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Nowadays, a promising way to obtain hybrid metaheuristics concerns the combination of several search
algorithms with strong specialization in intensification and/or diversification. The flexible architecture of
evolutionary algorithms allows specialized models to be obtained with the aim of providing intensification
and/or diversification. The outstanding role that is played by evolutionary algorithms at present justifies
the choice of their specialist approaches as suitable ingredients to build hybrid metaheuristics.
This paper focuses on hybrid metaheuristics with evolutionary algorithms specializing in intensification
and diversification. We first give an overview of the existing research on this topic, describing several
instances grouped into three categories that were identified after reviewing specialized literature. Then,
with the aim of complementing the overview and providing additional results and insights on this line of
research, we present an instance that consists of an iterated local search algorithm with an evolutionary
perturbation technique. The benefits of the proposal in comparison to other iterated local search algo-
rithms proposed in the literature to deal with binary optimization problems are experimentally shown.
The good performance of the reviewed approaches and the suitable results shown by our instance allow
an important conclusion to be achieved: the use of evolutionary algorithms specializing in intensification
and diversification for building hybrid metaheuristics becomes a prospective line of research for obtaining
effective search algorithms.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the last few years, a new family of search and optimization
algorithms have arisen based on extending basic heuristic methods
by including them into an iterative framework augmenting their
exploration capabilities. This group of advanced approximate al-
gorithms has received the name metaheuristics (MHs) [28] and an
overview of various existing methods is found in [11]. MHs have
proven to be highly useful for approximately solving difficult op-
timization problems in practice because they may obtain good so-
lutions in a reduced amount of time. Simulated annealing, tabu
search, evolutionary algorithms (EAs), ant colony optimization, es-
timation of distribution algorithms, scatter search, path relinking,
greedy randomized adaptive search procedure (GRASP), multi-start
and iterated local search (ILS), guided local search, and variable
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neighborhood search (VNS) are, among others, often listed as exam-
ples of classical MHs. They have individual historical backgrounds
and follow different paradigms and philosophies.

Over the last years, a large number of search algorithms were
reported that do not purely follow the concepts of one single classical
MH, but they attempt to obtain the best from a set of MHs (and
even other kinds of optimization methods) that perform together
and complement each other to produce a profitable synergy from
their combination. These approaches are commonly referred to as
hybrid MHs [83,93].

Intensification and diversification (I&D) are two major issues when
designing a global search method [11]. Diversification generally
refers to the ability to visit many and different regions of the search
space, whereas intensification refers to the ability to obtain high
quality solutions within those regions. A search algorithm should
strike a tactical balance between these two sometimes-conflicting
goals. Most classical MHs have several components for intensifica-
tion and diversification. Blum and Roli [11] define an I&D component
as any algorithmic or functional component that has intensification
and/or diversification effect on the search process. Examples are
genetic operators, perturbations of probability distributions, the
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use of tabu lists, or changes in the objective function. Thus, I&D
components are operators, actions, or strategies of MHs.

In general, providing an adequate balance between the I&D com-
ponents of an MH becomes a very complicate task [94]. In fact, al-
though most classical MHs attempt to achieve this objective in their
own way, it turns out that some of them show clear trend toward
intensification and others, toward diversification, i.e., they show cer-
tain specialization in intensification or diversification. An alternative
approach to force MHs to have themselves responsibilities for both
I&D involves the design of hybrid MHs with search algorithms spe-
cializing in I&D, which combine this type of algorithms with the ob-
jective of compensating each other and put together their comple-
mentary behaviors (the exploration and exploitation of the search
space).

EAs [7,8,19] are stochastic search methods that mimic the
metaphor of natural biological evolution. EAs rely on the concept
of a population of individuals (representing search points in the
space of potential solutions to a given problem), which undergo
probabilistic operators such as mutation, selection, and (sometimes)
recombination to evolve toward increasingly better fitness values
of the individuals. There has been a variety of slightly different
EAs that, basically, fall into four different categories, which have
been developed independently from each other. These are evolution
strategies [9], genetic algorithms (GAs) [29], genetic programming
[55], and evolutionary programming [23]. EAs have recently received
increased interest because they offer practical advantages to re-
searchers facing difficult optimization problems (they may locate
high performance regions of vast and complex search spaces). Other
advantages include the simplicity of the approach, their flexibility,
and their robust response to changing circumstances.

