 2). The results obtained show a small sampling

variability (Fig. 5), suggesting good performance and

robust results for the methods’ aggregations selected as the

best ones.

The levels of specificity and sensitivity obtained by each

methods’ aggregation over the complete dataset

(ENCODE) are shown in Fig. 6, ranging from 0 (green) to

1 (red). Each row represents a methods’ aggregation and

each column a gene from the dataset. The rows and col-

umns for each graph were clustered independently, and

therefore we can see groups (clusters) of method’s aggre-

gations showing similar behavior. For instance, in Fig. 6a,

there are several methods’ aggregations using the union

operator that cannot predict some ENCODE genes; those

are represented as green columns (e.g., AC068580,

AC079630, AC021607). Regions, which are easy to detect

by many of the methods’ aggregations are represented

as mostly red columns (e.g., AC093511, AC131574,

AC113331).

The sensitivity of each method aggregation using the

union operator to predict each gene is shown in Fig. 6b.

There are a few genes (e.g., AC068580, AC079630,

AC021607) that obtain very low sensitivity for all meth-

ods’ aggregations, as it can be seen in their green columns.

The aggregation of methods increases the sensitivity of the

prediction as it is shown by red cells in Fig. 6b.

Figure 6c shows gene prediction specificity for each

methods’ aggregation using the intersection operator. The

methods’ aggregations using the intersection operator

increase the specificity of the prediction when compared to

single methods and the methods’ aggregations using the

union operator, as it is illustrated in Fig. 6c. However,

there are several genes that are not predicted by any

method (e.g., AC068580, AC079630, AC021607). Sensi-

tivity, on the other hand, has a different behavior for each

methods’ aggregation (Fig. 6d). Some genes are more

Fig. 4 Sensitivity versus specificity: Optimal Pareto front. There are

three color-codes: blue dots correspond to single methods, red dots to

those methods’ aggregations that are optimal in both objectives

sensitivity and specificity (Pareto optimal front); and black dots are all

other methods’ aggregations

Table 2 Ten best methods’ aggregations

Methods’ aggregations Specificity Sensitivity Correlation coefficient % Genes correctly predicted

Augustus [ GeneID 0.805 0.807 0.791 80.00

Augustus [ Genscan 0.771 0.839 0.786 74.17

Genscan \ GeneZilla 0.850 0.683 0.745 73.33

Augustus [ Genscan [ GeneID 0.757 0.851 0.782 71.67

Augustus [ Genscan [ GeneID [ GeneMark 0.725 0.864 0.767 70.83

Augustus [ GeneZilla [ GeneMark 0.706 0.874 0.760 70.00

Augustus [ Genzilla [ Genscan [ GeneID 0.700 0.882 0.756 69.17

Genzilla \ GeneID 0.866 0.612 0.706 68.33

Genzilla \ Genscan \ GeneID 0.711 0.870 0.758 67.50

Augustus \ Genzilla 0.851 0.640 0.714 66.67

Gene finding methods are ordered by descending number of genes correctly retrieved. A gene is considered correctly retrieved when its

correlation coefficient is over 0.7. The best result for each column is highlighted in bold
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difficult to predict than others as represented by mostly red

(e.g., AC072051, AL023881) or green columns (e.g.,

AC079630, AC068580). Finally, there are several genes

which are not recognized by any method or methods’

aggregations (e.g., AC068580, AC079630, AC021607).

3.2 Gene expression profile finding

The profiles conforming the dataset are the ones obtained

from the inflammation and host response to injury problem.

