
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010 913

Genetics-Based Machine Learning for Rule
Induction: State of the Art, Taxonomy,

and Comparative Study
Alberto Fernández, Salvador Garcı́a, Julián Luengo, Ester Bernadó-Mansilla, and Francisco Herrera

Abstract—The classification problem can be addressed by
numerous techniques and algorithms which belong to different
paradigms of machine learning. In this paper, we are interested
in evolutionary algorithms, the so-called genetics-based machine
learning algorithms. In particular, we will focus on evolutionary
approaches that evolve a set of rules, i.e., evolutionary rule-based
systems, applied to classification tasks, in order to provide a state
of the art in this field. This paper has a double aim: to present
a taxonomy of the genetics-based machine learning approaches
for rule induction, and to develop an empirical analysis both for
standard classification and for classification with imbalanced data
sets. We also include a comparative study of the genetics-based
machine learning (GBML) methods with some classical non-
evolutionary algorithms, in order to observe the suitability and
high potential of the search performed by evolutionary algorithms
and the behavior of the GBML algorithms in contrast to the
classical approaches, in terms of classification accuracy.

Index Terms—Classification, evolutionary algorithms, genetics-
based machine learning, imbalanced data sets, learning classifier
systems, rule induction, taxonomy.

I. Introduction

CLASSIFICATION in machine learning [1] is a technique
that, from a set of n input patterns w1, . . . , wn character-

ized by i attributes a1, . . . , ai, which can include numerical or
nominal values, and m classes c1, . . . , cm, has the objective of
obtaining a system that automatically assigns to each pattern a
class label cn. Specifically, a classifier is a mapping function
defined over the patterns, Ai → {c1, . . . , cm} (A stands for
the set of attributes) generated by a learning algorithm. This
methodology is also known as pattern recognition [2].

Manuscript received March 2, 2009; revised October 21, 2009. Date of
publication June 21, 2010; date of current version November 30, 2010. This
work was supported by the Spanish Ministry of Science and Technology under
Project TIN2008-06681-C06-01/05. The work of J. Luengo was supported
by a Financial Peace University Scholarship from the Spanish Ministry of
Education and Science.

A. Fernández, J. Luengo, and F. Herrera are with the Department
of Computer Science and Artificial Intelligence, University of Granada,
Granada 18071, Spain (e-mail: alberto@decsai.ugr.es; julianlm@decsai.ugr.es;
herrera@decsai.ugr.es).

S. Garcı́a is with the Department of Computer Science, University of Jaén,
Jaén 23071, Spain (e-mail: sglopez@ujaen.es).

E. Bernadó-Mansilla is with the Grup de Recerca en Sistemes Intelligents,
Enginyeria i Arquitectura La Salle, Universitat Ramon Llull, Barcelona 08022,
Spain (e-mail: esterb@salle.url.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2009.2039140

Learning is the building process of the classifier. In this
process, the input patterns will be used to train the model
in order to describe the attribute space accurately. Supervised
learning is carried out when the input training patterns have
labeled classes and, in this manner, the learning algorithm is
able to build a model that matches regions of the attribute
space with an associated class.

Over the years, several approaches have been designed for
classification tasks such as decision trees [3], support vector
machines [4], instance-based algorithms [5], and probabilistic
classifiers (such as Naïve–Bayes [6]), among others (see [7]
as an interesting book covering different machine learning
techniques).

Rule induction algorithms aim at discovering a description
for the target concept in the form of explicit rules formulated
in terms of tests for certain values of the attributes [8].
The resulting rule set should be able to correctly recognize
instances of the target concept and discriminate them from
objects that do not belong to it. The use of rule sets as
knowledge representation also makes them very competitive
in terms of interpretability since the rules can be read easily
by human experts.

Evolutionary rule-based systems [9] are a type of genetics-
based machine learning (GBML) that use sets of rules as
knowledge representation [10]. One of the strengths of these
approaches is the use of the evolutionary algorithms (EAs) as
search mechanisms which allows for efficient searches over
complex search spaces [11].

At present, there is a huge set of algorithms proposed under
the evolutionary rule-based paradigm. Some of them have been
in use for the last decade, such as XCS [12], the supervised
inductive algorithm (SIA) [13], and genetic-based inductive
learning (GIL) [14], and many others have been proposed
recently, such as UCS [15] and hierarchical decision rules
(HIDER) [16]. Nevertheless, there is no explicit framework
where all these methods can be categorized. Furthermore,
there are no exhaustive comparisons of the performance of
the methods. In many cases, the new algorithms are compared
to a limited set of problems and with respect to a small
number of learners, usually, of a given type [17], [18]. There is
no exhaustive analysis of the algorithms’ performance across
different families. Our motivation for this paper is to provide
a state-of-the-art summary of the GBML algorithms for rule
induction in classification tasks, proposing a taxonomy that

1089-778X/$26.00 c© 2010 IEEE

914 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

defines a general framework within which each algorithm can
be placed.

Classically, rule-based systems have been classified into two
groups: Michigan-style GBML [19], [20], and Pittsburgh-style
GBML [21], [22]. But many approaches do not fall easily
into one of these categories and are simply called hybrid
approaches. We propose a taxonomy based on the representa-
tion of the chromosome of the associated EA. The taxonomy
preserves the Michigan and Pittsburgh categories and defines
other families in this field, hence including all the state-of-the-
art evolutionary GBML methods for rule induction.

The main algorithms proposed in the literature have been se-
lected in order to place them within the framework of the pro-
posed taxonomy. This allows the development of an exhaustive
and well-supported analysis to compare the performance of all
the algorithms among themselves and with respect to some
well-known non-evolutionary algorithms, such as classification
and regression tree (CART) [23], automatic qualifier (AQ)
[24], CN2 [25], C4.5 [3], C4.5-Rules [26], and Ripper [27]. To
address this, a methodology based on hierarchical comparisons
is proposed, first identifying the best performers inside each
category and then, selecting them as representatives of the
category for the cross-family comparison. This hierarchical
comparison has been used in order to simplify the empirical
study and to focus on the algorithms with better behavior.

In addition to standard classification problems, this paper is
additionally concerned with imbalanced data sets, also known
as the class imbalance problem, which has been defined as a
current challenge of the data mining community [28]. This
refers to the cases where one class, usually the one that
contains the concept to be learned (the positive class), is
underrepresented in the data set [29]. Since this issue is present
in many real-world situations, we are particularly interested in
analyzing the performance of the algorithms in such cases. We
will analyze the results using the original data sets and with
preprocessing in order to study two facts: how the different
algorithms directly deal with the imbalance problem and
the need of using preprocessing algorithms to help improve
classification performance in GBML methods.

The experimental framework has been designed so as to pro-
vide well-founded conclusion. We use a set of 30 real-world
problems, which is usually considered to be a representative
sample. We use two different sets of real-world problems. The
first one is selected randomly from the University of California
Irvine (UCI) repository [30], without any prerequisite, and
the second one is selected to be representative of imbalanced
class problems. The measures of performance are based on
the accuracy rate and Cohen’s Kappa metric [31], which is
less biased. In the case of imbalanced problems, we use
the geometric mean of the accuracy rates per class. The
significance of the results is supported by the proper statistical
tests as suggested in the literature [32], [33].

Finally, we will discuss some lessons learned and new
challenges within this topic, in correspondence to the results
acquired in this paper.

The rest of this paper is organized as follows. In Section II,
we present our taxonomy proposal for GBML algorithms for
rule induction and describe the approaches used in this paper.

Section III introduces the experimental framework, that is,
the performance measures used in the paper, the benchmark
data sets and the parameters, the statistical tests, the classical
algorithms employed for comparison, the software tool in
which all the selected methods are implemented and that
we have used for the design of the experiments, and the
description of a Web page associated with the paper1 that
contains complementary material to the experimental study.
We develop the empirical analysis for standard classification
in Section IV, whereas in Section V this analysis is oriented
toward imbalanced data sets. The lessons learned throughout
this paper are presented in Section VI. Finally, in Section VII
we make our concluding remarks.

II. Taxonomy of Genetics-Based Machine

Learning Algorithms for Classification

In this section, we first propose a taxonomy for the different
GBML approaches for rule induction, classifying them into
different families. Then, we introduce some basic features
of the GBML algorithms that enable us to highlight the
similarities and differences among the existing methods in this
context. Finally, we describe each one of the GBML families,
presenting the representative algorithms that we have selected
within each category.

A. Taxonomy

Many proposals have been developed under the label of
GBML for rule induction. All these approaches share an
underlying commonality: the codification of the rule or rule set
in a chromosome and the use of an evolutionary algorithm as
the search mechanism. However, there are many differences
among the algorithms, such as the type of learning scheme
(supervised versus reinforcement learning or online versus
offline learning), the rule set representation (i.e., a decision
list or a set of overlapping rules), the representation of each
rule (i.e., the management of numerical and nominal values),
or the design of the EA that guides the search.

With the aim of categorizing the GBML methods for rule
induction presented in the literature, we distinguish among
three different families based on the chromosome codification.

1) Chromosome = Rule: In this type of algorithms, each
rule is encoded in a single chromosome and the whole
population evolves to the final rule-set. We consider three
subcategories of methods.

1) The Michigan approach [34], [35], in which the
rule-set is incrementally updated through the sequential
observation of training examples and their corresponding
classification. Eventually, the rule-set is improved by the
action of the EA.
2) The iterative rule learning (IRL) approach [13], where
the EA learns rule by rule iteratively and removes from
the training set the examples covered (matched) by each
new rule, in a divide-and-conquer style.
3) The genetic cooperative competitive learning (GCCL)
approach [36], where all rules/chromosomes are evolved

1http://sci2s.ugr.es/gbml/index.php

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 915

TABLE I

Summary of the Algorithms Employed in This Paper

Algorithm name Acronym Family Reference
XCS XCS Michigan Wilson [12]
UCS UCS Michigan Bernadó-Mansilla and Garrell [15]
Supervised inductive algorithm SIA IRL Venturini [13]
Hierarchical decision rules HIDER IRL Aguilar-Ruiz et al. [16]
Co-evolutionary rule extractor CORE GCCL Tan et al. [39]
Organizational co-evolutionary algorithm for classification OCEC GCCL Jiao et al. [40]
Coverage-based genetic induction COGIN GCCL Greene and Smith [36]
Genetic-based inductive learning GIL Pittsburgh Janikow [14]
Pittsburgh genetic interval rule learning algorithm Pitts-GIRLA Pittsburgh Corcoran and Sen [41]
Data mining for evolutionary learning DMEL Pittsburgh Au et al. [42]
Genetic algorithms based classifier system GASSIST Pittsburgh Bacardit et al. [43]
Ordered incremental genetic algorithm OIGA Pittsburgh Zhu and Guan [44]
Incremental learning with genetic algorithms ILGA Pittsburgh Guan and Zhu [45]
Hybrid decision tree—genetic algorithm DT-GA HEDT Carvalho and Freitas [46]
Oblique decision tree Oblique-DT HEDT Cantú-Paz and Kamath [47]
Tree analysis with randomly generated and evolved trees TARGET HEDT Gray and Fan [48]

together in the EA. The chromosomes cooperate among
themselves to perform the classification task, but the
final rule set does not need to include all the rules.
Hence, there is a competition to be among the best fitted
rules and therefore to remain in the rule base.

2) Chromosome = Rule Set: This category is known as
the Pittsburgh approach [22], [37]. These types of methods
are a result of directly extending genetic algorithm (GAs)
[38] to supervised learning problems. The system maintains
a population of candidate rule sets whose quality is evaluated
with a fitness function that considers different aspects such
as the prediction accuracy and the generalization of the rule
sets. Once the classifier is trained, the best individual found
during the evolutionary process is used to predict the class of
unknown examples.

3) Chromosome = Decision Tree or Tree Rule: This type
of GBML contains mechanisms that combine decision trees
with GAs [46], [47]. The underlying idea is to use the search
capability of the GA to find a highly accurate final tree. The
tree can then be interpreted as a rule set, formed by the
disjunction of the rules that are obtained in each branch of
the tree. Thus, the chromosome can encode the full tree or
a just tree node/rule. We have defined this family as hybrid
evolutionary decision trees (HEDTs).

In this paper, we have considered the algorithms that have
been published in the most influential journals on the topic
and only classical methods proposed in conference contribu-
tions. Genetic fuzzy systems [49], methods based on genetic
programming [50], and distributed approaches [51], [52] are
beyond the scope of this paper.

Table I summarizes the list of selected algorithms of each
type. All algorithms were implemented by the authors of this
paper, except for genetic algorithms based classifier system
(GASSIST) and HIDER whose implementations were directly
supplied by their corresponding authors. Furthermore, these
methods are included in the knowledge extraction based on
evolutionary learning (KEEL) software [53].

B. Preliminaries: Genetics-Based Machine Learning Features

With the aim of giving a general background of the selected
algorithms, in this section we describe the main components
which are relevant to GBML algorithms and at the same time
distinguish them from non-evolutionary learning algorithms.
This also leads to providing an educational character to the
paper content. We considered the following characteristics.

1) Chromosome Representation: As mentioned before,
the underlying commonality of GMBL is the use of an EA
as the search mechanism. In this respect, the first consider-
ation is the representation of the solution in a population of
chromosomes. The choice of the chromosome as codifying a
single rule or a rule set determines largely the operation of the
algorithm, and that is the motivation for basing our taxonomy
on the chromosome representation.

In any case, the rule set in its whole may operate as a set
of non-ordered rules, either overlapped or not overlapped, or
as a decision list. Also, the inference type (the classification
process itself) is very dependent on the type of rule used in
the algorithm. The details are as follows.

1) Non-ordered overlapping rule sets, also called
“IF–THEN” rules: Since the rules can be overlapping,
the whole rule set does not necessarily cover the full
space of inputs. At classification time, if the example
matches more than a rule, a voting method is usually
applied, where the output is the class advocated by the
majority. Other approaches include a weighted voting,
or a measure of the distance to the nearest rule [54].
In the case of a tie, some approaches leave the ex-
ample as non-classified, while others assign the class
randomly.
2) Non-ordered, non-overlapped rule sets: This is the
case of rule sets obtained from decision trees or axis-
parallel hyperplanes, which split the search space into
a set of non-overlapping regions. In this sense, the rule
set covers all the input space. The classification process
with these rules is trivial, since only one rule can match
the example.

916 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

3) Ordered rule sets, also called “IF–THEN–ELSE”
rules or decision lists [55]: The classification is simply
made using the first rule in the list that matches the
example. It is very common to use a “default rule” that
explains the input space not covered by any of the rules
in the set.

Each rule has the form condition → class, where the
condition specifies the set of input states that the rule matches,
i.e., the region of the search space covered by the rule, and the
class is the classification that the rule advocates for that region.
The condition part is usually represented as a conjunction of
tests over the attributes. There are two main schemes.

1) “Attribute <operator> value:” A test is a condition
over an attribute value, which is specified differently
depending on whether the attribute is nominal or nu-
merical.

a) Nominal attributes: When the attribute can take
a value among a list of possible categories, the test
over the attribute consists of checking for equality
to a given category or belonging to a subset of
categories. That is, “<operator>” may be in either
{=, �=, ∈, ¬ ∈}.
b) Numerical attributes: If the attribute can take
numerical values, the test checks whether the
value belongs to a given interval. That is, the
“<operator>” may be “<, ≤, =, ≥, >.” Interval-
rules take the form “Attribute ∈ [min, max]” which
is equal to the case of “Attribute ≥ min AND
Attribute ≤ max.”

Disjunction of attributes within a condition can also be
codified, although this is rarely implemented in GBML
algorithms. The disjunction of attribute values can be
alternatively codified with the disjunction of several
rules. This may enlarge the rule set, but simplifies the
complexity of the rule.
We must also remark that some algorithms treat the
nominal attributes as ordered numerical values and
consequently use the representations designed for
numerical attributes.
2) Oblique rules: The tests over the attributes are
codified by a hyperplane, with the following form:∑d

i=1 aixi + ad+1> 0, where the ai are real-valued
coefficients [56], [57] and xi is the value of the
ith attribute. This is an extension of the axis-parallel
hyperplanes in the attribute space used by decision trees.

It is common that not all the attributes are relevant to the
classification. Some algorithms explicitly allow the codifica-
tion of irrelevant attributes with the so-called “don’t care”
symbol. This favors the generalization of the rules. Some ap-
proaches enable the chromosome to represent variable length
conditions. For algorithms using a fixed chromosome length,
the representation of the “don’t care” condition depends on
the selected rule scheme defined above.

1) For the “Attribute <operator> value” rules, we can
represent the “don’t care” using an specific special value
with the = operator, including all possible values for ∈
(none for ¬ ∈), using the maximum range or minimum

range for the <, ≤ and >, ≥ operators, respectively, or
applying an inversion of operators for the interval-rules,
that is, having the “min” value higher than the “max”
one.
2) For the oblique rules, it is only needed to assign a
weight 0 for those variables that are not included in the
antecedent.

2) Learning Scheme: This feature refers to the procedure
in which the algorithm learns the rule set from a set of pre-
classified examples.

Depending on how examples are provided, learning can be
performed in an incremental mode (online method), or in a
batch mode (offline method). The former scheme implies that
the knowledge can be updated as new examples arrived to the
system. Michigan approaches usually follow this. The latter
model does not easily allow updates of the rule set once the
algorithm is trained. If new information is available, the whole
rule base should be retrained, often from scratch. Training
starts with the whole training data set available. The internal
operation of the algorithm may decide whether to use the
whole data set in each iteration to build the model (as in the
Pittsburgh approach), or incrementally reduce it by deleting
the examples already covered, such as in those approaches
following a “divide-and-conquer” strategy.