Precisely, the flexibility offered by the EA paradigm allows spe-
cialized models to be obtained with the aim of providing intensifi-
cation and/or diversification, i.e., EAs specializing in I&D (EAI&D). On
the one hand, beneficial diversification properties are inherent to
EAs, because they manage populations of solutions, providing a nat-
ural and intrinsic way for exploring search space. Even more, many
techniques were presented in the literature that favor diversity in
EA population with the aim of consolidating diversification asso-
ciated with these algorithms [3,13,21,29,54,62]. Then, specialization
of EAs in diversification (EAD) becomes really viable. On the other
hand, some components of EAs may be specifically designed and
their strategy parameters tuned, in order to provide an effective re-
finement. In fact, several EAs specializing in intensification (EAI) have
been presented with this aim [49,61,73].

The outstanding role played by EAs at present along with the
great interest raised by their hybridizations with other algorithms
[33,82] endorse the choice of their specialist approaches as suitable
ingredients to build hybrid MHs with search algorithms specializing
in I&D. In fact, the design of hybrid MHs with EAI&D (HMH-EAI&D)
is an innovative line of research with prospective future as way for
obtaining search algorithms that may achieve accurate and reliable
solutions to hard real-world problems.

The goal in this article is twofold. Firstly, we attempt to paint
a more complete picture of HMH-EAI&D than before. To do so, we
overview existing design principles for these algorithms and align
them to arrive at an insightful line of research. We cite the existing
literature whenever relevant. From the literature reviewed, we have
identified three lines of research in designing HMH-EAI&D. The first
two, collaborative HMH-EAI&D and integrative HMH-EAI&D, derive
from a well-known classification for hybrid MHs and, at present,
they have a consolidated background of knowledge. The third one,
less explored, concerns a strategy with which EAI&D may help
classical MHs to improve their behavior. In particular, it involves
replacing some I&D components in MHs by customized EAI&D (evo-
lutionary I&D components) that develop the same work more effec-

tively. In this line, our second objective is to present an instance
of this novel approach in order to complement the overview and
provide additional results and insights on the study of HMH-EAI&D.
In particular, we propose an evolutionary perturbation technique
for ILS, which is a micro-EA that effectively explores in the neigh-
borhood of particular solutions.

The remainder of this article is organized as follows. In Section
2, we give an overview of the existing research on HMH-EAI&D. In
Section 3, we propose an ILS model with evolutionary perturbation
technique that allow us to illustrate the way new HMH-EAI&D in-
stances may be built by embedding evolutionary I&D components
in MHs. In addition, the benefits of the proposal in comparison
to other ILS algorithms proposed in the literature to deal with bi-
nary optimization problems are experimentally shown. Finally, in
Section 4, we provide the main conclusions of this work and ex-
amine future research lines. In Appendix A, we describe the fea-
tures of the test suite used for experiments, in Appendix B, we
explain the statistical test that was used for the experimental study,
and finally, in Appendix C, we enclose a table with results of the
algorithms.

2. Review of HMH-EAI&D

Nowadays, different authors have emphasized the need for hy-
bridization of EAswith other optimization algorithms, machine learn-
ing techniques, MHs, etc. [12,33,82,90]. Some of the possible reasons
for hybridization are [33,90]: (1) to improve the performance of EAs,
(2) to improve the quality of the solutions obtained by EAs, and (3)
to incorporate the EA as part of a larger system. This paper concerns
mainly the last point and, in particular, those hybrid MHs that in-
clude a specific kind of EAs, EAI&D, which are characterized by their
explicit trends to produce intensification and/or diversification, i.e.,
HMH-EAI&D.