The methods analyzed in this study are: Student’s t test

Fig. 5 Sub-sample boxplots. a Each boxplot represents the specific-

ity obtained over all ten sub-sample sets from the original dataset with

a method aggregation. b Each boxplot represents the sensitivity

obtained over all sub-sample sets of the original dataset with a method

aggregation. The methods’ aggregations applied are the ones reported

in Table 2 as the ten best methods’ aggregation

Fig. 6 Specificity and

sensitivity of methods’

aggregations obtained for the

ENCODE dataset. Each column
represents a gene of the

ENCODE region (120 columns)

and each row a method

aggregation including the

individual ones (31 rows). a
Specificity for the union

operator. b Sensitivity for the

union operator. c Specificity for

the intersection operator. d
Sensitivity for the intersection

operator. The color is coded

from 0 (green) to 1 (red). Green
cells represent low values while

the red cells correspond to high

values. Black points correspond

to values around 0.5. Labels for

the x and y axis are shown in

additional Table 1
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considering treatment versus control, Student’s t test con-

sidering time, Permutation Test considering treatment

versus control, Permutation Test considering time,

ANOVA considering treatment versus control, ANOVA

considering time, ANOVA considering treatment and time,

RMANOVA considering treatment, RMANOVA over

time, and RMANOVA over treatment and time. These

methods have been relabelled for simplification purposes

(Table 3). We show in Table 4 the average results to

retrieve each of the 29 gene expression profiles obtained by

the individual methods in terms of specificity, sensitivity

and correlation coefficient (CC). Values are represented in

the [0–1] interval.

Out of all gene expression methods analyzed, ANOVA

considering time (represented by M5) achieved the best

sensitivity level and the Permutation Test considering time

(M3), the best specificity level. However, their average

correlation coefficient (CC) for all profiles was not the

highest. We can see that the levels of CC are generally low.

This is due to the type of problem we are dealing with,

finding a particular profile in a very large set of data, and

obtaining as a result a large rate of false positives (FP),

which decrease dramatically the correlation coefficient

associated to each method.

However, as occurred with the gene prediction problem,

the results show that a low average CC does not imply a

bad performance. Some methods recover particular profiles

with better levels of CCs, and also with a good specificity/

sensitivity aggregation levels.

All 1,023 potential methods’ aggregations of the ten

applied gene expression programs were evaluated. Figure 7

represents the general increase of sensitivity with the

number of methods combined using the union operator,

while specificity increases when combining with the

intersection operator. Individual methods (in red), are in a

middle position generally improved in terms of specificity/

sensitivity by methods’ aggregations. These methods’

aggregations provide a wide spectrum of specificity/sensi-

tivity levels depending on the operator applied. Union

favors sensitivity, decreasing the number of false positives

(FP), whereas intersection favors specificity, decreasing the

number of false negatives (FN). The correlation coefficient

is improved by application of any of the two operators.

We show in Table 5 the ten best methods’ aggregations

in terms of CC. We see how the CC levels widely over-

come the levels obtained by the single methods. Methods

aggregated by means of the union operator also highly

improve the sensitivity levels, while methods obtained

applying the intersection operator widely overcome the

single ones in terms of specificity. The CC levels obtained

Table 3 Relabelling of methods analyzed in this study

Legend Methods

M1 Student’s t test considering treatment versus control

M2 Student’s t test considering time

M3 Permutation test considering treatment versus control

M4 Permutation test considering time

M5 ANOVA considering treatment versus control

M6 ANOVA considering time

M7 ANOVA considering treatment and time

M8 RMANOVA considering treatment

M9 RMANOVA over time

M10 RMANOVA over treatment and time

Table 4 Results obtained by the individual methods, M1 to M10

Methods Specificity Sensitivity Correlation

Coefficient

M1 0.553 0.560 0.019

M2 0.266 0.776 0.007

M3 0.716 0.342 0.011

M4 0.502 0.551 0.009

M5 0.195 0.818 0.003

M6 0.477 0.530 0.002

M7 0.346 0.656 0.001

M8 0.455 0.546 0.001

M9 0.559 0.451 0.002

M10 0.621 0.392 0.002

The best result for each column is highlighted in bold, while the worst

result is highlighted in italic

Fig. 7 Sensitivity versus specificity for all methods’ aggregations

and individual methods. The number of methods used in each

aggregation is color-coded as indicated in the legend. The light-
yellow circles represent sensitivity and specificity values of the

individual methods
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by the best ten methods range [0.235–0.341], while the

individual correlation coefficient [0.002–0.019]. The sen-

sitivity levels obtained by the methods’ aggregations with

the union operator range [0.856–0.947], while the sensi-

tivity levels from the individual methods range [0.342–

0.812]. Regarding the specificity, the intersection operator

achieves levels ranging in the [0.854–0.902] interval,

compared to the individual methods [0.195–0.716].