Learning can also happen in a supervised, unsupervised, or
reinforcement learning environment. In a supervised environ-
ment, the learning algorithm knows the class of the example.
In reinforcement learning, the algorithm gets a reward after
predicting the class of the example. The algorithm should build
its model based on the positive and negative (or absence of)
rewards. Unsupervised classification belongs to the case where
no external feedback is given to the learner. This case does
not fall into the scope of the paper.

3) Fitness Function: The assessment of the quality of
the rule set is essential to evolve an appropriate model
from examples. Since the search of the EA is guided by
the fitness function, it must include the quality measures
that reflect the type of rule set required. The optimal rule
set is usually that with high accuracy and low complexity.
Accuracy is usually considered as the percentage of correct
classifications, although more sophisticated metrics may arise
such as those considering the percentage of classification per
class. Complexity is measured with the number of rules or the
generalization of the individual rules. We must remark that
these measures of quality are applied both at the rule set level
and for the individual rules, depending on what the EA evolve.

Fitness may also include niching or sharing techniques,
or token competition as in [58]. These types of techniques
enable us to adjust the global fitness and optimize the search
toward different areas in the problem space by penalizing those
solutions/rules which are similar or which cover the same
training examples.

4) Design of the EA: As mentioned before, all GBML
algorithms have as a common characteristic the use of a search
process based on an EA to learn the final rule set. They usually
apply a GA which can be generational or steady-state. In the
former case, the population is replaced completely iteration by

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 917

iteration, possibly with an elitism scheme in which the best
individual(s) remain(s) in the new population. The steady-state
model only modifies a subset of individuals (normally only
two) during each iteration.

5) Specific Operators: Each new proposal in the context of
GBML algorithms not only implies the choice of representa-
tion, learning methodology, and design of the EA scheme, but
also the use of specific operators for the knowledge discovery.
These usually represent the most significant novelty of the
approach and accentuate the differences among the methods.

These specific operators include the heuristics to initial-
ize the population, the use of covering algorithms, and the
crossover and mutation operators. Since they are particular to
each algorithm, we will focus on this issue on each single
description when needed.

C. Taxonomy Families and Algorithms’ Description

The description of the methods used in this paper is summa-
rized in a table for each one of the proposed families, in which
we detail the main characteristics with regard to the GBML
features stated previously. Therefore, the reader can observe
the similarities and differences among the algorithms of the
same category or between any two methods. Afterward, we
present a brief description of the intrinsic operators associated
with each one of the algorithms to provide the specific details
for each of them.

1) Michigan Approach: Michigan-style algorithms [34],
[35] evolve a set of rules called “classifiers” which are
incrementally updated through the sequential observation of
training examples. The best “classifiers,” which are those that
correctly cover a higher proportion of training examples, are
selected and propagated over other less useful “classifiers,”
leading to an improvement in the overall system performance.

Some of the first developments of Michigan-style GBML
are SCS [59] and NewBoole [60]. In this paper, we select
XCS, as it is the most influential algorithm in this family of
classifiers, and UCS, a system that specializes XCS for super-
vised learning. The features of both algorithms are summarized
in Table II.

1) XCS: XCS [12], [61] was designed for reinforcement
learning, although it can be used for pattern recog-
nition by considering that a classification problem is
a reinforcement problem in which maximum rewards
are given to correct classifications and low rewards
correspond to incorrect classifications.
Learning takes place incrementally. In each iteration, an
example is provided to the system. Then, XCS finds the
matching rules and randomly chooses one of the possible
classes. If no rules match, then covering is applied. It
creates a new rule with a condition, which is generalized
from the attribute values of the example, and a random
class. Once the class is decided, a reward is received.
This reward is used to update the quality of the rules
that advocated that particular class. Eventually, the GA
is applied to the rules that proposed the chosen class as
described in [62]. The GA selects two parents (two rules)
based on their fitness, which is a measure of the accuracy
of the reward prediction relative to the accuracies of the

TABLE II

Features of the Michigan Algorithms

Features XCS UCS
Learning method Online Online

Reinforcement learning Supervised learning
Type of rule-set IF–THEN IF–THEN
Inference type Weighted voting Weighted voting
Type of rule Conjunction of atts. Conjunction of atts.
Nominal None: None:
representation transformation to ordered transformation to ordered

numerical values numerical values
Numerical Interval-rule Interval-rule
representation
“Don’t Care” Complete interval Complete interval
management
Fitness Inverse of prediction Accuracy

error. Sharing Sharing
EA type Steady-state GA Steady-state GA
EA features Roulette-wheel selection Roulette-wheel selection

2-Point crossover 2-Point crossover
Random mutation Random mutation

Chromosome Real coding Real coding
representation normalized to [0, 1] normalized to [0, 1]

Fixed length Fixed length

TABLE III

Features of the IRL Approaches

Features SIA HIDER
Learning method Batch Batch

Divide-and-conquer Divide-and-conquer
Type of rule-set IF–THEN IF–THEN–ELSE
Inference type Distance to the Decision list

nearest rule
Type of rule Conjunction of atts. Conjunction of atts.
Nominal
representation

Operator “=” Operator “=”

Numerical
representation

Interval-rule Natural coding

Discretization
“Don’t Care” Special value Complete interval
management
Fitness Accuracy and complexity Accuracy and coverage
EA type Steady-state GA Generational GA
EA features Random selection Roulette-wheel

Uniform crossover selection. Specific
Generalization operator crossover and mutation
(see description) elitism

Chromosome Real and binary Natural coding
representation coding (see description)

Fixed length Fixed length

overlapping rules. The rules are crossed and mutated and
the final offspring are introduced into the population,
deleting other rules if the population is full. The rules
follow the interval rule representation, which was first
introduced in XCS in [63].
2) UCS: UCS [15] is a method derived from XCS. It
inherits the main features of XCS, but mainly differs in
two respects. First, the learning interaction is adjusted
to a supervised learning scheme. This means that each
example shown to the system comes along with the
class. Then, UCS uses the class information to build
the set of correct rules. The rules that belong to this set
get their fitness improved, while rules that matched the

918 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

TABLE IV

Features of the GCCL Approaches

Features CORE OCEC COGIN
Learning method Batch Batch Batch
Type of rule-set IF–THEN–ELSE IF–THEN IF–THEN–ELSE
Inference type Decision list Weighted voting Decision list
Type of rule Conjunction of attributes Conjunction of attributes Conjunction of attributes
Nominal representation Operators “= and �=” Operator “=” Operator “∈”
Numerical representation All comparisons: None: None:

“<, ≤, =, ≥, >” discretization required discretization required
and interval-rule

“Don’t Care” management Absence of conditions Absence of conditions Absence of conditions
Special symbol

Fitness Accuracy with Accuracy Accuracy and complexity
token competition and complexity with token competition

EA type Generational GA Generational GA Generational GA
EA features Tournament selection Random selection Random selection

1-Point and linear crossover Special crossover 1-Point crossover
Simple random mutation (see description) No mutation
No elitism No mutation Elitism based in

Elitism token competition
Chromosome representation Real and binary coding Binary coding Binary coding

Variable length Variable length Variable length

example but not the class get their fitness reduced. The
second main difference with XCS is on fitness. In UCS,
fitness is directly the proportion of correct predictions
of the rule with respect to the total number of matches,
whereas fitness in XCS is a windowed average of the
accuracy of the reward prediction.

2) Iterative Rule Learning Approaches: IRL GBML sys-
tems use a divide-and-conquer methodology to create an
ordered list of rules [13]. The system iteratively invokes an
EA where the best individual returned is added to the end of
a list of rules and all the matching examples are removed from
the training data set. This process is repeated until the training
data set is empty.

In this case, we selected two algorithms. First, we con-
sidered a classical approach, the SIA algorithm and then,
a recent representative method of this type: HIDER. Their
characteristics are shown in Table III.

1) SIA: SIA [13] is a classical IRL mechanism. The main
procedure of SIA is detailed as follows: first, a training
sample which has not been classified yet (defined as
“uncovered”) is selected, and the most specific rule
that matches that example is built. Then the condition
part of the rule is generalized using a GA with a
fitness function based on a linear combination of the
number of classifications and misclassifications and the
generalization of the rule.
The generalization operator works by enlarging the
bounds of the conditions in the case of a numerical
attribute and by converting the condition into a “don’t
care” for nominal attributes. The GA runs iteratively
under it reaches the stop condition (number of iterations
without generating a better rule). The best rule in the
final population is then added to the rule set and the
examples covered by it are removed from the training
set. The process is repeated until no more examples
remain uncovered.

2) HIDER: HIDERs [16], [64] use natural coding (de-
fined by the authors in [16]) to represent each rule. That
is, each rule is encoded as IF x1 = L1 ∧ . . . ∧ xn =
Ln THEN ck. For numerical attributes, each Li is a label
obtained by means of the natural coding representation,
which is a tabular representation of the computed cut-
points of a specific discretization method designed for
this method [65]. Therefore, it is directly translated into
an interval-rule by taking the lower and upper cut-points.
The EA initializes the population by randomly select-
ing some examples and creating rules that cover these
examples. Then, the evolutionary search is run during a
specific number of generations, with the guidance of the
fitness function which considers both the accuracy and
the generalization of the rules. The best rule obtained is
added to the final rule set and the examples covered
by the rule are removed from the training data set,
similarly to SIA. The process is repeated until there are
less than the number of maximum examples allowed by
a threshold called “examples pruning factor.”

3) Genetic Cooperative Competitive Learning Approaches:
In this approach, each individual codifies a rule, and the
whole rule set is evolved simultaneously. Thus, rules should
cooperate among them to get an optimal rule set jointly, and at
the same time, rules compete against each other to survive in
the population. Population diversity must be enforced to avoid
individuals converging to the same area of the search space.

The algorithms selected for this family are co-evolutionary
rule extractor (CORE), organizational co-evolutionary algo-
rithm for classification (OCEC), and coverage-based genetic
induction (COGIN). Next, we describe each algorithm, whose
main features are shown in Table IV.

1) CORE: CORE [39] evolves a set of rules, which are
initialized randomly, using as fitness a combination of
the true positive rate and the false positive rate, together
with a token competition that reduces the size of the

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 919

TABLE V

Features of the Pittsburgh Approaches

Features GIL Pitts-GIRLA DMEL GASSIST OIGA ILGA
Learning method Batch Batch Batch Batch Batch Batch
Type of rule-set IF–THEN–ELSE IF–THEN IF–THEN IF–THEN–ELSE IF–THEN IF–THEN
Inference type Decision list Voting Weighted voting Decision list Voting Voting
Type of rule Conjunction of

atts.
Conjunction of atts. Conjunction of atts. Conjunction and Conjunction of atts. Conjunction of atts.

disjunction of atts.
Nominal Operator “∈” None: transformation Operator “=” Operator “∈” None: transformation None:

transformation
representation to ordered to ordered to ordered

numerical values numerical values numerical values
Numerical None: Interval-rule None: Interval-rule Interval-rule Interval-rule
representation discretization

required
discretization
required

“Don’t Care”
management

Absence of conditions
All

Reverse interval None Absence of conditions Reverse interval Reverse interval

values for a
condition

Fitness Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
and complexity and complexity

EA type Generational GA Generational GA Steady-state GA Generational GA Steady-state GA Steady-state GA
EA features Special operators

(see description)
No elitism

Random selection
1-Point crossover
Random and “creep”
mutation
Elitism

Roulette-wheel selection Tournament
selection
Special crossover
and mutation (see
description) Elitism

Roulette-wheel Roulette-wheel
1 and 2-Point crossover selection

1-Point
selection
1-Point

Mutation based on crossover crossover
local search Random mutation Random mutation

Chromosome Binary coding Real coding Binary coding Binary coding and Real coding Real coding
representation Variable length Fixed length Variable length ADI representation Fixed length Fixed length

Variable length

rule-set. It uses a specific regeneration operator that re-
initializes those chromosomes that have a fitness below
the average. For nominal attributes it uses the one-point
crossover, whereas for the numerical attributes it applies
a linear combination of the parents.
2) OCEC: OCEC [40] creates groups of similar ex-
amples with the same class label and then builds a
rule for each group discovered. Thus, the chromosome
has a variable length and it stores the position of the
example in the training set. At classification time, the
most general rule that covers the example defines its
class.
Three specific evolutionary operators are used in this
algorithm, the “migrating operator” that moves a pre-
defined number of examples from one chromosome
to another, the “exchanging operator” that exchanges
a predefined number of examples between two chro-
mosomes, and the “merging operator” that joins two
chromosomes. It also uses an elitist scheme in which
the best pair between the parents and the offspring
remains in the population. The fitness function depends
on the number of conditions and the confidence of the
rule.
3) COGIN: COGIN [36] manages a variable number of
rules, which are initialized randomly until they cover
all the examples of the training set, making half of the
conditions “don’t care.” It generates a new offspring
population by randomly selecting two parents and ap-
plying a one-point crossover. Then it applies a token
competition to remove those rules that do not match any
example already covered by better rules. The fitness is
based on a linear combination of the entropy and the
generality of the rule (number of active bits).

4) Pittsburgh Approaches: In the Pittsburgh-style GBML
systems, the GA encodes the rule set directly into the chro-
mosome. In this manner, each individual represents the whole
solution and the different rule sets are evolved until conver-
gence.

There are a large number of Pittsburgh style approaches in
the literature. In this paper, we consider the following methods:
GIL, Pittsburgh genetic interval rule learning algorithm (Pitts-
GIRLA), data mining for evolutionary learning (DMEL),
GASSIST, ordered incremental genetic algorithm (OIGA), and
incremental learning with GAs (ILGA). As with the previous
families introduced in this section, we summarize the main
characteristics of these algorithms in Table V.

1) GIL: The GIL [14] learns rules for each class se-
quentially, starting for the minority class, leaving the
majority class as a default rule. Thus, it runs the GIL
algorithm n−1 times, where n is the number of classes.
For a given run i, class i is the positive class and all
the other classes represent the negative class. Thus, a
multiple class problem is converted into n − 1 different
concept learning problems.
The initialization of the chromosomes is carried out ran-
domly for half of the population and using some of the
training examples for the other half. The fitness of each
individual is based on four conditions: accuracy rate,
completeness (covering all positive examples), correct-
ness (minimization of the number of negative examples
covered), and complexity of the rule (computed as the
number of rules and conditions). GIL implements 14
genetic operators belonging to three kinds of levels. Six
of them work at the rule set level and consist of adding
and exchanging rules to the rule set, and generalizing or
specialising the rule set. Five operators work at the rule

920 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

level by adding, removing, or exchanging conditions.
The final three operators work at the condition level by
adding or removing values. All these operators have an
associated probability which is auto-adapted according
to the needs of the learning process, that is, to favor the
generalization or specialization of the rule set.
2) Pitts-GIRLA: The Pitts-GIRLA [41] initializes all
chromosomes at random, where a “don’t care” condition
occurs when the lower bound of the interval associ-
ated with a given variable is higher than the upper
bound. Apart from the conventional 1-point crossover
and random mutation, it uses a so-called “creep” mu-
tation which is applied to the bounds of each at-
tribute condition and increments or decrements them
with a fraction of the valid range for the attribute
value.
3) DMEL: DMEL [42] starts with the generation of an
initial set of first-order rules (rules with one condition)
using a probabilistic induction technique and based
on these rules, rules of a higher order (two or more
conditions) are obtained iteratively. Then DMEL begins
an evolutionary learning process by generating an initial
population of individuals by randomly combining the
rules in the rule base of order l−1 to form a set of rules
of order l. The consequent of the rule is not encoded in
the chromosome but determined by the computation of
the fitness value. Finally, the classification is made by the
rule with the highest fitness that matches the example.
4) GASSIST: GASSIST [43], [66], [67] inherits from
the GABIL algorithm [68]. The GASSIST algorithm
initializes the population at random and uses as a fitness
function the minimum description length principle [69],
which takes into account both the accuracy and the
complexity of the rule set.
The representation of the chromosome differs for nom-
inal and numerical attributes. For the first type, it uses
a string of bits, one per each category allowed for that
attribute, whereas for continuous variables it applies an
adaptive discretization intervals rule representation [66].
This representation consists, in general terms, of a hi-
erarchical uniform-width discretization of each attribute
having different cut-points for the same attribute in dif-
ferent rules. We should point out that this representation
can be directly translated into an interval-rule by taking
the lower and upper cut-points of each attribute.
It uses the multiple-point crossover operator inherited
from GABIL that forces the selected cut points in both
parents to be in the same position of the variable so
that semantically correct offspring are obtained. The
mutation operator randomly adds or removes one value
of a given variable. GASSIST introduces a new deletion
operator that removes rules from individuals to limit
the rule set size. This operator is activated after a
predefined number of iterations and removes the rules
of an individual that do not match any input example.
5) OIGA: OIGA [44] carries out the learning in two
steps: first, it learns one-condition rules (generated ran-
domly) for each attribute, and then optimising their

values using a GA. Then, once all the attributes have
been explored separately, OIGA joins the obtained one-
condition rule sets ordered by their fitness. This process
adds the one-condition rule sets to the current increasing
rule sets one by one, randomly merging the rules with
the same consequent from the best one-condition rule-
set.
This incremental process involves a new optimization
procedure in each merging step, in which the current
increasing rule sets are refined by means of a GA (with
the same features as the previous one). This process
stops once all attributes have been added, obtaining a
rule set with all the attributes. Both genetic processes
use the accuracy rate as fitness.
6) ILGA: ILGA [45] is an evolution of the OIGA
learning process. ILGA expands the possibilities of the
incremental process, by means of using, as a seed for
all the initial population, either the best one-condition
rule set (as OIGA does) or the whole population of
chromosomes in the current solution. It also introduces
a bias in the mutation and crossover operators. This
bias affects the “old” part of the chromosome, that
is, the genes added in the previous iterations but not
in the current one. If the randomly chosen point for
mutation or crossover is located in the “old” genes, the
corresponding rates may be reduced with a reduction
rate. The motivation behind this is that ILGA tends to
preserve the structure of old elements and explore more
of the combination between old and new elements.