In this section, we review different instances of HMH-EAI&D pre-
sented in the literature. In order to do this, we have grouped them
into three categories. The first two groups were derived from a well-
known existing taxonomy for hybrid MHs [83], which was made on
the basis of their control strategy:

• Collaborative hybrid MHs: They are based on the exchange of infor-
mation between different MHs (and possibly other optimization
techniques) running sequentially or in parallel.
• Integrative hybrid MHs: In this case, one algorithm is considered a

subordinate, embedded component of another algorithm.

Many instances of both types of hybrid MHs were built including
several EAI&D as components. We denominate them, collaborative
HMH-EAI&D (Section 2.1) and integrative HMH-EAI&D (Section 2.2),
respectively.

We have identified a third category of HMH-EAI&D, which is re-
lated to an innovative method to improve classical MHs by means
of EAI&D. It consists in transforming classical MHs into integrative
HMH-EAI&D by replacing particular I&D components by customized
EAI&D, carrying out the same operation more effectively (Section 2.3).

2.1. Collaborative HMH-EAI&D

Collaborative hybrid MHs apply different self-contained MHs that
exchange information about the search process (solutions, param-
eters, etc.) between them [20]. In this paper, we are interested on
those models where some of these MHs are EAI&D (Fig. 1). Accord-
ing to the way MHs are executed, collaborative HMH-EAI&D can be
subdivided into teamwork or relay ones [93], which are described
in Sections 2.1.1 and 2.1.2, respectively.
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Fig. 1. Collaborative HMH-EAI&D.

2.1.1. Teamwork collaborative HMH-EAI&D
In teamwork collaborative HMH-EAI&D, there are several MHs, in-

cluding some EAI&D, which work in parallel. Most of the initially pro-
posed collaborative HMH-EAI&D were based on distributed GAs. The
basic idea of these algorithms lies in the partition of the popula-
tion into several subpopulations, each one of them being processed
by a GA, independently from the others [1,43]. Furthermore, a mi-
gration mechanism produces a chromosome exchange between the
subpopulations. Several authors have pointed out the interest on dif-
ferentiating the subpopulations by specializing the associated GAs
in intensification or diversification (i.e., to use EAI&D). This is car-
ried out by means of the application of different parameter values,
population sizes, genetic operators, etc. This class of collaborative
HMH-EAI&D is also known as heterogeneous distributed GAs. Next, we
review some of them.

Potts et al. [81] proposed a distributed GA based on binary coding,
called GAMAS. GAMAS uses four subpopulations, denoted as species
I, II, III, and IV. Initially, species II, III, and IV are created. Species II
is an EAD that uses a high mutation probability (pm = 0.05). Species
IV is an EAI with low mutation probability (pm = 0.003). Species III
is a subpopulation for I&D, the mutation probability falls between
the other two (pm=0.005). GAMAS selects the best individuals from
species II, III, and IV, and introduces them into species I whenever
those are better than the individuals in this subpopulation. The mis-
sion of species I is to preserve the best chromosomes appearing in
the other species. At predetermined generations, its chromosomes
are reintroduced into species IV, by replacing all the current ele-
ments in this species.

Tsutsui et al. [100] combine an explorer subpopulation with an
exploiter one. The former is an EAD using a coarse-grained mutation,
whereas the second one is an EAI aimed at exploiting fit local areas
of the search space around the neighborhood of the best solution
so far. Intensification is increased in the exploiter subpopulation by
using a fine-grained mutation and a reduced population size.

Herrera et al. [43] propose gradual distributed real-coded GAs. They
are a class of heterogeneous distributed GAs based on real coding
in which subpopulations are distinguished by applying crossover
operators with different degrees of exploration or exploitation. So,
a parallel multiresolution is obtained with regard to the crossover
operator, which allows a spread search along with an effective local
tuning to be simultaneously achieved.

Fig. 2 outlines the basic structure of the gradual distributed GAs.
They are based on a hypercube topology with three dimensions with

Fig. 2. Gradual distributed real-coded GAs.

two important sides to be differentiated:

• The front side is devoted to exploration. It is made up of four
subpopulations (EAD), E1, . . . , E4, to which exploratory crossover
operators are applied. The exploration degree increases clockwise,
starting at the lowest, E1, and ending at the highest, E4.
• The rear side is for exploitation. It is composed of four subpopu-

lations (EAI), e1, . . . , e4, that undergo exploitative crossover oper-
ators. The exploitation degree increases clockwise, starting at the
lowest, e1, and finishing at the highest, e4.