The best methods’ aggregations applying the union

operator include ANOVA considering time (M5) and

ANOVA considering time and treatment (M7), which

appear combined in four out of the seven best aggregations

obtained with the union operator. In fact, the best

aggregation in terms of correlation coefficient is

M1 [ M5 [ M7 [ M8, and when replacing M5 by M3

(Permutation Test considering time) the sensitivity value

decreases from 0.912 to 0.856 with an increase in speci-

ficity from 0.076 to 0.158.

To compare the results of individual methods against the

aggregation strategy we have represented in Fig. 8 indi-

vidual methods in blue, methods’ aggregations in black and

the Pareto optimal front in red. We see how the methods’

aggregations increase the results obtained by individual

methods and are present in the optimal Pareto front.

To indirectly estimate the sampling bias of the methods’

aggregations, we sub-sample the inflammation and host

response to injury dataset in ten subsets without reposition.

For each of the ten best methods’ aggregations showed in

Table 5 we calculate their specificity and sensitivity levels.

The results obtained for each method aggregation over the

ten subsets are represented with box plots in Fig. 9. We see

a low level of variation in each method, which suggests the

good performance and robustness of the methods’

aggregations.

The levels of specificity and sensitivity obtained by each

method’s aggregation using the union and intersection

operator to retrieve each of the 29 gene expression profiles

are shown in Fig. 10. The rows and columns for each graph

were clustered independently, and therefore we can see

groups (clusters) of method’s aggregations showing similar

behavior. The specificity of each method aggregation

applying union to retrieve each gene expression profile is

shown in Fig. 10a. We see low levels of specificity in

general, since as we already stated, the union operator

decreases dramatically specificity. There are some groups

of rows with higher levels, black or dark red, which rep-

resent some methods’ aggregations with better results for

the specificity than the majority. The sensitivity of each

methods’ aggregation applying union to retrieve each gene

expression profile is shown in Fig. 10b. In this case, the

majority of the values are bright red, values close to 1, but

there are certain profiles, the first two columns in

Table 5 Top ten methods’

aggregations according CC

obtained with the union and

intersection operator

The values represent the

average levels of specificity and

sensitivity for the 29 gene

expression profiles. The best

result for each column is

highlighted in bold

Methods’ aggregation Specificity Sensitivity Correlation coefficient

M1 [ M5 [ M7 [ M8 0.076 0.912 0.341

M1 [ M3 [ M7 [ M8 0.158 0.856 0.309

M1 [ M2 [ M3 [ M7 [ M8 [ M9 0.074 0.947 0.261

M4 [ M5 [ M6 [ M7 [ M9 [ M10 0.033 0.945 0.242

M1 \ M3 \ M9 0.854 0.175 0.238

M1 \ M3 \ M5 \ M9 0.854 0.175 0.238

M2 \ M4 \ M6 \ M7 \ M8 \ M9 \ M10 0.902 0.113 0.235

M3 [ M5 [ M6 [ M10 0.045 0.943 0.230

M4 [ M5 [ M7 0.071 0.914 0.193

M1 [ M5 [ M7 [ M9 [ M10 0.051 0.934 0.126

Fig. 8 Average specificity and sensitivity levels for the 29 gene

expression profiles under study obtained by individual methods and

the methods’ aggregations. There are three color-codes: blue dots
correspond to single methods, red dots to those methods’ aggrega-

tions that are optimal in both objectives sensitivity and specificity

(Pareto Optimal front); and black dots are all other methods’

aggregations
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particular, which are hard to recover by large groups of

methods’ aggregations. The isolated green cells represent

profiles that are generally well recovered by the majority of

methods, but show troubles with a particular aggregation.