5) Hybrid Evolutionary Decision Trees: Apart from the
classical GBML approaches described previously, in this pa-
per we study some hybrid approaches that unify the use
of decision trees with GAs, selecting the most important
algorithms from the literature, decision tree-genetic algorithm
(DT-GA) and oblique decision tree (Oblique-DT), and includ-
ing the tree analysis with randomly generated and evolved
trees (TARGET) algorithm as a recent representative. The
features of these algorithms are listed in Table VI.

1) DT-GA: The hybrid DT-GA method [46] discovers
rules in two training phases. In the first phase, it runs
C4.5 with the whole training set and transforms the
resulting tree into an “IF–THEN” set of rules. The
examples covered by each rule are considered either
as a small disjunct or as a large disjunct, depending
on whether their number is smaller than or equal to a
given threshold. The second phase consists of using a
GA with the joint of the instances in the small disjuncts
as a “second training set.” To predict the output class of
an example, it is pushed down the decision tree until it
reaches a leaf node, as usual. If the leaf node is a large
disjunct, the example is assigned the class predicted by
that leaf node. Otherwise, the example is assigned the
class of one of the small-disjunct rules discovered by
the GA.
The rules from the GA are randomly initialized selecting
a value for each attribute from the examples of the
“second training set.” The chromosome representation

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 921

TABLE VI

Features of the HEDT Approaches

Features DT-GA Oblique-DT TARGET
Learning method Batch Batch Batch

Divide-and-conquer
Type of rule-set Axis-parallel hyperplanes Oblique-rules Oblique-rules

and IF–THEN and IF–THEN
Inference type Matching rule Matching rule or weighted Matching rule

voting (see description)
Type of rule Conjunction of atts. Conjunction of linear Conjunction and linear

combination of atts. combination of atts.
Nominal representation Operator “∈” None: Operator “∈”

transformation to ordered
numerical values

Numerical representation Operators “< and ≥” Linear combination Linear combination
(up to three variables)

“Don’t Care” management Special symbol Not implicit Not implicit
Fitness Accuracy Accuracy Accuracy and complexity
EA type Generational GA Generational GA Generational GA
EA features Tournament selection Tournament selection Roulette-wheel selection

1-Point crossover Uniform crossover Special crossover and
Random mutation No mutation mutation (see description)
Elitism Elitism Elitism and reinitialization

Chromosome representation Binary and real coding Real coding Binary and real coding
Fixed length Fixed length Variable length

encodes the conditions for all attributes (nominal and
numerical), together with a bit that specifies the “don’t
care” condition. The rule consequent is not encoded
into the genome, but dynamically chosen as the most
frequent class in the set of examples covered by that
rule’s antecedent. The fitness function is given by a
quadratic version of the geometric mean of the true
rates. It also uses a specific rule pruning operator that
transforms a condition into a “don’t care” based on
the accuracy rate associated with each attribute. The
stopping criterion is given by a threshold value of the
remaining examples in the “second training set.”
2) Oblique-DT: The Oblique-DT algorithm [47] extends
the classical OC1 method [70] (a greedy optimizer for
oblique-type decision trees) to find oblique partitions by
means of a standard generational GA.
Each chromosome encodes the coefficient of the linear
combination that defines the oblique-hyperplane. To
initialize the population, we first compute the best axis-
parallel hyperplane using an impurity measure defined
below, and we copy it to 10% of the initial population.
The remainder of the population is initialized randomly
with coefficients ai ∈ [−200, 200]. The fitness value
is computed as the impurity of a split at each tree node
using the twoing rule [23], which is based on the balance
of the number of examples on the left and right of the
split.
3) TARGET: The TARGET methodology [48] is a novel
approach that uses a GA to build decision trees in
which each chromosome represents a complete decision
tree. The population is initialized randomly with a pre-
specified probability of adding a new condition (node)
to the tree. To evaluate the fitness of each chromosome,
the authors use a measure based on the correct classi-

fications and the length of the chromosome (number of
conditions/nodes).
The genetic search uses specific operators for crossover
and mutation. In the case of crossover, a node swap or a
subtree swap is applied. In the case of mutation, there are
four possibilities: split set mutation, split rule mutation,
node swap mutation, and subtree swap mutation. It also
uses elitism (called cloning) and reinitialization (called
transplantation) to reach a good trade-off between con-
vergence and diversity.

III. Experimental Framework

In this section, we first describe the measures employed
to evaluate the performance of the algorithms analyzed in
this paper, both for standard classification problems and for
imbalanced data sets (Sections III-A and III-B, respectively).
Then, we introduce some of the best known state-of-the-art
non-evolutionary rule learning algorithms which are included
in the study (Section III-C). Next, we provide details of the
real-world problems chosen for the experimentation and the
configuration parameters of the GBML and non-evolutionary
methods (Sections III-D and III-E). Finally, we present the
statistical tests applied to compare the results obtained with
the different classifiers (Section III-F), we describe the KEEL
software tool, which was used to run all the algorithms and to
design the set of experiments (Section III-G) and we introduce
the information shown at the Web page associated with the
paper (Section III-H).

A. Performance Measures for Standard Classification

In this paper, we deal with two-class and multiclass data
sets. However, in the literature, most of the performance
measures are only designed for two-class problems [71], [72].

922 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

TABLE VII

Confusion Matrix for an N-Class Problem

Correct Class Predicted Class
C1 C2 . . . Cm Total

C1 h11 h12 . . . h1m Tr1
C2 h12 h22 . . . h2m Tr2
...

. . .
...

Cm h1m h2m . . . hmm Trm

Total Tc1 Tc2 . . . Tcm T

Well-known accuracy measures for two-class problems are:
classification rate, precision, sensitivity, specificity, G-mean
[73], F-score [74], area under the receiver operating character-
istic (ROC) curve [75], Youden’s index γ [76], and Cohen’s
kappa [77].

Some of the two-class accuracy measures have been adapted
for multiclass problems. For example, a recent paper [78]
proposes an approximating multiclass ROC analysis, which
is theoretically possible, but the exponential computational
complexity as a function of the number of classes is restrictive.
Two measures are widely used because of their simplicity and
successful application for both binary and multiclass problems.
We refer to classification rate and Cohen’s kappa measures,
which we will now explain as follows.

1) Classification Rate: It is the number of successful
hits (correct classifications) relative to the total number of
classifications. It has been by far the most commonly used
metric for assessing the performance of classifiers for years
[79]–[81].

2) Cohen’s Kappa: It is an alternative measure to classi-
fication rate, since it compensates for random hits [31], [77].
In contrast to classification rate, kappa evaluates the portion
of hits that can be attributed to the classifier itself (i.e., not
to mere chance), relative to all the classifications that cannot
be attributed to chance alone. An easy way of computing
Cohen’s kappa is by making use of the resulting confusion
matrix (Table VII) in a classification task. With (1), we can
obtain Cohen’s kappa

kappa =
n

∑m
i=1 hii − ∑m

i=1 TriTci

n2 − ∑m
i=1 TriTci

(1)

where hii is the cell count in the main diagonal (the number
of true positives for each class), n is the number of examples,
m is the number of class labels, and Tri, Tci are the rows’
and columns’ total counts, respectively (Tri =

∑m
j=1 hij , Tci =∑m

j=1 hji).
Cohen’s kappa ranges from −1 (total disagreement) through

0 (random classification) to 1 (perfect agreement). Being a
scalar, it is less expressive than the ROC curves applied to
binary-class cases. However, for multiclass problems, kappa
is a very useful, yet simple, meter for measuring a classifier’s
classification rate while compensating for random successes.

The main difference between the classification rate and
Cohen’s kappa is the scoring of the correct classifications.
Classification rate scores all the successes over all classes,
whereas Cohen’s kappa scores the successes independently for
each class and aggregates them. The second way of scoring is

TABLE VIII

Summary Description of Standard Data Sets

id Data Set #Ex. #Atts. #Num. #Nom. #Cl.
aba abalone 418 8 7 1 28
aus australian credit approval 690 14 8 6 2
bal balance scale 625 4 4 0 3
bre breast cancer 286 9 0 9 2
bup liver disorders [Bupa] 345 6 6 0 2
car car evaluation 1728 6 0 6 4
cle cleveland 297 13 13 0 5
con contraceptive method choice 1473 9 6 3 3
crx japanese credit screening 125 15 6 9 2
der dermatology 366 33 1 32 6
eco ecoli 336 7 7 0 8
fla solar flare 1389 10 0 10 6
ger german credit data 1000 20 6 14 2
gla glass identification 214 9 9 0 7
hab haberman 306 3 3 0 2
hea heart 270 13 6 7 2
hep hepatitis 155 19 6 13 2
iri iris 150 4 4 0 3
lym lymphography 148 18 3 15 4
mag magic 1902 10 10 0 2
new new-thyroid 215 5 5 0 3
nur nursery 1296 8 0 8 5
pen pen-based recognition 1099 16 16 0 10
pim pima 768 8 8 0 2
rin ring 740 20 20 0 2
tic tic-tac-toe endgame 958 9 0 9 2
veh vehicle 846 18 18 0 4
win wine 178 13 13 0 3
wis wisconsin 683 9 9 0 2
zoo zoo 101 17 0 17 7

less sensitive to randomness caused by a different number of
examples in each class.

B. Imbalanced Data Sets: Formulation and Performance
Measures

In this paper, we perform a comparative study of the GBML
algorithms for rule induction on standard classification, but
we also focus on one of the emergent challenges in data
mining [28]: the problem of imbalanced data sets [29]. In
this context, one class is represented by only a few examples
(known as positive class), whereas the other is described by
many instances (negative class). The minority class is usually
the target concept from the point of view of learning and, for
this reason, the cost derived from a misclassification of one of
the examples of this class is higher than that of the majority
class. This problem is very representative since it appears in
a variety of real-world applications including, but not limited
to, fraud detection [82], risk management [83], and medical
applications [84].

Standard classifier algorithms tend to be biased toward
the negative class, since the rules that predict the highest
number of examples are rewarded by the accuracy metric. A
related issue of this type of problem is the presence of small
disjuncts (small regions in the attribute space) which are rarely
covered by the learners due to their preference for evolving
rules covering larger regions [85]. Furthermore, overlapping
regions between positive and negative examples pose an added
difficulty for the identification and discovery of rules covering
the positive, and under-represented, samples [86].

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 923

TABLE IX

Summary Description of Imbalanced Data Sets

Data Set #Ex. #Atts. Class (Min., Maj.) %Class Min.
Glass1 214 9 (build-win-non float-proc; remainder) 35.51
Ecoli0vs1 220 7 (im; cp) 35.00
Wisconsin 683 9 (malignant; benign) 35.00
Pima 768 8 (tested-positive; tested-negative) 34.84
Iris0 150 4 (Iris-Setosa; remainder) 33.33
Glass0 214 9 (build-win-float-proc; remainder) 32.71
Yeast1 1484 8 (nuc; remainder) 28.91
Vehicle1 846 18 (Saab; remainder) 28.37
Vehicle2 846 18 (Bus; remainder) 28.37
Vehicle3 846 18 (Opel; remainder) 28.37
Haberman 306 3 (Die; Survive) 27.42
Glass0123vs456 214 9 (non-window glass; remainder) 23.83
Vehicle0 846 18 (Van; remainder) 23.64
Ecoli1 336 7 (im; remainder) 22.92
New-thyroid2 215 5 (hypo; remainder) 16.89
New-thyroid1 215 5 (hyper; remainder) 16.28
Ecoli2 336 7 (pp; remainder) 15.48
Segment0 2308 19 (brickface; remainder) 14.26
Glass6 214 9 (headlamps; remainder) 13.55
Yeast3 1484 8 (me3; remainder) 10.98
Ecoli3 336 7 (imU; remainder) 10.88
Page-blocks0 5472 10 (remainder; text) 10.23
Vowel0 988 13 (hid; remainder) 9.01
Glass2 214 9 (Ve-win-float-proc; remainder) 8.78
Ecoli4 336 7 (om; remainder) 6.74
Glass4 214 9 (containers; remainder) 6.07
Abalone9vs18 731 8 (18; 9) 5.65
Glass5 214 9 (tableware; remainder) 4.20
Yeast2vs8 482 8 (pox; cyt) 4.15
Yeast4 1484 8 (me2; remainder) 3.43
Yeast5 1484 8 (me1; remainder) 2.96
Yeast6 1484 8 (exc; remainder) 2.49
Abalone19 4174 8 (19; remainder) 0.77

We will develop an empirical analysis in the context of
imbalance classification for binary data sets, since all studies
in this area are focused on two-class problems [87]. The
modification of the algorithms to better adapt to imbalanced
problems is beyond the scope of this paper. Instead, we aim
to establish a fair comparison of all the algorithms under the
same conditions in a two-objective way.

1) To analyze how the different algorithms directly deal
with the imbalance problem.

2) To apply a preprocessing step that balances the propor-
tion of positive and negative examples in the training
data set. Specifically, we use the synthetic minority
over-sampling technique (SMOTE) [88], which has been
generally demonstrated to improve the performance of
rule-based classifiers and decision trees. Thus, we aim at
showing the positive synergy between this preprocessing
method and the algorithms of this paper.

Regarding the performance measures, the accuracy rate
cannot be considered for imbalanced data sets, since it does
not distinguish between the number of correct classifications of
the different classes, which may lead to erroneous conclusions
in this case. As a classical example, if the ratio of imbalance
presented in the data is 1:100, i.e., there is one positive in-
stance versus 99 negatives, a classifier that obtains an accuracy
rate of 99% is not truly accurate if it does not cover correctly
any minority class instance. Because of this, instead of using
accuracy, other metrics are considered. Specifically, we use in

this paper the geometric mean of the true rates [73], which
can be defined as

GM =

√
TP

TP + FN
· TN

TN + FP
(2)

where TP /TN stands for the correct classifications of the posi-
tive/negative class, and FN/FP for the misclassifications of the
positive/negative class, respectively. This metric considers the
accuracy on each one of the two classes with the same weight.

C. Selected Classical Machine Learning Algorithms

In our empirical study our aim is to compare the algorithms
of the different GBML families for rule induction, and also to
analyze their behavior in contrast to some classical and well-
known classification algorithms.

Specifically, the selected algorithms are the following ones.
1) CART analysis [23] is a form of binary recursive
partitioning. The term binary implies that each group
of data/individuals, represented by a node in a decision
tree, can only be split into two groups.
2) AQ [24] is a classification model based on cover-
ing rules (divide-and-conquer). It implements the STAR
method of inductive learning. When a decision rule is
being built, AQ performs a heuristic search through
a space of logical expressions to determine those that
account for all positive and not negative examples.
3) CN2 [25] induces an ordered list of classification rules
from examples using the entropy as its search heuristic.

924 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

TABLE X

Parameter Specification for the Algorithms Employed in the Experimentation

Michigan Algorithms
Algorithm Parameters
XCS Number of explores = 100 000, population size = 6400, α = 0.1, β = 0.2, δ = 0.1,

ν = 10.0, θmna = 2, θdel = 50.0, θsub = 50.0, ε0 = 1, do Action Set Subsumption = false,
fitness reduction = 0.1, pI = 10.0, FI = 0.01, εI = 0.0, γ = 0.25, χ = 0.8, µ = 0.04,
θGA = 50.0, doGASubsumption = true, type of selection = Roulette wheel selection (RWS),
type of mutation = free, type of crossover = 2 point, P# = 0.33, r0 = 1.0, m0 = 0.1,
l0 = 0.1, doSpecify = false, nSpecify = 20.0, pSpecify = 0.5

UCS Number of explores = 100 000, population size = 6400, δ = 0.1, acc0 = 0.99, Pcross = 0.8
Pmut = 0.04, θGA = 50.0, θdel = 50.0, θsub = 50.0, doGASubsumption = true, r0 = 0.6,
type of selection = RWS, type of mutation = free, type of crossover = 2 point, m0 = 0.1

IRL Algorithms
Algorithm Parameters
SIA Number of iterations = 200, α = 150, β = 0, threshold strength = 0
HIDER Pop. size = 100, number of gen. = 100, mutation prob.= 0.5,

percentage of crossing = 80, extreme mutation prob. = 0.05,
Prune examples factor = 0.05, penalty factor = 1, error coefficient = 0

GCCL Algorithms
Algorithm Parameters

CORE Pop. size = 100, co-population size = 50, gen. limit = 100, number of co-populations = 15,
crossover rate = 1.0, mutation prob. = 0.1, regeneration prob. = 0.5

OCEC Number of total generations = 500, number of migrating/exchanging members = 1
COGIN Misclassification error level = 2, gen. limit = 1000, crossover rate = 0.9, negation bit = yes

Pittsburgh Algorithms
Algorithm Parameters
GIL Pop. size = 40, number of gen. = 1000, w1 = 0.5, w2 = 0.5, w3 = 0.01, rules exchange = 0.2,

rule exchange selection = 0.2, rules copy = 0.1, new event = 0.4, rules generalization = 0.5
rules drop = 0.5, rules specialization = 0.5, rule split = 0.005,
nominal rule split = 0.1, linear rule split = 0.7, condition drop = 0.1
conjunction to disjunction = 0.02, introduce condition = 0.1, rule directed split = 0.03,
reference change = 0.02, reference extension = 0.03, reference restriction = 0.03,
condition level prob. = 0.5, lower threshold = 0.2, upper threshold = 0.8

Pitts-GIRLA Number of rules: 30, number of generations: 10 000,
population size: 61 chromosomes, crossover probability: 0.7, mutation probability: 0.5.