Furthermore, EAI&D are adequately connected for exploiting the
multiresolution in a gradual way, offering the refinement or the ex-
pansion of the best zones emerging. Migrations between subpopu-
lations belonging to different categories produce these final effects:

• Refinement: It may be induced if migrations are produced from an
exploratory subpopulation toward an exploitative one, i.e., from
Ei to ei, or between two exploratory subpopulations from a higher
degree to a lower one, i.e., from Ei+1 to Ei, or between two ex-
ploitative subpopulations from a lower degree to a higher one, i.e.,
from ei to ei+1.
• Expansion: In the case of migrations in the opposite direction, the

chromosomes included may be reference points for generating
diversity (with different degrees) on zones showing promising
properties.

Experimental results showed that gradual distributed GAs con-
sistently outperform sequential real-coded GAs, homogeneous
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Fig. 3. Integrative HMH-EAI&D.

distributed real-coded GAs, and other EAs presented in the literature
for dealing with continuous optimization problems.

Schlierkamp-Voosen et al. [87] present a heterogeneous dis-
tributed GA model that integrates different EAI&D whose population
sizes are dynamically adjusted during the course of evolving a so-
lution. In particular, EAI&D compete each other, in such a way that
they gain or lose individuals depending on their evolution quality in
relation to the others. A particular instance based on real-coding
was proposed with four EAI&D. They were distinguished by apply-
ing a mutation operator with different step sizes (proportion or
strength in which genes are mutated), which allows a search with
multiresolution to be achieved.

So far, the collaborative HMH-EAI&D reviewed combine uniquely
specialized GAs. Recently, a different approach, called COSEARCH
[94], has been presented, which applies, in parallel, three different
kinds of MHs: an EAD, a tabu search, and a local search procedure
(LS). The three search algorithms communicate and cooperate via an
adaptive memory that contains a history of the search already done,
focusing on high quality regions of the search space. In COSEARCH,
the EAD is a GA in charge of sampling individuals in unexplored
regions with regards to the content of the memory. To carry out this
task, this EAD uses a modified fitness function that favors individuals
not represented in the adaptivememory. An evaluation of COSEARCH
was carried out on the quadratic assignment problem. The comparison
with a multiple tabu search showed that the cooperation increases
significantly the efficiency of the method. COSEARCH yields the best
known solutions for almost all tested instances. This study revealed,
as well, that COSEARCH can be used as a model to design an efficient
and robust method for solving combinatorial optimization problems.

Finally, we point out that teamwork HMH-EAI&D are able to be
executed on parallel hardware, taking advantage of this technology
[4]. For example, in [2], a performance analysis of an implementation
of gradual distributed GAs on parallel hardware is conducted.

2.1.2. Relay collaborative HMH-EAI&D
In relay collaborative HMH-EAI&D, an EAI&D is executed, in a

pipeline fashion, with another EAI&D or other type of MH. The output
of each algorithm is supplied as input to the next one. Most instances
of relay collaborative HMH-EAI&D follow the heuristic: “to protect
the exploration in the initial stages and the exploitation later” (this
heuristic was considered to design classical MHs, such as simulated
annealing). Next, we explain two instances found in the literature.

Chelouah et al. [14] present a hybrid MH that comprises twomain
stages. The first stage involves the run of a specialized GA for di-
versification, i.e., an EAD. The second stage involves the application
of an LS process to the best individual found by the GA, with the
objective of obtaining an accurate final solution. The EAD was a GA
that employs a large population, and a high mutation probability, to

homogeneously cover the whole search space, and detect a promis-
ing area. It stops when one of the following conditions is reached:
(1) a given number of successive generations without detection of
a promising area is reached and (2) a given accuracy relating to the
individuals in the population is obtained, e.g., the highest distance
between the best individual found so far and the generated individ-
uals is smaller than a given neighborhood radius. For continuous test
functions having less than 10 variables, the authors obtained similar
or better results than the ones supplied by other methods or other
continuous GAs, but with a cheaper computational cost.