The specificity of each method aggregation applying

intersection is shown in Fig. 10c. In this case we see very

high values in general, showing a great capacity of meth-

ods’ aggregations to be specific when intersected. The

sensitivity levels of intersection, shown in Fig. 10d, con-

firm that intersection decreases sensitivity increasing the

Fig. 9 Sub-sample boxplots. a Each boxplot represents the obtained

specificity with a method aggregation over all ten sub-sample sets of

the original dataset. b Each boxplot represents the obtained sensitivity

with a method aggregation over all sub-sample sets of the original

dataset. Methods’ aggregations used are the same ones and in the

same order as those reported in Table 5 as the ten best methods’

aggregation

Fig. 10 Graphical

representation of methods’

aggregations specificity and

sensitivity. Each column
represents a gene expression

profile (29 columns) and each

row a method aggregation

including individual methods

(1,023). Color is coded from 0

(green) to 1 (red). Therefore,

green cells represent low levels

while red points correspond to

high levels. Black points
correspond to levels around 0.5.

a Specificity for the union

operator. b Sensitivity for the

union operator. c Specificity for

the intersection operator. d
Sensitivity for the intersection

operator. Labels for the x and y
axis are shown in additional

Table 2
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rate of false negatives, although there are certain profiles

with not so low levels, the profiles to the left of he figure.

4 Discussion

We propose a methodology to combine algorithms for a

biological problem into an aggregation scheme. Our

approach consists on the use of a multi-objective approach

to extract the best methods’ aggregation by maximizing the

specificity and sensitivity of their predictions. This

approach can provide better predictions by combining the

advantages and strengths of the different algorithms

available for a certain problem and avoiding redundant and

overlapping predictions that might be produced depending

on the methodologies and the aggregation scheme used.

The application of the proposed methodology to the

gene finding and to the gene expression problem, shows in

both issues a performance improvement of optimal meth-

ods’ aggregation when compared to the individual methods

for each topic.

When determining which methods’ aggregation was the

best one for the gene prediction problem, sensitivity and

specificity were in contradiction. Nevertheless, the esti-

mation of the correlation coefficient helped in the selection

of the best methods’ aggregations.

The best aggregations include methods employing dif-

ferent algorithmic strategies that predict correctly different

subsets of the genes in the dataset. Although the statistical

properties of coding regions allow for a good discrimina-

tion between large coding and non-coding regions, the

exact identification of the limits of exons or of gene

boundaries remains difficult. For instance, GeneID has

strong constraints concerning this point. In case of alter-

native splicing, a predicted structure frequently splits a

single true gene into several or, alternatively, merges sev-

eral genes into one. Such problems are, however, very

complex, as intergenic and intronic sequences do not differ

much, and specific gene boundary signals in the UTRs (e.g.

the TATA box and the polyadenylation signal), are often

too variable and sometimes are not even present [37].

Some gene finders, like GeneZilla, obtain low specificity

levels; this may be due to the fact that they were tested with

unmasked sequences. It is well known that gene finding

programs perform worse on unmasked sequences due to the

high ‘protein-coding-like’ content of repetitive elements,

resulting in an increase of the number of false positive

predictions [38]. Augustus obtained very good results

individually and takes part in many of the best methods’

aggregations, showing robust results. Nevertheless, it was

not able to identify some coding sequences that other gene

finding methods could, such as Genscan and GeneMark for

ENCODE region ENm011 and ENr322. The obtained

results indicate that we could improve the exon accuracy

by implementing a mixed approach doing the union only

on the predicted regions of higher quality and doing the

intersection for low-quality regions.

There are several previous publications combining

gene finding programs [15, 39], but they fail to obtain

good results as they use simultaneously all programs

instead of optimizing their aggregation. De novo gene

prediction for compact eukaryotic genomes is already

quite accurate, although mammalian gene prediction lags

way behind in accuracy. One future scope would be the

extension of the application of this approach to identify

ways to quickly combine many or all existing programs

trained for the same organism, and determine the upper

limit of predictive power by aggregations of programs

genome wide [40].