DMEL Pop. size = 30, crossover prob. = 0.5, mutation prob. = 0.0001, number of gen. = 1000
GASSIST-ADI Threshold in hierarchical selection = 0,

iteration of activation for rule deletion operator = 5,
iteration of activation for hierarchical selection = 24,
minimum number of rules before disabling the deletion operator = 12,
minimum number of rules before disabling the size penalty operator = 4,
number of iterations = 750, initial number of rules = 20, population size = 400,
crossover probability = 0.6, probability of individual mutation = 0.6,
probability of value 1 in initialization = 0.90, tournament size = 3,
possible size in micro-intervals of an attribute = {4, 5, 6, 7, 8, 10, 15, 20, 25},
maximum number of intervals per attribute = 5, psplit = 0.05, pmerge = 0.05,
probability of reinitialize begin = 0.03, probability of reinitialize end = 0,
Use MDL = true, iteration MDL = 25, initial theory length ratio = 0.075,
weight relaxation factor = 0.90, class initialization method = cwinit, default class = auto

OIGA Crossover prob. = 1.0, mutation prob. = 0.01, pop. size = 200, number of rules = 30,
stagnation = 30, generations = 200, survivors percent = 0.5, attribute order = descendent

ILGA Crossover prob. = 1.0, mutation prob. = 0.01, pop. size = 200, number of rules = 30,
stagnation = 30, generations = 200, survivors percent = 0.5, attribute order = descendent,
crossover reduction rate = 0.5, mutation reduction rate = 0.5, incremental strategy = 1

Hybrid Evolutionary Decision Trees
Algorithm Parameters
DT-GA Confidence = 0.25, instances per leaf = 2, threshold S to consider a small disjunct = 10,

number of gen. = 50, crossover prob. = 0.8, mutation prob. = 0.01, examples threshold = 5

Oblique-DT Number of total generations for the GA = 25, population size = 20
√

d (d = dimensionality)
TARGET Split prob. = 0.5, number of gen. = 100, number of trees = 50, number of crossovers = 30,

number of mutations = 10, number of clones = 5, number of transplants = 5

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 925

It works in an iterative fashion, each iteration searching
for a complex that covers a large number of examples
of a single class C and few examples of other classes.
4) C4.5 [3] is a decision tree generating algorithm.
It induces classification rules in the form of decision
trees from a set of given examples. The decision tree is
constructed top-down using the normalized information
gain (difference in entropy) that results from choosing
an attribute for splitting the data. The attribute with the
highest normalized information gain is the one used to
make the decision.
5) C4.5-Rules [26] is based on the C4.5 algorithm. A
C4.5 tree is generated and its rules extracted. A hill
climbing algorithm is then performed in order to find
the best subset of rules [according to the minimum
description length (MDL) heuristic].
6) Ripper [27] builds a decision list of rules that cor-
rectly predicts the value of the target attribute. The list of
rules is grown one by one and immediately pruned. Once
a decision list for a given class is completely learned,
an optimization stage is performed.

The choice of these non-GBML algorithms was made on the
basis of the knowledge representation. Since we study GBML
algorithms that evolve a set of rules, we aimed at comparing
their results with other learners obtaining sets of rules, as well.
It is well known that the quality of the model obtained by
an algorithm depends both on the knowledge representation
(language bias) and on the search mechanism (inductive bias).
Our aim was to minimize the differences due to the language
bias, so that the comparison focused mainly on the algorithm
itself (inductive bias). This is the main reason for restricting
non-GBML approaches to those that evolve sets of rules.

D. Data Sets

In the first part of the paper, which deals with standard
classification, we selected 30 data sets from the UCI repository
[30]. Table VIII summarizes the properties of the selected
data sets. It shows, for each data set, the number of examples
(#Ex.), the number of attributes (#Atts.), the number of numer-
ical (#Num.) and nominal (#Nom.) attributes, and the number
of classes (#Cl.). Some of the largest data sets (abalone,
magic, nursery, penbased, and ring) were stratified sampled
at 10% in order to reduce the computational time required
for training. In the case of missing values (cleveland, breast
cancer, dermatology, hepatitis, and wisconsin) we removed
those instances from the data set.

In the second part of the paper, which deals with imbalanced
data, we considered 33 data sets from UCI with different
ratios between the minority and majority classes: from low
imbalance to highly imbalanced data sets. Multiclass data sets
were modified to obtain two-class non-balanced problems, so
that the union of one or more classes became the positive class
and the union of one or more of the remaining classes was
labeled as the negative class.

Table IX summarizes the imbalanced data employed in
this paper and shows, for each data set, the number of exam-
ples (#Ex.), number of attributes (#Atts.), class name of each
class (minority and majority), and class attribute distribution.

TABLE XI

Parameter Specification for the State-of-the-Art

Non-Evolutionary Algorithms Employed in the

Experimentation

Algorithm Parameters
CART Max depth of the tree = 90

AQ Star size = 5
CN2 Star size = 5

C4.5 and Prune = true, confidence level = 0.25,
C4.5-Rules minimum number of item-sets per leaf = 2

Ripper Size of growing subset = 66%
Repetitions of the optimization stage = 2

This table is ordered according to this last column, from low
to high imbalance.

E. Parameters

The configuration parameters for the GBML algorithms
are shown in Table X, whereas in Table XI we show the
parameters for the classical non-evolutionary algorithms. In
both cases, the selected values are common for all problems,
and they were selected according to the recommendation of the
corresponding authors of each algorithm, which is the default
parameters’ setting included in the KEEL software [53].

Although we acknowledge that the tuning of the parameters
for each method on each particular problem could lead to
better results, we preferred to maintain a baseline performance
of each method as the basis for comparison. Our hypothesis
is that methods that win on average on all problems would
also win if a better setting was performed. Furthermore, in a
framework where no method is tuned, winner methods tend
to correspond to the most robust learners, which is also a
desirable characteristic.

Finally, a preprocessing discretization step was applied to
algorithms that do not cope with numerical vales. Specifically,
we used the class-attribute dependent discretizer [89].

F. Statistical Tests for Performance Comparison

In this paper, we use the hypothesis testing techniques to
provide statistical support for the analysis of the results [90],
[91]. Specifically, we use non-parametric tests, due to the fact
that the initial conditions that guarantee the reliability of the
parametric tests may not be satisfied, causing the statistical
analysis to lose credibility with these parametric tests [32].

Specifically, we use the Wilcoxon signed-rank test [92] as
a non-parametric statistical procedure for performing pairwise
comparisons between two algorithms. For multiple compar-
isons, we use the Iman–Davenport test [91] to detect statistical
differences among a group of results and the Shaffer post-hoc
test [93] in order to find out which algorithms are distinctive
among an n × n comparison.

The post-hoc procedure allows us to know whether a
hypothesis of comparison of means could be rejected at a spec-
ified level of significance α. However, it is very interesting to
compute the p-value associated with each comparison, which
represents the lowest level of significance of a hypothesis that
results in a rejection. In this manner, we can know whether

926 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

two algorithms are significantly different and how different
they are.

Furthermore, we consider the average ranking of the algo-
rithms in order to show graphically how good a method is with
respect to its partners. This ranking is obtained by assigning
a position to each algorithm depending on its performance for
each data set. The algorithm which achieves the best accuracy
in a specific data set will have the first ranking (value 1); then,
the algorithm with the second best accuracy is assigned rank
2, and so forth. This task is carried out for all data sets and
finally an average ranking is computed as the mean value of
all rankings.

These tests are suggested in the studies presented in [32],
[33], [90], where its use in the field of machine learning is
highly recommended.

G. KEEL Software

All the methods selected for this paper are included in
the KEEL software [53], which is a non-commercial Java
software tool that empowers the user to assess the behavior
of evolutionary learning for different kinds of data mining
problems: regression, classification, clustering, pattern mining
and so on. This tool can offer several advantages.

1) It reduces programming work. It includes a library
with evolutionary learning algorithms based on different
paradigms (those presented in this paper) and simplifies
the integration of evolutionary learning algorithms with
different pre-processing techniques. It can alleviate re-
searchers from the mere “technical work” of program-
ming and enable them to focus more on the analysis
of their new learning models in comparison with the
existing ones.
2) It extends the range of possible users applying evo-
lutionary learning algorithms. An extensive library of
EAs, together with easy-to-use software, considerably
reduces the level of knowledge and experience required
by researchers in evolutionary computation. As a result,
researchers from other fields would be able to apply
successfully these algorithms to their problems.
3) Due to the development of the library of algorithms
and the application interface on Java, KEEL can be run
on any machine with a Java interpreter.

Researchers can develop comparative experiments with a
large collection of state-of-the-art methods for different ar-
eas of data-mining, such as decision trees, fuzzy rule-based
systems, or rule-based learning, but they can also implement
their own algorithms within the KEEL software [94] in order
to contrast the results of these methods with the ones already
included, or to make them easily accessible to other authors.

H. Web Page Associated With the Paper

In order to provide additional material to the paper content,
we have developed a Web page2 in which we have included
the following information.

1) The proposed taxonomy for GBML algorithms for
rule induction.

2http://sci2s.ugr.es/gbml/index.php

2) The data set partitions employed in the paper, both
for standard classification and for classification with
imbalanced data sets. In the latter case, we provide both
the original data sets and the training sets preprocessed
with SMOTE.
3) The complete tables of results for standard clas-
sification and for classification with imbalanced data
sets, both with the original data sets and with SMOTE
preprocessing. We include some Excel files with the
train and test results for all the algorithms so that any
interested researcher can use them to include their own
results and extend the present comparison.

IV. Analysis of the GBML Algorithms for Rule

Induction in Standard Classification

In this section, we present the experimental study focused
on standard classification problems. To tackle all the results
obtained by the different methods we designed an hierarchical
analysis that highlighted the best methods in each family. The
methodology is as follows.

1) First, we perform a comparison of the methods within
each family. This leads to the selection of the best
methods in each family, which will be identified as the
family representatives and will be used to compare the
performance among the families.
2) The family representatives are also used in the com-
parison with the state-of-the-art non-evolutionary rule
learners.

Estimates of accuracy rate and kappa metric were obtained
by means of a five-iterated five-fold cross-validation. That is,
the data set was split into five folds, each one containing 20%
of the patterns of the data set. For each fold, the algorithm
was trained with the examples contained in the remaining folds
and then tested with the current fold. The process was repeated
five times using a different splitting. Therefore each result is
the average over 25 runs.

This experimental study is carried out in the following two
sections.

A. Study of the Behavior of the Algorithms in the Different
Families

Our first objective is to study the behavior of the GBML
approaches for rule induction, separately for each of the
families presented in our taxonomy.

Table XII shows the average results in training and test
using accuracy and Cohen’s kappa as performance measures
(±standard deviation). The average rank (and the rank po-
sition) are also included, measured for both metrics in the
test scenario. This table is divided into five parts, each one
belonging to a different family, i.e., Michigan, IRL, GCCL,
Pittsburgh and HEDT. The best global result within each
family is stressed in bold-face.

These results are also represented as a box plot (only for
test) in Figs. 1 and 2. Box plots proved a most valuable tool in
data reporting, since they allowed the graphical representation
of the performance of the algorithms, indicating important

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 927

TABLE XII

Average Accuracy and Kappa Results for Standard Classification

Accuracy Kappa
Family Algorithm Training Test Avg. Rank Training Test Avg. Rank
Michigan XCS 88.10 ± 2.64 77.81 ± 4.12 3.82 (1) 0.7900 ± 0.0569 0.5866 ± 0.0874 4.35 (2)

UCS 93.44 ± 2.94 76.68 ± 5.58 6.08 (3) 0.8748 ± 0.0589 0.5688 ± 0.1125 5.98 (3)
IRL SIA 97.57 ± 0.23 74.65 ± 3.58 7.05 (5) 0.9619 ± 0.0044 0.5237 ± 0.0696 6.75 (6)

HIDER 85.05 ± 1.14 72.28 ± 3.64 7.30 (6) 0.6833 ± 0.0268 0.4653 ± 0.0749 7.73 (7)
GCCL CORE 69.52 ± 3.29 67.26 ± 4.64 10.77 (13) 0.4503 ± 0.0719 0.3989 ± 0.0959 11.93 (14)

OCEC 81.15 ± 3.28 70.42 ± 4.67 9.85 (11) 0.6656 ± 0.0524 0.4840 ± 0.0810 8.57 (9)
COGIN 86.79 ± 1.59 67.95 ± 4.35 10.37 (12) 0.7261 ± 0.0315 0.4393 ± 0.0689 10.23 (13)

Pittsburgh GIL 77.41 ± 3.73 67.63 ± 5.19 11.33 (14) 0.6262 ± 0.0522 0.4559 ± 0.0859 9.55 (10)
Pitts-GIRLA 74.80 ± 2.81 62.86 ± 10.10 11.42 (15) 0.5704 ± 0.0499 0.3255 ± 0.1558 12.07 (15)
DMEL 48.01 ± 5.84 46.47 ± 6.06 14.50 (16) 0.2305 ± 0.0657 0.1697 ± 0.0693 14.27 16)
GASSIST 85.68 ± 1.28 77.78 ± 3.71 3.95 (2) 0.7471 ± 0.0258 0.5953 ± 0.0731 3.67 (1)
OIGA 78.27 ± 2.41 72.66 ± 4.14 7.30 (7) 0.5878 ± 0.0535 0.4959 ± 0.0822 7.93 (8)
ILGA 75.60 ± 2.74 70.58 ± 4.28 9.05 (9) 0.5305 ± 0.0562 0.4505 ± 0.0813 10.13 (12)

HEDT DT-GA 82.57 ± 1.86 76.28 ± 3.39 6.13 (4) 0.6790 ± 0.0371 0.5495 ± 0.0626 6.53 (4)
Oblique-DT 99.27 ± 0.04 76.58 ± 3.34 7.50 (8) 0.9874 ± 0.0011 0.5779 ± 0.0647 6.60 (5)
TARGET 70.14 ± 2.42 68.78 ± 4.02 9.58 (10) 0.4750 ± 0.0516 0.4336 ± 0.0808 9.70 (11)

Fig. 1. Box plot of the accuracy results for all GBML algorithms.

TABLE XIII

Wilcoxon Test to Compare the Michigan Approaches

Measure Comparison R+ R− Hypothesis
(α = 0.05)

p-value

Accuracy XCS versus UCS 345.0 120.0 Rejected for XCS 0.021
Kappa XCS versus UCS 325.0 140.0 Not rejected 0.057

R+ corresponds to the sum of the ranks for XCS and R− for UCS.

features such as the median, extreme values, and spread of
values about the median in the form of quartiles.

The statistical comparison for the Michigan algorithms is
shown in Table XIII, where we can observe that the null
hypothesis of equivalence is: 1) rejected in favor of the XCS
algorithm with level of significance α = 0.05 using accuracy
rate, and 2) not rejected using kappa, although a low p-value
is obtained (p-value = 0.057).

In the case of the IRL methods, the statistical study is shown
in Table XVI. No statistical differences were found in this case,
although SIA obtains a better rank than HIDER.

Fig. 2. Box plot of the kappa results for all GBML algorithms.

The results of the statistical analysis of the GCCL family
are as follows. Under accuracy rate, the null hypothesis that
all the methods are equivalent cannot be rejected, since the
p-value returned by the Iman–Davenport test (0.41341) is
higher than our α-value (0.05). Nevertheless, under the kappa
measure, Iman–Davenport’s p-value is 0.00304 so the null
hypothesis can be rejected. In this latter case, we proceed with
a Shaffer test (see Table XVII) where we conclude that OCEC
is statistically better than CORE and COGIN. In this table, a
“+” symbol implies that the algorithm in the row is statistically
better than the one in the column, whereas “−” implies the
contrary; “=” means that the two algorithms compared have
no significant differences. In brackets, the adjusted p-value
associated to each comparison is shown.

Regarding the Pittsburgh methods, the Iman–Davenport test
detects significant differences among the algorithms using both
accuracy and kappa as performance measures, being the asso-
ciated p-value near to zero in both cases. The statistical study
is shown in Tables XIV and XV, where a Shaffer post-hoc
test is shown for accuracy and kappa, respectively. Observing

928 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

TABLE XIV

Shaffer Test for Pittsburgh Algorithms Using Accuracy as Performance Measure

GIL Pitts-GIRLA DMEL GASSIST OIGA ILGA
GIL x = (0.89023) + (0.04043) − (6.76927E-8) − (0.04271) = (0.44991)
Pitts-GIRLA = (0.89023) x + (0.04271) − (2.946285E-8) − (0.03266) = (0.44991)
DMEL − (0.04043) − (0.04271) x − (1.74046E-16) − (4.99417E-7) − (2.56050E-4)
GASSIST + (6.76927E-8) + (2.946285E-8) + (1.74046E-16) x + (0.01331) + (1.37753E-4)
OIGA + (0.04271) + (0.03266) + (4.99417E-7) − (0.01331) x = (0.44991)
ILGA = (0.44991) = (0.44991) + (2.56050E-4) − (1.37753E-4) = (0.44991) x

TABLE XV

Shaffer Test for Pittsburgh Algorithms Using Kappa as Performance Measure

GIL Pitts-GIRLA DMEL GASSIST OIGA ILGA
GIL x = (0.33799) + (0.00194) − (3.77429E-5) = (0.72225) = (0.72225)
Pitts-GIRLA = (0.33799) x = (0.27223) − (2.17279E-9) − (0.02626) = (0.72225)
DMEL − (0.00194) = (0.27223) x − (1.02574E-15) − (9.60977E-6) − (0.02103)
GASSIST + (3.77429E-5) + (2.17279E-9) + (1.02574E-15) x + (0.00392) + (7.34537E-7)
OIGA = (0.72225) + (0.02626) + (9.60977E-6) − (0.00392) x = (0.27223)
ILGA = (0.72225) = (0.72225) + (0.02103) − (7.34537E-7) = (0.27223) x

TABLE XVI

Wilcoxon Test to Compare the IRL Approaches

Measure Comparison R+ R− Hypothesis
(α = 0.05)

p-value

Accuracy SIA versus HIDER 246.0 219.0 Not rejected 0.781
Kappa SIA versus HIDER 258.0 207.0 Not rejected 0.600

R+ corresponds to the sum of the ranks for SIA and R− for HIDER.

TABLE XVII

Shaffer Test for GCCL Algorithms Using Kappa as

Performance Measure

CORE OCEC COGIN
CORE x − (0.00375) = (0.30170)
OCEC + (0.00375) x + (0.02819)
COGIN = (0.30170) − (0.02819) x

the results from these tables, we conclude that GASSIST has
a better behavior than the rest of the Pittsburgh approaches
both in accuracy and kappa. DMEL is always outperformed
by the remaining algorithms and OIGA is statistically better
than the GIL and Pitts-GIRLA methods in accuracy and only
better than Pitts-GIRLA in kappa.

In the HEDT family, the Iman–Davenport test (0.05834 in
accuracy and 0.06965 in kappa) gets a higher p-value than our
α-value 0.05, so there are no statistical differences.

Finally, we present a list of algorithms that have been
selected as representative of each family. The criterion for
choosing each method is based on the best performing method
according to the differences supported by the statistical analy-
sis. If no statistical differences are found, then the best mean
result is taken, as in the case of SIA and Oblique-DT.

1) Chromosome = Rule:

a) Michigan approach: XCS;
b) IRL approach: SIA;
c) GCCL approach: OCEC.

2) Chromosome = Rule Set (Pittsburgh): GASSIST.

Fig. 3. Ranking in accuracy for the selected GBML algorithms.

Fig. 4. Ranking in kappa for the selected GBML algorithms.

3) HEDTs: Oblique-DT.

Figs. 3 and 4 show the average ranking computed for these
approaches in accuracy and kappa, respectively. This task is
carried out for all data sets and finally an average ranking is
computed as the mean value of all rankings. We can observe
that XCS and GASSIST are the best algorithms in both cases,
whereas OCEC obtains the worst ranking. SIA and Oblique-
DT have similar behavior.

To sum up, we included the star plot representations in
accuracy and kappa for the best algorithms in each family, that

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 929

TABLE XVIII

Average Accuracy and Kappa Results for Standard Classification in GBML Algorithms for Rule Induction

and State-of-the-Art Non-Evolutionary Algorithms

GBML Algorithms for Rule Induction
Accuracy Kappa

Algorithm Training Test Avg. Rank Training Test Avg. Rank
XCS 88.10 ± 2.64 77.81 ± 4.12 3.42 (1) 0.7900 ± 0.0569 0.5866 ± 0.0874 3.75 (1)
SIA 97.57 ± 0.23 74.65 ± 3.58 5.75 (5) 0.9619 ± 0.0044 0.5237 ± 0.0696 5.92 (7)
OCEC 81.15 ± 3.28 70.42 ± 4.67 7.92 (10) 0.6656 ± 0.0524 0.4840 ± 0.0810 7.37 (9)
GASSIST 85.68 ± 1.28 77.78 ± 3.71 3.68 (2) 0.7471 ± 0.0258 0.5953 ± 0.0731 3.60 (2)
Oblique-DT 99.27 ± 0.04 76.58 ± 3.34 6.07 (6) 0.9874 ± 0.0011 0.5779 ± 0.0647 5.77 (6)

Non-Evolutionary Algorithms for Rule Induction
Accuracy Kappa

Algorithm Training Test Avg. Rank Training Test Avg. Rank
CART 83.69 ± 3.71 73.91 ± 3.91 6.20 (7) 0.7013 ± 0.0664 0.5167 ± 0.0744 6.57 (8)
AQ 81.89 ± 3.36 67.77 ± 5.18 8.83 (11) 0.6803 ± 0.0587 0.4240 ± 0.0971 9.23 (11)
CN2 80.98 ± 1.46 72.80 ± 3.51 7.40 (9) 0.6053 ± 0.0314 0.4484 ± 0.0746 8.53 (10)
C4.5 89.93 ± 1.47 77.77 ± 3.49 4.35 (3) 0.8020 ± 0.0362 0.5821 ± 0.0647 4.40 (3)
C4.5-Rules 83.84 ± 2.05 76.59 ± 4.10 5.55 (4) 0.7075 ± 0.0440 0.5717 ± 0.0779 5.23 (4)
Ripper 88.70 ± 2.42 73.96 ± 4.24 6.83 (8) 0.8147 ± 0.0387 0.5643 ± 0.0712 5.63 (5)

Fig. 5. Star plot representation in accuracy for the selected GBML
algorithms.

is, XCS for “Chromosome = Rule,” GASSIST for “Pittsburgh”
and Oblique-DT for “HEDTs.” These star plots represent the
performance as the distance from the center; hence a higher
area determines the best average performance. We did not
include all five algorithms in the representation for the sake of
simplicity. The plots allow us to visualize the performance of
the algorithms comparatively for each problem and in general.
In Fig. 5, we can observe that under the accuracy rate metric,
XCS achieves very good results except in those problems that
only have nominal attributes, such as car, flare, nursery, and
tic-tac-toe. GASSIST and Oblique-DT obtain a similar plot,
but GASSIST has a higher area, which implies a better general
behavior. Regarding kappa (Fig. 6), the conclusions extracted
from the star plot are equivalent to those obtained with the
accuracy rate.

B. Study of the Representative Algorithms of Each Family
Versus Classical Ones

In the first part of this paper we selected the representative
algorithms for each family defined in our taxonomy. The goal
of this paper is also to perform a comparative study among
the main GBML approaches with some state-of-the-art non-
evolutionary rule classification methods listed in Section III-C.
These algorithms are CART [23], AQ [24], CN2 [25], C4.5 [3],

Fig. 6. Star plot representation in kappa for the selected GBML algorithms.

C4.5-Rules [26], and Ripper [27]. As we state previously, these
methods were run using the KEEL software [53], following
the recommended parameter settings given in KEEL, which
correspond with the settings reported in the papers in which
these methods have been proposed.

In Table XVIII, we show the results for accuracy and
Cohen’s kappa for all the selected GBML approaches for rule
induction, that is, XCS, SIA, OCEC, GASSIST and Oblique-
DT and for the classical non-evolutionary methods. The results
for the test partitions are also depicted in Figs. 7 and 8 using
box plots as representation scheme. Again, for brevity, we do
not include the results for every single data set but the average
performance of each algorithm.

According to the average results presented in Table XVIII,
we may conclude that most of the selected GBML approaches
for rule induction perform better than the non-evolutionary
algorithms. Only in the case of C4.5 and C4.5-Rules do we
obtain a similar behavior among these classical methods and
the evolutionary algorithms.

We first check for significant differences using an Iman–
Davenport test, which obtains a p-value below our level of
significance, and near to zero in both cases, accuracy and
kappa. The associated statistical study is developed in Tables
XIX and XX, where we show the p-values computed by a

930 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

TABLE XIX

Shaffer Test for GBML Algorithms for Rule Induction Against Non-Evolutionary Approaches Using Accuracy as Performance

Measure

CART AQ CN2 C4.5 C4.5-Rules Ripper
XCS + (0.04266) + (1.39004E-8) + (1.48266E-4) = (1.0) = (0.39467) + (0.00298)
SIA = (1.0) + (0.01175) = (1.0) = (1.0) = (1.0) = (1.0)
OCEC = (1.0) = (1.0) = (1.0) − (0.00140) = (0.19381) = (1.0)
GASSIST = (0.12189) + (8.14983E-8) + (6.40788E-4) = (1.0) = (0.84890) + (0.01056)
Oblique-DT = (1.0) + (0.04568) = (1.0) = (1.0) = (1.0) = (1.0)

TABLE XX

Shaffer Test for GBML Algorithms for Rule Induction Against Non-Evolutionary Approaches Using Kappa as Performance

Measure

CART AQ CN2 C4.5 C4.5-Rules Ripper
XCS + (0.03718) + (6.84899E-9) + (1.04724E-6) = (1.0) = (1.0) = (0.75221)
SIA = (1.0) + (0.00398) = (0.08086) = (1.0) = (1.0) = (1.0)
OCEC = (1.0) = (0.75221) = (1.0) − (0.01967) = (0.39467) = (1.0)
GASSIST + (0.01967) + (2.61693E-9) + (3.76517E-7) = (1.0) = (1.0) = (0.50972)
Oblique-DT = (1.0) + (0.00232) + (0.04568) = (1.0) = (1.0) = (1.0)

Fig. 7. Box plot representation of the accuracy results for the selected
GBML and non-evolutionary algorithms.

Fig. 8. Box plot representation of the kappa results for the selected GBML
and non-evolutionary algorithms.

Shaffer test with which we compare every GBML algorithm
for rule induction against all the classical approaches using
accuracy and kappa measures, respectively. This test was
explained in Section IV-A.

In these tables, we may observe that XCS and GASSIST
are the algorithms with the best behavior in contrast to the
non-evolutionary algorithms. The remaining GBML methods
are statistically similar to most of the state-of-the-art non-
evolutionary approaches. AQ is in general worse than the
other approaches, and C4.5 only outperforms OCEC, but none
of the other GBML approaches. There are few differences
between the results in both tables, although we observe that the
p-values are, in general, lower in the case of the kappa
measure. Even more clearly, we learn that GASSIST is better
than CART regarding kappa but not with accuracy. The same
happens for Oblique-DT against CN2. Nevertheless, we ob-
serve the contrary case for XCS and GASSIST against Ripper,
where the former algorithms achieve a better behavior only in
the case of the accuracy metric.

Considering the performance results of Table XVIII and
the statistical study in Tables XIX and XX, we select C4.5
and C4.5-Rules as representative algorithms for the non-
evolutionary approaches for rule induction. These methods will
be employed in the next section of the experimental study.

As we did in the previous part of this paper, we depict in
Figs. 9 and 10 the rank computed for the selected approaches
in accuracy and kappa. In this case, C4.5 is one of the three
best algorithms behind XCS and GASSIST. The remaining
methods have similar behavior, except for OCEC which is the
last ranked algorithm.

Finally, we take the three best ranked algorithms, XCS,
GASSIST, and C4.5, and we show the star plot representations
in Figs. 11 and 12 for accuracy and kappa, respectively. In
accuracy, XCS has a better performance in all problems except
for those that have only nominal values (car, flare, nursery, tic-
tac-toe, and zoo). GASSIST and C4.5 are very similar in most
data sets, also alternating the best results for some data sets,

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 931

Fig. 9. Ranking in accuracy for the selected GBML and non-evolutionary
algorithms.

Fig. 10. Ranking in kappa for the selected GBML and non-evolutionary
algorithms.

Fig. 11. Star plot representation in accuracy for the selected GBML and
non-evolutionary algorithms.

i.e., GASSIST outperforms C4.5 in tic-tac-toe and we observe
the contrary in penbased. For the kappa metric we have more
differences among the algorithms although XCS is still the
one that performs best in most of the cases under study.

V. Analysis of the GBML Algorithms for Rule

Induction in Imbalanced Data Sets

In this section, we analyze the effect of imbalance on the
classification quality of all the algorithms selected in our
study, following the same methodology than in the previous
section. We decide not to use just the representatives of the
different families of GBML algorithms for rule induction
because we cannot assume that the algorithms that perform

Fig. 12. Star plot representation in kappa for the selected GBML and non-
evolutionary algorithms.

TABLE XXI

Average Results for Imbalanced Data Sets Classification

With GBML Algorithms for Rule Induction

Family Algorithm GMTr GMTst Avg. Rank
Michigan XCS 69.37 ± 10.30 58.93 ± 9.72 6.93 (8)

UCS 76.46 ± 13.12 64.92 ± 16.55 6.77 (5)
IRL SIA 99.55 ± 0.38 69.62 ± 9.49 6.03 (4)

HIDER 64.67 ± 7.94 56.13 ± 11.05 9.29 (9)
GCCL CORE 57.75 ± 10.26 52.73 ± 14.74 9.35 (10)

OCEC 80.00 ± 3.74 70.88 ± 10.38 6.86 (6)
COGIN 60.18 ± 10.65 48.08 ± 16.13 11.62 (15)

Pittsburgh GIL 79.87 ± 3.60 70.96 ± 9.87 6.86 (7)
Pitts-GIRLA 55.11 ± 10.61 39.59 ± 17.52 11.17 (14)
DMEL 22.99 ± 10.26 20.76 ± 12.07 14.15 (16)
GASSIST 78.65 ± 5.02 67.58 ± 9.69 5.79 (3)
OIGA 69.41 ± 5.65 57.48 ± 10.65 9.71 (11)
ILGA 64.48 ± 8.95 51.76 ± 11.12 10.86 (13)

HEDT DT-GA 78.60 ± 7.81 69.87 ± 11.60 5.68 (2)
Oblique-DT 99.96 ± 0.01 75.81 ± 8.55 4.58 (1)
TARGET 48.14 ± 14.14 46.93 ± 14.68 10.33 (12)

best on standard classification will also be the ones that obtain
the best behavior on imbalanced data sets.

This paper is divided into two parts. First, we will present
the results directly using the original data sets in order to
determine which algorithms are best adapted to the framework
of imbalanced data sets. Then, we will apply preprocessing
to the training data sets to rebalance the distribution of
examples of the different classes. Our aim is to analyze
whether class rebalancing leads to performance improvement
of the algorithms used in this paper, and of GBML methods in
particular.

A. Empirical Analysis With the Original Data Sets

In the remainder of this section, we will present the results
of all the GBML methods in the original imbalanced data
sets. We will analyze how the different methods respond to
the class imbalances and will select the best representative
within each family. Finally, we will contrast the results of
these selected evolutionary algorithms for rule induction with
the classical methods, that is, CART, AQ, CN2, C4.5, C4.5-
Rules, and Ripper.

1) Study of the Behavior of the Algorithms in the Different
Families With Imbalanced Data Sets: Table XXI shows the
average results for all data sets using the geometric mean

932 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

Fig. 13. Box plot representation of the geometric mean of all GBML
algorithms in imbalanced data sets.

TABLE XXII

Wilcoxon Test to Compare the Michigan Approaches

in Imbalanced Data Sets

Comparison R+ R− Hypothesis (α = 0.05) p-value
XCS versus UCS 231.5 329.5 Not rejected 0.360

R+ corresponds to the sum of the ranks for XCS and R− for UCS.

of the true rates for all GBML algorithms, also showing the
average ranking. We stress in boldface the best value within
each family.

For a visual comparison, we show a box plot representation
for the results in test in Fig. 13. The results obtained in the
framework of imbalanced data sets are interesting since in this
case we observe larger differences in the average performance
among the algorithms of the same families. Furthermore, both
UCS and GIL achieve the highest value for the geometric
mean both for Michigan and Pittsburgh approaches, in contrast
with the case of standard classification, suggesting their good
adaptation to imbalanced data sets.

The next step is to carry out a statistical analysis for each
proposed family of GBML algorithms for rule induction, in
the same way we did for standard classification, in order to
select the representative algorithms for the comparison with
the classical non-evolutionary approaches.

The first statistical comparison will be carried out for the
Michigan algorithms, and it is shown in Table XXII. We
can observe that the null hypothesis of equivalence is not
rejected, but UCS obtains a higher sum of ranks in this
case. This behavior is supported by the higher value of the
average performance of the geometric mean (Table XXI) and
in the lower spread observed in the box plot representation
(Fig. 13) when contrasting UCS with XCS. This conclusion
is in concordance with the results obtained by Orriols and
Bernadó-Mansilla in [95].

In the case of the IRL methods, the statistical study is
shown in Table XXIII. The Wilcoxon test concludes that SIA
outperforms HIDER in the framework of imbalanced data sets,
so we can state that the rules found by the former are less
biased for the majority class examples.

TABLE XXIII

Wilcoxon Test to Compare the IRL Approaches in Imbalanced

Data Sets

Comparison R+ R− Hypothesis (α = 0.05) p-value
SIA versus HIDER 400.0 161.0 Rejected for SIA 0.033

R+ corresponds to the sum of the ranks for SIA and R− for HIDER.