The application of our methodology to standard ana-

lytical methods used for microarray experiments analysis

alleviated the problems exhibited by individual methods,

including missing important probe sets. The improvement

in sensitivity was greater than 20% without a reduction of

the specificity for the methods’ aggregations used. Our

approach was able to detect probe sets not reported in the

first publication of the dataset [21], where two classic

microarray analysis methods, M1 and M3 were individually

applied. In fact, some of these probe sets have been shown

to be related both in expression level and functionality to

probe sets stated as relevant in the publication [21]. Such is

the case of probe set 206011_at, related to gene CASP1,

found by applying our methodology [34], which is related

in gene expression level (see additional Fig. 1) and in

function (apoptosis-related cysteine peptidase) to probe

sets 211367_s_at, stated as relevant for the inflammation

problem in [21]. Probe set 206011_at was found by the

method aggregation M7 [ M10.

As well as in the gene finding problem, the aggregations

of the different programs/methods resulted optimal and

consistently outperformed even the best individual

approach and, in some cases, produced dramatic

improvements in sensitivity and specificity. Moreover, we

observed that even the worst methods contributed to the

aggregation with more accurate programs.

The proposed methodology applied to the microarray

technology is valid for either providing the optimal meth-

ods’ aggregations for a query profiles, or for identifying all

differential profiles in a given set of microarray data sug-

gesting the optimal methods’ aggregations for them.

Although we have applied our procedure to time-course

structured experiments, they constitute a more general case

of simpler microarray problems where microarray samples

are taken as single data points. Therefore, the methodology

presented is also useful for simpler microarray experiments

with single data points.
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Our approach presents various advantages over the

standard analytical methods for microarray experiments.

The aggregation of the union and intersection operators

provides the possibility of querying negative samples (i.e.,

genes which exhibit a given profiles but not others). The

representation used for the profiles is optimal, and allows us

to examine the behavior of the genes independently in each

subject, and facilitates the identification of different

behaviors of genes across the subjects in the same experi-

mental group. These differences can help us to discover the

influence of biological conditions not previously considered

in the experiment such as gender or age. In contrast to other

approaches, the system provides solutions based on a trade-

off of specificity versus sensitivity, whereas other methods

evaluate their solutions over one measure, usually a ratio

between false positives and the total number of genes

retrieved. The computational procedure presented can solve

some of the problems actually present in the process of

analyzing a microarray experiment, such as the decision of

analytical methodology to follow, extraction of biologically

significant results, proper management of complex experi-

ments harboring experimental conditions, time-series and

inter-subject variation [34]. Therefore, it provides a robust

platform for the analysis of many types of microarray

experiments, from the simplest experimental design to the

most complex, providing accurate and reliable results.

In the last 10 years, the existing competitive spirit has

increased the number of programs/algorithms created,

updated and adapted for the two biological problems here

presented [1, 2, 4, 10, 28, 41]. On the one side, the

development of a new algorithm always implies the sac-

rifice of an objective in favor of another, which makes very

difficult for novel approaches to improve in absolute terms

the quality of the existing ones. On the other side, the

impressive amount of alternative algorithms available for

different biological problems is confusing for users, who

wonder what makes the programs different, which one

should be used in which situation and which level of pre-

diction confidence to expect. Finally, users also wonder

whether current programs can answer all their questions.

The answer is most probably no, and will remain to be

negative as it is unrealistic to imagine that such complex

biological processes can be explained merely by looking at

one objective.

Our future work will extend the methodology here

proposed in an automatic method generator, and a step

forward to exploit all already existing methods, by pro-

viding optimal methods’ aggregations to answer concrete

queries for a certain biological problem with a maximized

accuracy of the prediction.
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30:4103

2. Claverie JM (1997) Hum Mol Genet 6:1735
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