TABLE XXIV

Shaffer Test for GCCL Algorithms in Imbalanced Data Sets

CORE OCEC COGIN
CORE x − (0.00561) + (0.02672)
OCEC + (0.00561) x + (1.85688E-6)
COGIN − (0.02672) − (1.85688E-6) x

The results of the statistical analysis of the GCCL family are
as follows. The p-value returned by the Iman–Davenport test
is near to zero, so the null hypothesis can be rejected. In this
case, we proceed with a Shaffer test (see Table XXIV) where
we conclude that OCEC is statistically better than CORE and
COGIN and that CORE is also better than COGIN.

Regarding the Pittsburgh methods, the Iman–Davenport test
detects significant differences among the algorithms, being
the associated p-value near to zero also in this case. The
statistical study is shown in Table XXV, where a Shaffer post-
hoc test is shown. Observing the results from this table, we
conclude that GASSIST has a better behavior than the rest of
the Pittsburgh except for GIL, which is also better than the
remaining algorithms but OIGA. DMEL is outperformed by
all methods but Pitts-GIRLA and ILGA, but in this latter case
the p-value is lower than 0.1 (0.06546).

In the HEDT family, the Iman–Davenport test has also a
p-value near to zero, and we proceed with a Shaffer test
(Table XXVI) in which it is shown that TARGET is statis-
tically worst than DT-GA and Oblique-DT, which have no
differences between them. Nevertheless, we must highlight
the goodness of the Oblique-DT algorithm since it obtains
the best average result for the geometric mean and also a very
low spread in the box plot representation, hence having a low
sensitivity to the imbalance degree of the data sets and being
a good method in this framework.

Finally, we present a list of algorithms that have been
selected as representative of each family for imbalanced clas-
sification. The criterion for choosing each method is exactly
the same as for standard classification; that is, we extract the
best performing method according to the differences supported
by the statistical analysis and if no statistical differences were
found, then we select the best ranking method, as in the case
of UCS, GASSIST, and Oblique-DT.

1) Chromosome = Rule:

a) Michigan approach: UCS;
b) IRL approach: SIA;
c) GCCL approach: OCEC.

2) Chromosome = Rule Set (Pittsburgh): GASSIST.
3) HEDTs: Oblique-DT.

2) Study of the Representative Algorithms of Each Family
Versus Classical Ones With Imbalanced Data Sets: Once we

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 933

TABLE XXV

Shaffer Test for Pittsburgh Algorithms in Imbalanced Data Sets

GIL Pitts-GIRLA DMEL GASSIST OIGA ILGA
GIL x + (0.00136) + (7.65851E-9) = (0.44705) = (0.14101) + (0.00267)
Pitts-GIRLA − (0.00136) x = (0.11703) − (4.82031E-6) = (0.34857) = (0.79241)
DMEL − (7.65851E-9) = (0.11703) x − (2.57755E-12) − (5.20107E-4) = (0.06546)
GASSIST = (0.44705) + (4.82031E-6) + (2.57755E-12) x + (0.00624) + (1.84089E-5)
OIGA = (0.14101) = (0.34857) + (5.20107E-4) − (0.00624) x = (0.44328)
ILGA − (0.00267) = (0.79241) = (0.06546) − (1.84089E-5) = (0.44328) x

TABLE XXVI

Shaffer Test for HEDT Algorithms in Imbalanced Data Sets

DT-GA Oblique-DT TARGET
DT-GA x = (0.62246) + (0.00209)
Oblique-DT = (0.62246) x + (0.00107)
TARGET − (0.00209) − (0.00107) x

TABLE XXVII

Average Results for Imbalanced Data Sets Classification

With the Best GBML Algorithms for Rule Induction and

State-of-the-Art Non-Evolutionary Algorithms

GMTr GMTst Avg. Rank
UCS 76.46 ± 13.12 64.92 ± 16.55 6.15 (7)
SIA 99.55 ± 0.38 69.62 ± 9.49 5.91 (6)
OCEC 80.00 ± 3.74 70.88 ± 10.38 6.36 (9)
GASSIST 78.65 ± 5.02 67.58 ± 9.69 5.64 (5)
Oblique-DT 99.96 ± 0.01 75.81 ± 8.55 4.74 (3)
CART 87.39 ± 5.31 69.72 ± 11.51 6.26 (8)
AQ 67.00 ± 3.87 59.81 ± 8.72 8.73 (10)
CN2 56.53 ± 5.70 45.97 ± 12.09 9.82 (11)
C4.5 84.03 ± 6.01 73.28 ± 10.82 4.77 (4)
C4.5-Rules 84.81 ± 4.59 75.21 ± 10.23 4.61 (2)
Ripper 96.38 ± 0.86 79.34 ± 8.98 3.02 (1)

have selected the representative algorithms of each family we
aim at comparing now their classification ability in imbal-
anced data sets versus the classical non-evolutionary algo-
rithms. The average results using the geometric mean, together
with the associated ranking for each method, are shown in
Table XXVII, whereas a box plot representation that summa-
rizes the performance over all data sets is depicted in Fig. 14.

From the table of results we can observe that the best
performing algorithm is Ripper, followed by those based on
decision trees, both for evolutionary and non-evolutionary
methods. We also observe that the associated ranking of
each algorithm does not necessarily correspond to the average
performance value, since the metric we used gives a 0-value
for those problems that do not have any minority class example
well-classified resulting in a decrease of the mean value for
some algorithms like GASSIST or UCS.

To carry out the statistical study, we only select Ripper,
C4.5, and C4.5-Rules as representatives of the state-of-the-art
non-evolutionary approaches, since they obtained the highest
average performance and also the best ranks. This has been
done for the sake of simplicity in the comparisons.

We first check for significant differences among the algo-
rithms using an Iman–Davenport test. The p-value is lower
than our level of confidence α and near to zero. Thus, we

Fig. 14. Box plot representation of the geometric mean of the selected
GBML algorithms and non-evolutionary algorithms in imbalanced data sets.

Fig. 15. Ranking computed for the selected GBML and non-evolutionary
algorithms in imbalanced data sets.

can conclude that significant differences do exist, proceeding
with a Shaffer test. The ranks of the algorithms are presented
in Fig. 15, and the results of the multiple comparison test
performed on all algorithms are shown in Table XXVIII.

Observing the statistical results, we may conclude that
Oblique-DT is the GBML algorithm with the best behavior
and that Ripper is globally the best-suited algorithm when
classifying imbalanced data. We did not find any other dif-
ference among the remaining methods, which agrees with the
similarities in the average performance and also with the rank-
value of the algorithms.

Finally, Fig. 16 shows the star plot representation for the
Ripper algorithm and the two best ranked GBML algorithms
in imbalanced data sets, that is, Oblique-DT and GASSIST.

934 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

TABLE XXVIII

Shaffer Test for GBML Algorithms for Rule Induction Against Non-Evolutionary Approaches in Imbalanced Data Sets

UCS SIA OCEC GASSIST Oblique-DT C4.5 C4.5-Rules Ripper
UCS x = (1.0) = (1.0) = (1.0) = (1.0) = (1.0) = (0.62987) − (4.56423E-4)
SIA = (1.0) x = (1.0) = (1.0) = (1.0) = (1.0) = (0.75440) − (6.37118E-4)
OCEC = (1.0) = (1.0) x = (1.0) = (0.52325) = (0.46677) = (0.25168) − (7.33636E-5)
GASSIST = (1.0) = (1.0) = (1.0) x = (1.0) = (1.0) = (1.0) − (0.00254)
Oblique-DT = (1.0) = (1.0) = (0.52325) = (1.0) x = (1.0) = (1.0) = (0.21802)
C4.5 = (1.0) = (1.0) = (0.46677) = (1.0) = (1.0) x = (1.0) = (0.33309)
C4.5-Rules = (0.62987) = (0.75440) = (0.25168) = (1.0) = (1.0) = (1.0) x = (0.46677)
Ripper + (4.56423E-4) + (6.37118E-4) + (7.33636E-5) + (0.00254) = (0.21802) = (0.33309) = (0.46677) x

Fig. 16. Star plot representation for Ripper, Oblique-DT, and GASSIST in
imbalanced data sets.

The data sets are ordered clockwise according to their degree
of imbalance, starting at data set glass1 which has the lowest
class imbalance. We can observe the irregular shape for the
last ten data sets (from glass2 to abalone19), which suggests
the difficulty for learning an accurate model when the minority
class examples are highly under-represented. Clearly, Oblique-
DT and Ripper maintain the most regular behavior.

B. Empirical Analysis Applying Preprocessing

Along the previous section we have studied the behavior of
the GBML and non-evoluationary approaches by means of an
empirical study using the original imbalanced data sets. Our
aim is also to study whether a preprocessing method [87],
[96] that rebalances the imbalance ratio of the data set helps
to improve the performance and in which cases. We use the
SMOTE method [88] as one of the best known preprocessing
methods that compensate for class imbalances.

With this aim, we will proceed as usual, first detecting
which algorithms have a better behavior within each family of
GBML algorithms for rule induction and then we will compare
this selection of methods with the classical non-evolutionary
methods.

1) Study of the Behavior of the Algorithms in the Different
Families With Imbalanced Data Sets Applying Preprocessing:
Table XXIX shows the average results of all GBML methods
for all data sets. The results shown are the geometric mean and
the average ranking of each method. We stress in boldface the
best value within each family.

When SMOTE preprocessing is used, the GBML algorithms
highly improve their results with respect to the performance

TABLE XXIX

Average Results for Imbalanced Data Sets Classification

With GBML Algorithms for Rule Induction With SMOTE

Preprocessing

Family Algorithm GMTr GMTst Avg. Rank
Michigan XCS 94.91 ± 1.51 84.92 ± 5.69 3.48 (1)

UCS 78.89 ± 10.38 67.30 ± 12.53 9.29 (11)
IRL SIA 89.47 ± 1.09 81.79 ± 6.56 5.23 (3)

HIDER 89.11 ± 2.00 78.26 ± 9.05 7.55 (7)
GCCL CORE 79.88 ± 4.05 76.19 ± 8.77 7.73 (9)

OCEC 81.85 ± 2.02 71.70 ± 7.58 9.29 (12)
COGIN 65.89 ± 7.41 60.79 ± 11.65 12.94 (14)

Pittsburgh GIL 72.45 ± 3.42 66.80 ± 7.86 11.27 (13)
Pitts-GIRLA 20.42 ± 9.82 21.15 ± 15.93 14.48 (15)
DMEL 25.86 ± 14.84 23.89 ± 15.16 15.08 (16)
GASSIST 93.47 ± 1.03 83.69 ± 7.26 4.03 (2)
OIGA 89.40 ± 1.97 77.91 ± 9.99 7.55 (8)
ILGA 88.29 ± 2.36 75.95 ± 8.70 8.64 (10)

HEDT DT-GA 92.36 ± 1.97 80.61 ± 7.66 5.61 (4)
Oblique-DT 99.96 ± 0.01 80.51 ± 7.12 6.42 (5)
TARGET 82.80 ± 3.16 80.02 ± 6.86 7.42 (6)

Fig. 17. Box plot for the results in imbalanced data sets with SMOTE
preprocessing for all GBML algorithms.

achieved when they are trained with the original imbalanced
data sets. Specifically, we must highlight the good performance
of XCS, GASSIST, and SIA. The box plot representation of
the results shown in Fig. 17 supports this conclusion.

Furthermore, observing the box plot for the results with the
original data sets (Fig. 13) and with preprocessing (Fig. 17)
the “boxes” are smaller for the case of the application of
SMOTE. According to this, when using this technique for

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 935

TABLE XXX

Shaffer Test for Pittsburgh Algorithms in Imbalanced Data Sets With SMOTE Preprocessing

GIL Pitts-GIRLA DMEL GASSIST OIGA ILGA
GIL x + (0.00160) + (7.25460E-4) − (2.87809E-5) − (0.04115) = (0.22697)
Pitts-GIRLA − (0.00160) x = (0.85959) − (1.13066E-15) − (4.09033E-9) - (4.73462E-7)
DMEL − (7.25460E-4) = (0.85959) x − (3.16485E-16) − (1.13391E-9) = (1.52804E-7)
GASSIST + (2.87809E-5) + (1.13066E-15) + (3.16485E-16) x = (0.16554) + (0.02800)
OIGA + (0.04115) + (4.09033E-9) + (1.13391E-9) = (0.16554) x = (0.85959)
ILGA = (0.22697) + (4.73462E-7) + (1.52804E-7) − (0.02800) = (0.85959) x

TABLE XXXI

Wilcoxon Test to Compare the Michigan Approaches

in Imbalanced Data Sets With SMOTE Preprocessing

Comparison R+ R− Hypothesis (α = 0.05) p-value
XCS versus UCS 544.5 16.5 Rejected for XCS 0.000

R+ corresponds to the sum of the ranks for XCS and R− for UCS.

TABLE XXXII

Wilcoxon Test to Compare the IRL Approaches in Imbalanced

Data Sets With SMOTE Preprocessing

Comparison R+ R− Hypothesis (α = 0.05) p-value
SIA versus HIDER 386.5 174.5 Not rejected 0.056

R+ corresponds to the sum of the ranks for SIA and R− for HIDER.

TABLE XXXIII

Shaffer Test for GCCL Algorithms in Imbalanced Data Sets

With SMOTE Preprocessing

CORE OCEC COGIN
CORE x = (0.53825) + (2.54822E-6)
OCEC = (0.53825) x + (1.64587E-5)
COGIN − (2.54822E-6) − (1.64587E-5) x

dealing with imbalanced data, the quartiles computed from
the results have a lower range and the standard deviation also
decreases, resulting on a most robust behavior.

In order to select the most representative algorithm within
each family, we will proceed as usual, performing a statistical
analysis for each group of the proposed taxonomy. In this
manner, we show in Table XXXI the comparison regarding
the Michigan approaches, in which the Wilcoxon test shows
the superiority of XCS versus UCS.

The Wilcoxon test shown in Table XXXII for the IRL
methods cannot reject the null-hypothesis of equality, but the
p-value obtained is very low (0.056) and thus we can conclude
that there are significant differences between SIA and HIDER
in favor of the former with a high degree of confidence.

Next, we carry out the statistical analysis for the GCCL
family. First, we obtain the p-value computed by the Iman–
Davenport test, and since it is near to zero, the test rejects
the null hypothesis suggesting the presence of differences
among the methods. We show a Shaffer test in Table XXXIII
where we conclude that COGIN is outperformed by CORE and
OCEC, which have no statistical differences between them.

Regarding the Pittsburgh methods, the Iman–Davenport test
detects significant differences among the algorithms, being

TABLE XXXIV

Average Results for Imbalanced Data Sets Classification

in GBML Algorithms for Rule Induction and State-of-the-Art

Non-Evolutionary Algorithms. SMOTE Preprocessing

GMTr GMTst Avg. Rank
XCS 94.91 ± 1.51 84.92 ± 5.69 3.41 (1)
SIA 89.47 ± 1.09 81.79 ± 6.56 4.55 (4)
CORE 79.88 ± 4.05 76.19 ± 8.77 6.74 (8)
GASSIST 93.47 ± 1.03 83.69 ± 7.26 3.80 (2)
DT-GA 92.36 ± 1.97 80.61 ± 7.66 5.33 (6)
CART 88.99 ± 5.64 70.55 ± 11.69 7.74 (9)
AQ 57.06 ± 5.96 52.52 ± 7.61 10.02 (11)
CN2 70.85 ± 4.41 63.61 ± 10.39 9.20 (10)
C4.5 95.85 ± 1.38 82.43 ± 6.95 4.23 (3)
C4.5-Rules 93.04 ± 1.72 81.79 ± 7.36 4.77 (5)
Ripper 95.45 ± 1.91 79.48 ± 10.56 6.21 (7)

the associated p-value near to zero also in this case. The
statistical study is shown in Table XXX, where a Shaffer post-
hoc test is shown. The main conclusion extracted from this
table is that GASSIST is the algorithm with the best behavior
as it outperforms all methods but OIGA. Both Pitts-GIRLA
and DMEL are the algorithms with worst behavior in this
case.

In the HEDT family, the Iman–Davenport test does not
detect statistical differences among the results, since the
p-value (0.10857) is higher than our level of confidence (95%).

Finally, we present the list of algorithms that have been
selected as representative of each family for imbalanced clas-
sification when applying SMOTE preprocessing. The criterion
for choosing each method is the same as we defined in the
previous section of the paper.

1) Chromosome = Rule:

a) Michigan approach: XCS;
b) IRL approach: SIA;
c) GCCL approach: CORE.

2) Chromosome = Rule Set (Pittsburgh): GASSIST.
3) HEDTs: DT-GA.

2) Study of the Representative Algorithms of Each Family
Versus Classical Ones With Imbalanced Data Sets Applying
Preprocessing: Table XXXIV shows the average results with
SMOTE preprocessing for the selected GBML algorithms and
the classical non-evolutionary algorithms. The best methods in
this case are XCS and GASSIST for the GBML algorithms,
followed by C4.5 and C4.5-Rules from the non-evolutionary
approaches. We can also observe the behavior of each algo-
rithm in the box plot depicted in Fig. 18.

936 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

Fig. 18. Box plot representation of the results in imbalanced data sets
with SMOTE preprocessing for the selected GBML and non-evolutionary
algorithms.

TABLE XXXV

Wilcoxon Test to Compare the Behavior of Preprocessing

Method R+ R− Hypothesis (α = 0.05) p-value
XCS 87.5 507.5 Rejected for SMOTE 0.000
SIA 66.0 529.0 Rejected for SMOTE 0.000
CORE 2.5 558.5 Rejected for SMOTE 0.000
GASSIST 24.0 571.0 Rejected for SMOTE 0.000
DT-GA 56.5 480.5 Rejected for SMOTE 0.000
CART 248.0 347.0 Not rejected 0.109
AQ 514.0 81.0 Rejected for original data set 0.000
CN2 77.0 518.0 Rejected for SMOTE 0.000
C4.5 37.5 557.5 Rejected for SMOTE 0.000
C4.5-Rules 52.5 542.5 Rejected for SMOTE 0.000
Ripper 320.5 274.5 Not rejected 0.675

R+ corresponds to the sum of the ranks for the algorithms with the original
data sets and R− to the application of SMOTE.

The first step in this empirical study is to show the necessity
of the application of preprocessing and the positive synergy of
most of the methods with the well-known SMOTE technique.
With this aim, we carry out a Wilcoxon test (Table XXXV)
in which we observe that for all methods, except for CART,
AQ and Ripper, the results when using SMOTE outperform
the ones with no preprocessing. The increase in performance
is stressed in the case of the GBML approaches, where all the
selected approaches gain more than 15 points in the geometric
mean metric, enabling them to obtain the first positions in
the ranking among the algorithms. The representation of the
differences between the use and absence of preprocessing is
depicted in Fig. 19.

To carry out the statistical study we first check for sig-
nificant differences among the algorithms using an Iman–
Davenport test. The p-value is lower than our level of
confidence α and near to zero. Thus, we can conclude that
significant differences do exist, proceeding with a Shaffer test.
The ranks of the algorithms are presented in Fig. 20, and
the results of the multiple comparison test performed on all
algorithms are shown in Table XXXVI.

Observing the statistical results from Table XXVIII we may
conclude that CORE has the worst classification ability when

Fig. 19. Graphical representation of the differences in performance between
the use of the original data sets and preprocessed with SMOTE.

Fig. 20. Ranking computed for the selected GBML and non-evolutionary
algorithms in imbalanced data sets.

Fig. 21. Star plot representation for XCS, GASSIST, and C4.5 in imbalanced
data sets.

compared with the other algorithms, since it is outperformed
statistically by most of the remaining algorithms. XCS and
GASSIST have good behavior in imbalanced data sets when
applying preprocessing, obtaining a higher performance than
the non-evolutionary approaches C4.5 and C4.5-Rules, al-
though no significant differences among these methods can
be observed. SIA also performs well in the scenario of
imbalanced data sets with preprocessing, but it does not
statiscally outperform any algorithm. These methods have the
best ranking together with C4.5, as depicted in Fig. 20.

Finally, Fig. 21 shows the star plot representation for the
three best ranked algorithms in imbalanced data sets with
preprocessing, that is, XCS, GASSIST, and C4.5, where the
data sets are ordered clockwise according to their degree of
imbalance. XCS maintains the most regular behavior in this
case.

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 937

TABLE XXXVI

Shaffer Test for GBML Algorithms for Rule Induction Against Non-Evolutionary Approaches in Imbalanced Data Sets

With SMOTE Preprocessing

XCS SIA CORE GASSIST DT-GA C4.5 C4.5-Rules
XCS x = (1.0) + (4.04060E-4) = (1.0) = (0.06578) = (1.0) = (0.54251)
SIA = (1.0) x = (0.13147) = (1.0) = (1.0) = (1.0) = (1.0)
CORE − (4.04060E-4) = (0.13147) x − (9.96881E-4) = (1.0) − (0.01287) = (0.31524)
GASSIST = (1.0) = (1.0) + (9.96881E-4) x = (0.15516) = (1.0) = (1.0)
DT-GA = (0.06578) = (1.0) = (1.0) = (0.15516) x = (0.61911) = (1.0)
C4.5 = (1.0) = (1.0) + (0.01287) = (1.0) = (0.61911) x = (1.0)
C4.5-Rules = (0.54251) = (1.0) = (0.31524) = (1.0) = (1.0) = (1.0) x

VI. Discussion: Lessons Learned and New

Challenges

This paper has provided an exhaustive review of the main
evolutionary algorithms that extract classification models using
rule sets as the knowledge representation. We proposed a
taxonomy that is structured in three main categories according
to the rule representation, namely: 1) chromosome = one
rule; 2) chromosome = rule set; and 3) hybrid approaches,
and has furthermore contributed to the description of several
families inside each category. Thus, the taxonomy presents a
general framework in which all the current GBML algorithms
for rule induction can be placed. The practitioner could
find the taxonomy useful because it places the diversity of
GBML methods in a general framework, helping him with
the selection of a particular method for the problem at hand.
This selection can be made regarding performance, by using
the results provided in the paper as a guideline, or with
respect to other characteristics such as the type of rules
evolved or the computational cost associated with training. We
acknowledge that these issues should be further investigated
and for this purpose, we make the algorithms, data sets and
results available through the KEEL software [53] and Web
page (http://sci2s.ugr.es/gbml/index.php) so that the paper can
be further extended.

We emphasize five important lessons learned.

1) We identified a representative method with good
performance in each one of the families proposed in the
taxonomy. Furthermore, we specifically observed that
XCS and GASSIST exhibit the best behavior among all
GBML approaches. These methods obtained very good
average results and the statistical analysis concluded that
they outperformed most of the algorithms included in
this paper. To our knowledge, this is the first exhaustive
experimental study that compares current state-of-the-
art GBML with former GBML approaches. Our study
places XCS and GASSIST as the two most outstand-
ing learners in the GBML history, which justifies its
extended use in the recent literature and in data mining
applications.
2) The reasons why an algorithm such as XCS and
GASSIST outperform the remaining methods are due
to the compound interaction of several learning compo-
nents. It is difficult to identify single elements that are
mostly responsible for the observed good performance.

Although the identification of such reasons was not
the purpose of this paper, we acknowledge that an
introspective examination and internal comparison with
other approaches may help understand the results of
the algorithms. However, such an analysis can not be
carried out from the simple observation of the results of
each algorithm on each problem, due to the difficulty
in identifying the intrinsic complexities of the data sets.
A possible extension of this paper might include the
analysis of the geometrical complexity of data sets [97],
or the use of synthetic data sets that test particular
characteristics of the algorithms, such as in [15].
3) Both XCS and GASSIST obtain very competitive
results in terms of classification accuracy. However, XCS
tends to evolve less interpretable models than GASSIST.
XCS ran populations of 6400 rules, which means that
the result is not manageable by the end user, unless
a post-processing stage is applied at the risk of losing
accuracy. On the other hand, GASSIST presents a good
trade-off between precision and interpretability by using
a knowledge representation based on the disjunctive
normal form and a generalization pressure method based
on the minimum description length principle [69].
4) We also observed that XCS’s performance is de-
graded with respect to that of GASSIST in data sets
with nominal attributes. This might be due to the dif-
ferent knowledge representations dealing with nominal
attributes. In our current implementation, as well as in
other previous reports [17], XCS transforms nominal
values into numerical ones and then, uses the interval
representation designed for numerical attributes. On the
contrary, GASSIST uses a string of bits per each cate-
gory allowed for that attribute, which is better suited to
deal with nominal attributes. Thus, the expressive power
of the latter representation is higher than that used by
XCS. The introduction of this type of representations in
XCS remains as a future work.
5) Imbalanced data sets have a clear influence in the
performance of the GBML algorithms. We determined
that the algorithms that obtained a better behavior in
the framework of standard classification are not nec-
essarily those that achieved the best performance for
imbalanced data sets. This is due to several reasons.
First, if the search process is guided by the standard
accuracy rate, search is benefited from applying covering

938 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

of majority class examples. If the same algorithm is
applied to highly imbalanced datasets, minority class
examples would not be favored by this type of search.
Second, classification rules that predict the positive class
are often highly specialized and thus their coverage is
very low, hence they are discarded in favor of more
general rules, i.e., those that predict the negative class.
Furthermore, it is not easy to distinguish between noise
examples and minority class examples, and they can
be completely ignored by the classifier. We have found
higher differences among the algorithms within a family
since only few of them obtained a good performance.
Oblique-DT achieves the highest performance among
the GBML methods, whereas Ripper gets the best be-
havior among the classical non-evolutionary methods.
6) Another issue regarding imbalanced data sets is that
the use of SMOTE helps the algorithms to deal with
extreme imbalance ratios. Our empirical study shows
a large performance improvement of most of the algo-
rithms when they are trained using a balanced data set,
also obtaining a most robust behavior. The algorithms
which show the best behavior with the preprocessed data
sets are XCS, SIA, and GASSIST. Furthermore, these
methods have superior performance in contrast to the
non-evolutionary approaches.
7) The good performance of the GBML methods with
respect to the non-evolutionary algorithms shows the
suitability and high potential of the search performed
by EAs. Since all the non-GBML methods were selected
on the basis that they used rule sets as the knowledge
representation, the comparison is the closest we can
get to compare the power of the search mechanism
performed by the EA (in the GBML approaches) with
the rest of non-evolutionary based rule inductive algo-
rithms, minimizing the differences due to the knowledge
representation (i.e., the language bias).

Throughout this paper, we have identified that the applica-
tion of GBML algorithms for classification is a promising line
of work, but still many challenges need to be addressed.

1) Scalability: one of the challenges of data mining is
the design of learners that extract information from large
data sets [98], namely, data sets with a high number
of instances and attributes. In these cases, the learners
have efficiency problems and it is necessary to apply
scaling up approaches in order to reduce the computa-
tion time, but with the premise of obtaining accurate
solutions, not just approximate. Evolutionary algorithms
also find the same difficulties, which can be addressed
in different ways. XCS may offer some advantages
due to its online learning architecture, while GASSIST
has designed an incremental sampling procedure to
minimize the cost of evaluating the rule sets against
the complete data set. Also distributed approaches [51],
[52] may offer promising solutions which should be
further explored. In summary, scalability is an emergent
issue that should be addressed explicitly by the GBML
community.

2) Adaptation to Highly Imbalanced Problems: Most
classifiers generally perform poorly on imbalanced data
sets because they are designed to minimize the global
error rate and, in this manner, they tend to classify
almost all instances as negative (i.e., the majority class).
In this paper, we have shown the differences between
the performance of the algorithms in the framework
of standard classification and for imbalanced data sets,
identifying the algorithms which are better suited to this
specific problem. In this manner, an algorithm specif-
ically designed to take into account the ratio between
the examples of the classes may lead to better results in
imbalanced domains.
3) Data Complexity: The prediction capabilities of clas-
sifiers are strongly dependent on the problem’s charac-
teristics. An emergent field, the analysis of data com-
plexity, has recently arisen. The data complexity analysis
consists in measuring different aspects of the problem
which are considered as complex to the classification
task [99]. Studies of data complexity metrics applied to
particular classification algorithms can be found in [97],
[99]–[101]. The complexity of data has been used for
characterising the performance of XCS [97], and as a
guide to the identification of the domains of competence
of classifiers [102]. Thus, it can be considered a new
trend in the use of GBML in pattern recognition.
4) Interpretability: This is an important challenge for
Machine Learning methods because most of the applica-
tion domains ask for explanations of the model evolved.
In this sense, rule-based algorithms have an added value
over other techniques. However, it is necessary to ana-
lyze the definition of interpretability in depth. Currently,
interpretability is measured as the number of rules
and the average number of variables per rule, but this
cannot be easily used to compare several approaches.
In particular, GBML algorithms can produce different
types of rule sets and different rule representations, e.g.,
XCS evolves a set of overlapping rules while GASSIST
evolves a decision list. A related line of research is the
use of multiobjective genetic algorithms to evolve rule
sets with optimal compromise between precision and
interpretability.

VII. Concluding Remarks

In this paper, we have presented a taxonomy of GBML
algorithms for rule induction based on the codification of
the chromosome associated with the learning process of each
method. We performed an exhaustive study of the performance
of a large set of GBML approaches and the comparison
with non-evolutionary learners, both on standard classification
problems and on imbalanced data sets.

The main conclusion extracted from our experimental study
are the following ones.

1) For standard classification we must emphasize the
good behavior observed for XCS and GASSIST in con-
trast to the remaining GBML methods for rule induction.
Furthermore, compared to non-evolutionary algorithms,

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 939

we have shown that the GBML approaches are quite
competitive and that in many cases the studied evolu-
tionary methods outperform the non-evolutionary state-
of-the-art algorithms. This fact supports the conclusion
that the use of GBML methods in classification provides
interesting results in practice.
2) When raw imbalanced data sets are used, we found
that the algorithms that are better suited to manage both
the minority and majority class examples are Oblique-
DT for the GBML approaches and Ripper for the
classical non-evolutionary methods. We must point out
that the specific features of the framework of imbalanced
data sets imply that the best algorithms are not neces-
sarily the same as those for standard classification, as it
was shown along the empirical study.
3) When imbalanced data sets are preprocessed (bal-
anced), we can observe that the average performance
is notably increased in most of the algorithms of our
study. Also, when the rule discovering process is car-
ried out using the same class distribution, we observe
that both XCS and GASSIST are again the algorithms
with the best behavior, also getting higher performance
and average ranking than the classical non-evolutionary
approaches.

Finally, we have discussed some future trends in the field
of GBML algorithms such as: scalability when learning from
large data sets; the adaptation to data sets with a high imbal-
ance ratio; the application of data complexity for characteris-
ing the performance of different GBML methods for specific
data sets; and the importance of interpretability in the obtained
models.

References

[1] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York: Wiley, 2001.

[2] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 3rd ed.
Amsterdam, The Netherlands: Elsevier, 2006.

[3] J. R. Quinlan, C4.5: Programs for Machine Learning San Mateo, CA:
Morgan Kaufmann, 1993.

[4] V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New
York: Springer, 1999.

[5] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Mach. Learn., vol. 6, no. 1, pp. 37–66, 1991.

[6] G. H. John and P. Langley, “Estimating continuous distributions in
Bayesian classifiers,” in Proc. 11th Conf. Uncertainty Artif. Intell., San
Mateo, CA, 1995, pp. 338–345.

[7] V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory
and Methods, 2nd ed. New York: Wiley-Interscience. 2007.

[8] J. Fürnkranz, “Separate-and-conquer rule learning,” Artif. Intell. Rev.,
vol. 13, no. 1, pp. 3–54, 1999.

[9] A. A. Freitas, Data Mining and Knowledge Discovery with Evolution-
ary Algorithms. Berlin, Germany: Springer-Verlag, 2002.

[10] J. J. Grefenstette, Genetic Algorithms for Machine Learning. Norwell,
MA: Kluwer Academic, 1993.

[11] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
Berlin, Germany: Springer-Verlag, 2003.

[12] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput.,
vol. 3, no. 2, pp. 149–175, 1995.

[13] G. Venturini, “SIA: A supervised inductive algorithm with genetic
search for learning attributes based concepts,” in Proc. Eur. Conf. Mach.
Learn., LNAI 667. Berlin, Germany, 1993, pp. 280–296.

[14] C. Z. Janikow, “A knowledge-intensive genetic algorithm for supervised
learning,” Mach. Learn., vol. 13, nos. 2–3, pp. 189–228, 1993.

[15] E. Bernadó-Mansilla and J. M. Garrell, “Accuracy-based learn-
ing classifier systems: Models, analysis and applications to clas-
sification tasks,” Evol. Comput., vol. 11, no. 3, pp. 209–238,
2003.

[16] J. S. Aguilar-Ruiz, R. Giráldez, and J. C. Riquelme, “Natural encoding
for evolutionary supervised learning,” IEEE Trans. Evol. Comput.,
vol. 11, no. 4, pp. 466–479, Aug. 2007.

[17] E. Bernadó-Mansilla, X. Llorá, and J. M. Garrell, “XCS and GALE: A
comparative study of two learning classifier systems on data mining,”
in Proc. 4th Int. Workshop Adv. Learn. Classifier Syst. (IWLCS), LNAI
2321. 2001, pp. 115–132.

[18] J. Bacardit and M. V. Butz, “Data mining in learning classifier systems:
Comparing XCS with GAssist,” in Proc. Revised Sel. Papers Int.
Workshop Learn. Classifier Syst. (2003–2005), LNCS 4399. 2007,
pp. 282–290.

[19] J. H. Holland, “Adaptation,” in Progress in Theoretical Biology,
vol. 4, R. Rosen and F. Snell, Eds. New York: Academic, 1976,
pp. 263–293.

[20] J. H. Holland and J. S. Reitman, “Cognitive systems based on
adaptive algorithms,” in Pattern-Directed Inference Systems, D. A.
Waterman and H. F. Roth, Eds. New York: Academic, 1978,
pp. 313–329.

[21] K. A. DeJong and W. M. Spears, “Learning concept classification rules
using genetic algorithms,” in Proc. Int. Joint Conf. Artif. Intell., 1991,
pp. 651–656.

[22] S. F. Smith, “A learning system based on genetic adaptive algorithms,”
Ph.D. dissertation, Univ. Pittsburgh, Pittsburgh, PA, 1980.

[23] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Pacific Grove, CA, 1984.

[24] R. S. Michalksi, I. Mozetic, and N. Lavrac, “The multipurpose in-
cremental learning system AQ15 and its testing application to three
medical domains,” in Proc. 5th Int. Conf. Artif. Intell. (AAAI), 1986,
pp. 1041–1045.

[25] P. Clark and T. Niblett, “The CN2 induction algorithm,” Mach. Learn.,
vol. 3, no. 4, pp. 261–283, 1989.

[26] J. R. Quinlan, “MDL and categorical theories (continued),” in Proc.
12th Int. Conf. Mach. Learn., 1995, pp. 464–470.

[27] W. W. Cohen, “Fast effective rule induction,” in Proc. 12th Int. Conf.
Mach. Learn., 1995, pp. 115–123.

[28] Q. Yang and X. Wu, “10 challenging problems in data mining research,”
Int. J. Inform. Technol. Decision Making, vol. 5, no. 4, pp. 597–604,
2006.

[29] N. V. Chawla, N. Japkowicz, and A. Kolcz, “Editorial: Special issue on
learning from imbalanced data sets,” in Proc. Special Interest Group
Knowl. Discovery Data Mining Explorations, vol. 6, no. 1. 2004,
pp. 1–6.

[30] A. Asuncion and D. J. Newman. (2007). UCI machine
learning repository [Online]. Available: http://www.ics.uci.edu/mlearn/
MLRepository.html

[31] J. A. Cohen, “Coefficient of agreement for nominal scales,” Educ.
Psychol. Meas., vol. 20, no. 1, pp. 37–46, Apr. 1960.

[32] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Jan. 2006.

[33] S. Garcı́a and F. Herrera, “An extension on ‘Statistical comparisons
of classifiers over multiple data sets’ for all pairwise comparisons,”
J. Mach. Learn. Res., vol. 9, pp. 2677–2694, Dec. 2008.

[34] J. H. Holland, “Escaping brittleness: The possibilities of general
purpose learning algorithms applied to parallel rule-based systems,”
in Machine Learning: An Artificial Intelligence Approach, vol. 2. Los
Altos, CA: Morgan Kaufmann, 1986, pp. 593–623.

[35] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier systems
and genetic algorithms,” Artif. Intell., vol. 40, nos. 1–3, pp. 235–282,
1989.

[36] D. P. Greene and S. F. Smith, “Competition-based induction of decision
models from examples,” Mach. Learn., vol. 13, nos. 2–3, pp. 229–257,
1993.

[37] S. F. Smith, “Flexible learning of problem solving heuristics through
adaptive search,” in Proc. 8th Int. Joint Conf. Artif. Intell., 1983,
pp. 422–425.

[38] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: University of Michigan Press, 1975.

[39] K. C. Tan, Q. Yu, and J. H. Ang, “A coevolutionary algorithm for
rules discovery in data mining,” Int. J. Syst. Sci., vol. 37, no. 12,
pp. 835–864, 2006.

[40] L. Jiao, J. Liu, and W. Zhong, “An organizational coevolutionary
algorithm for classification,” IEEE Trans. Evol. Comput., vol. 10, no. 1,
pp. 67–80, Feb. 2006.

940 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 6, DECEMBER 2010

[41] A. L. Corcoran and S. Sen, “Using real-valued genetic algorithms to
evolve rule sets for classification,” in Proc. IEEE Conf. Evol. Comput.,
1994, pp. 120–124.

[42] W.-H. Au, K. C. C. Chan, and X. Yao, “A novel evolutionary data
mining algorithm with applications to churn prediction,” IEEE Trans.
Evol. Comput., vol. 7, no. 6, pp. 532–545, Dec. 2003.

[43] J. Bacardit, D. E. Goldberg, and M. V. Butz, “Improving the perfor-
mance of a Pittsburgh learning classifier system using a default rule,” in
Proc. Revised Sel. Papers Int. Workshop Learn. Classifier Syst. (2003–
2005), LNCS 4399. 2007, pp. 291–307.

[44] F. Zhu and S. U. Guan, “Ordered incremental training with genetic
algorithms,” Int. J. Intell. Syst., vol. 19, no. 12, pp. 1239–1256,
2004.

[45] S. U. Guan and F. Zhu, “An incremental approach to genetic-
algorithms-based classification,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 35, no. 2, pp. 227–239, Apr. 2005.

[46] D. R. Carvalho and A. A. Freitas, “A hybrid decision tree/genetic
algorithm method for data mining,” Inform. Sci., vol. 163, nos. 1–3,
pp. 13–35, 2004.

[47] E. Cantú-Paz and C. Kamath, “Inducing oblique decision trees with
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 7, no. 1,
pp. 54–68, Feb. 2003.

[48] J. B. Gray and G. Fan, “Classification tree analysis using TAR-
GET,” Comput. Statist. Data Anal., vol. 52, no. 3, pp. 1362–1372,
2008.

[49] F. Herrera, “Genetic fuzzy systems: Taxonomy, current research trends
and prospects,” Evol. Intell., vol. 1, no. 1, pp. 27–46, 2008.

[50] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Evolving accu-
rate and compact classification rules with gene expression program-
ming,” IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 519–531, Dec.
2003.

[51] A. Giordana and F. Neri, “Search-intensive concept induction,” Evol.
Comput., vol. 3, no. 4, pp. 375–419, 1995.

[52] C. Anglano and M. Botta, “NOW G-net: Learning classification pro-
grams on networks of workstations,” IEEE Trans. Evol. Comput., vol. 6,
no. 5, pp. 463–480, Oct. 2002.

[53] J. Alcalá-Fdez, L. Sánchez, S. Garcı́a, M. J. del Jesus, S. Ventura, J. M.
Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández,
and F. Herrera, “KEEL: A software tool to assess evolutionary al-
gorithms to data mining problems,” Soft Computing, vol. 13, no. 3,
pp. 307–318, 2009.

[54] S. Salzberg, “A nearest hyperrectangle method,” Mach. Learn., vol. 6,
no. 3, pp. 251–276, May 1991.

[55] R. L. Rivest, “Learning decision lists,” Mach. Learn., vol. 2, no. 3,
pp. 229–246, 1987.

[56] D. G. Heath, S. Kasif, and S. Salzberg, “Induction of oblique decision
trees,” in Proc. 13th Int. Joint Conf. Artif. Intell. (IJCAI), 1993,
pp. 1002–1007.

[57] E. G. Henrichon and K. Fu, “A nonparametric partitioning procedure
for pattern classification,” IEEE Trans. Comput., vol. C-18, no. 7,
pp. 614–624, Jul. 1969.

[58] M. L. Wong and K. S. Leung, Data Mining Using Grammar Based
Genetic Programming and Applications. London, U.K.: Kluwer Aca-
demic, 2000.

[59] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[60] P. Bonelli and A. Parodi, “An efficient classifier system and its
experimental comparison with two representative learning methods on
three medical domains,” in Proc. 4th Int. Conf. Genet. Algorithms
(ICGA), 1991, pp. 288–295.

[61] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson, “Toward a theory
of generalization and learning in XCS,” IEEE Trans. Evol. Comput.,
vol. 8, no. 1, pp. 28–46, Feb. 2004.

[62] S. W. Wilson, “Generalization in the XCS classifier system,” in Proc.
3rd Annu. Conf. Genet. Programming, 1998, pp. 665–674.

[63] S. W. Wilson, “Get real! XCS with continuous-valued inputs,” in
Festschrift in Honor of John H. Holland, L. Booker, S. Forrest,
M. Mitchell, and R. L. Riolo, Eds. Ann Arbor, MI: Center for the
Study of Complex Systems, 1999, pp. 111–121.

[64] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “Evolutionary learning
of hierarchical decision rules,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 33, no. 2, pp. 324–331, Apr. 2003.

[65] J. S. Aguilar-Ruiz, J. Bacardit, and F. Divina, “Experimental evaluation
of discretization schemes for rule induction,” in Proc. Genet. Evol.
Comput. (GECCO), LNCS 3102. 2004, pp. 828–839.

[66] J. Bacardit and J. M. Garrell, “Evolving multiple discretizations with
adaptive intervals for a Pittsburgh rule-based learning classifier system,”

in Proc. Genet. Evol. Comput. Conf. (GECCO), LNCS 2724. 2003,
pp. 1818–1831.

[67] J. Bacardit and J. M. Garrell, “Bloat control and generalization pres-
sure using the minimum description length principle for a Pittsburgh
approach learning classifier system,” in Proc. Revised Sel. Papers Int.
Workshop Learn. Classifier Syst. (2003–2005), LNCS 4399. 2007,
pp. 59–79.

[68] K. A. DeJong, W. M. Spears, and D. F. Gordon, “Using genetic
algorithms for concept learning,” Mach. Learn., vol. 13, nos. 2–3,
pp. 161–188, Nov.–Dec. 1993.

[69] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465–471, Sep. 1978.

[70] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” J. Artif. Intell. Res., vol. 2, no. 1, pp. 1–32,
1994.

[71] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy,
F-score and ROC: A family of discriminant measures for performance
evaluation,” in Proc. Australian Conf. Artif. Intell., LNCS 4304. 2006,
pp. 1015–1021.

[72] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental com-
parison of performance measures for classification,” Pattern Recognit.
Lett., vol. 30, no. 1, pp. 27–38, 2009.

[73] R. Barandela, J. S. Sánchez, V. Garcı́a, and E. Rangel, “Strategies for
learning in class imbalance problems,” Pattern Recognit., vol. 36, no. 3,
pp. 849–851, 2003.

[74] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Reading, MA: Addison-Wesley, 1999.

[75] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 3,
pp. 299–310, Mar. 2005.

[76] W. Youden, “Index for rating diagnostic tests,” Cancer, vol. 3, no. 1,
pp. 32–35, 1950.

[77] A. Ben-David, “A lot of randomness is hiding in accuracy,” Eng. Appl.
Artif. Intell., vol. 20, no. 7, pp. 875–885, Oct. 2007.

[78] T. C. W. Landgrebe and R. P. W. Duin, “Efficient multiclass ROC
approximation by decomposition via confusion matrix perturbation
analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 5,
pp. 810–822, May 2008.

[79] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA: MIT
Press, 2004.

[80] T.-S. Lim, W.-Y. Loh, and Y.-S. Shih, “A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new
classification algorithms,” Mach. Learn., vol. 40, no. 3, pp. 203–228,
2000.

[81] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. San Francisco, CA: Morgan Kaufmann,
2005.

[82] T. Fawcett and F. J. Provost, “Adaptive fraud detection,” Data Mining
Knowl. Discovery, vol. 1, no. 3, pp. 291–316, 1997.

[83] Y. M. Huang, C. M. Hung, and H. C. Jiau, “Evaluation of neural
networks and data mining methods on a credit assessment task for
class imbalance problem,” Nonlinear Anal. Real World Applicat., vol. 7,
no. 4, pp. 720–747, 2006.

[84] M. A. Mazurowski, P. A. Habas, J. M. Zurada, J. Y. Lo, J. A. Baker,
and G. D. Tourassi, “Training neural network classifiers for medical
decision making: The effects of imbalanced datasets on classifica-
tion performance,” Neural Netw., vol. 21, nos. 2–3, pp. 427–436,
2008.

[85] G. Weiss and F. Provost, “Learning when training data are costly:
The effect of class distribution on tree induction,” J. Artif. Intell. Res.,
vol. 19, pp. 315–354, Oct. 2003.

[86] V. Garcı́a, R. A. Mollineda, and J. S. Sánchez, “On the k-NN perfor-
mance in a challenging scenario of imbalance and overlapping,” Pattern
Anal. Applicat., vol. 11, nos. 3–4, pp. 269–280, 2008.

[87] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, “A study of the
behavior of several methods for balancing machine learning training
data,” in Proc. Special Interest Group Knowl. Discovery Data Mining
Explorations, vol. 6, no. 1. 2004, pp. 20–29.

[88] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, pp. 321–357, Jun. 2002.

[89] J. Y. Ching, A. K. C. Wong, and K. C. C. Chan, “Class-dependent
discretization for inductive learning from continuous and mixed-mode
data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 7, pp. 641–
651, Jul. 1995.

[90] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “A study of
statistical techniques and performance measures for genetics-based

FERNÁNDEZ et al.: GENETICS-BASED MACHINE LEARNING FOR RULE INDUCTION: STATE OF THE ART, TAXONOMY, AND COMPARATIVE STUDY 941

machine learning: Accuracy and interpretability,” Soft Comput., vol. 13,
no. 10, pp. 959–977, 2009.

[91] D. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures, 2nd ed. Boca Raton, FL: Chapman and Hall/CRC, 2006.

[92] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[93] J. P. Shaffer, “Modified sequentially rejective multiple test procedures,”
J. Am. Statist. Assoc., vol. 81, no. 395, pp. 826–831, 1986.

[94] A. Fernández, J. Luengo, J. Derrac, J. Alcalá-Fdez, and F. Herrera,
“Implementation and integration of algorithms into the KEEL data-
mining software tool,” in Proc. 10th Int. Conf. Intell. Data Eng.
Automated Learn. (IDEAL), LNCS 5788. 2009, pp. 562–569.

[95] A. Orriols-Puig and E. Bernadó-Mansilla, “Evolutionary rule-based
systems for imbalanced datasets,” Soft Comput., vol. 13, no. 3, pp.
213–225, 2008.

[96] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling method
for learning from imbalanced data sets,” Comput. Intell., vol. 20, no. 1,
pp. 18–36, 2004.

[97] E. Bernadó-Mansilla and T. K. Ho, “Domain of competence of XCS
classifier system in complexity measurement space,” IEEE Trans. Evol.
Comput., vol. 9, no. 1, pp. 82–104, Feb. 2005.

[98] F. Provost and V. Kolluri, “A survey of methods for scaling up inductive
algorithms,” Data Mining Knowl. Discovery, vol. 3, no. 2, pp. 131–169,
1999.

[99] M. Basu and T. K. Ho, Data Complexity in Pattern Recognition. New
York: Springer, 2006.

[100] R. Baumgartner and R. L. Somorjai, “Data complexity assessment in
undersampled classification,” Pattern Recognit. Lett., vol. 27, no. 12,
pp. 1383–1389, 2006.

[101] J. S. Sánchez, R. A. Mollineda, and J. M. Sotoca, “An analysis of
how training data complexity affects the nearest neighbor classifiers,”
Pattern Anal. Applicat., vol. 10, no. 3, pp. 189–201, 2007.

[102] E. Bernadó-Mansilla and T. K. Ho, “On classifier domains of compe-
tence,” in Proc. 17th Int. Conf. Pattern Recognit. (ICPR), vol. 1. 2004,
pp. 136–139.

Alberto Fernández received the M.S. degree in
computer science from the University of Granada,
Granada, Spain, in 2005, where he is currently
working toward the Ph.D. degree in linguistic fuzzy
rule based classification systems applied to problems
with imbalanced classes from the Department of
Computer Science and Artificial Intelligence.

He holds a scholarship from the Spanish Ministry
of Science and Technology. His research interests
include data mining, classification in imbalanced do-
mains, fuzzy rule learning, evolutionary algorithms,

and multiclassification problems.

Salvador Garcı́a received the M.S. and Ph.D. de-
grees in computer science from the University of
Granada, Granada, Spain, in 2004 and 2008, respec-
tively.

He is currently an Assistant Professor with the
Department of Computer Science, University of
Jaén, Jaén, Spain. His research interests include data
mining, data reduction, data complexity, imbalanced
learning, statistical inference, and evolutionary algo-
rithms.

Julián Luengo received the M.S. degree in com-
puter science from the University of Granada,
Granada, Spain, in 2006, where he is currently work-
ing toward the Ph.D. degree in data preparation and
data complexity in knowledge discovery and data
mining from the Department of Computer Science
and Artificial Intelligence.

He is currently a Research Fellow with the Spanish
Ministry of Science and Innovation, the Spanish
Ministry for Scientific Research. His research inter-
ests include data mining, data preparation in knowl-

edge discovery and data mining, missing values, data complexity, evolutionary
algorithms, and fuzzy systems.

Ester Bernadó-Mansilla received the B.S. degree
in telecommunications engineering, the M.S. degree
in electronic engineering, and the Ph.D. degree in
computer science from Enginyeria i Arquitectura La
Salle, Universitat Ramon Llull, Barcelona, Spain, in
1992, 1995, and 2002, respectively.

She is currently an Associate Professor with
the Grup de Recerca en Sistemes Intelligents,
Enginyeria i Arquitectura La Salle, Universitat
Ramon Llull. She has co-edited two books on
genetic-based machine learning. Her research in-

terests include machine learning, pattern recognition, data mining, genetic
algorithms, and genetic-based machine learning.

Dr. Bernadó-Mansilla serves as an Associate Editor of the Pattern Recog-
nition Letters.

Francisco Herrera received the M.S. and Ph.D.
degrees in mathematics from the University of
Granada, Granada, Spain, in 1988 and 1991, respec-
tively.

He is currently a Professor with the Department of
Computer Science and Artificial Intelligence, Uni-
versity of Granada. He has published more than 150
papers in international journals. He is the coauthor
of the book Genetic Fuzzy Systems: Evolutionary
Tuning and Learning of Fuzzy Knowledge Bases
(World Scientific, 2001). He has co-edited five in-

ternational books and 20 special issues in international journals on different
soft computing topics. His current research interests include computing with
words and decision making, data mining, data preparation, instance selection,
fuzzy rule-based systems, genetic fuzzy systems, knowledge extraction based
on evolutionary algorithms, memetic algorithms, and genetic algorithms.

Dr. Herrera is an Associated Editor of the following journals: IEEE
Transactions on Fuzzy Systems, the Journal of Information Sciences,
Mathware and Soft Computing, Advances in Fuzzy Systems, Advances in
Computational Sciences and Technology, and the International Journal of
Applied Metaheuristics Computing. He currently serves as an Area Editor of
the Journal of Soft Computing (in the area of genetic algorithms and genetic
fuzzy systems), and he serves as a member of several journal editorial boards,
including those of: Fuzzy Sets and Systems, Applied Intelligence, Knowledge
and Information Systems, Information Fusion, Evolutionary Intelligence, the
International Journal of Hybrid Intelligent Systems, Memetic Computation.