García-Martínez et al. [26] propose a procedure that determines
female and male parents in the population of real-coded GAs that
apply parent-centric real-parameter crossover operators. In general,
these operators use a probability distribution to create offspring in a
restricted search space around the region marked by one of the par-
ent, the female parent. The range of this probability distribution de-
pends on the distance among the female parent and the other parent
involved in the crossover, the male parent. The female and male dif-
ferentiation process proposed by these authors makes possible the
design of global real-coded GAs (i.e., EAD) and local real-coded GAs
(i.e., EAI), which are differentiated according to the considered num-
ber of female members. Furthermore, they combine these GAmodels
in the following way: first, they run the global real-coded GA dur-
ing a determinate percentage of the available evaluations, and then,
they perform the local real-coded GA. The initial population for the
local algorithm included the best individuals in the final population
of the global one. This relay collaborative HMH-EAI&D resulted very
competitive with state-of-the-art on MHs for continuous optimiza-
tion problems.

2.2. Integrative HMH-EAI&D

In integrative hybrid MHs, one MH (subordinate) becomes a com-
ponent of another MH (master). Memetic algorithms (MAs) [57] are
well-known instances of this class of algorithms. MAs combine an
EA in charge of the global search with an LS procedure, which is ex-
ecuted within the EA run, looking for a synergy that takes benefits
from both. The classic scheme of MAs applies the LS procedure on
the solutions obtained by the EA with the aim of improving the ac-
curacy of the population members. However, MAs also include com-
binations of EAs with problem-dependent heuristics, approximate
algorithms, truncated exact methods, specialized recombination op-
erators, etc. [68].

There are several instances of integrative HMH-EAI&D, where ei-
ther the master MH or the subordinate one is an EAI&D. Most of them
are MAs with EAI&D (Fig. 3). In this case, the component in charge of
the global search is an EAD (Section 2.2.1) and/or the task of refining
solutions is accomplished by an EAI (Section 2.2.2).
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2.2.1. MAs with EAD
From initial studies on MAs, researchers noticed the convenience

of strengthening diversification capacity for the master EA (in order
to counteract high intensification provided by LS operator), i.e., to
turn it into an EAD. Below, we review some approaches.

Nagata et al. [72] propose to use populations for the master EA
a couple of orders of magnitude bigger than those used by standard
MAs. Besides, they use a specific crossover operator that generates a
wide offspring variety. Both features increase diversity in the master
EA. The resulting algorithm was tested on 21 symmetric and nine
asymmetric instances of the traveling salesman problem, succeeding
in finding optimal solution to all problems efficiently.

Distributed GAs attempt to overcome premature convergence by
means of the preservation of diversity (due to the semi-isolation of
the subpopulations). Different authors build MA models combining
these EAD with LS procedures. The model presented in [69] uses
several subpopulations to locate different promising search regions.
Then, hill-climbing is done. Good local minima of a subpopulation
are diffused to neighboring subpopulations. Authors tested the pro-
posal on eight continuous optimization problems and performed a
speedup study obtaining promising results. In [96], a distributed MA
that adapts the application of using the LS procedure is proposed. It
uses the online entropy of population to obtain dynamic information
about the stage of the evolutionary search process and the degree of
diversity of each subpopulation. Then, it computes the number of in-
dividuals that should undergo LS according to this measure. Authors
performed experiments on several large scale quadratic assignment
problem benchmarks, and compared the results of the proposal with
the ones of other distributed GAs and MAs. They concluded that the
presented algorithm shows the ability of producing competitive so-
lutions at significantly less computational cost.

Merz [65] shows many different combinations of LS and GAs
for the traveling salesman problem while defining specific purpose
crossover and mutation operators. One of them is the DPX crossover
that was specifically designed to preserve diversity by means of
keeping constant the appropriately defined hamming distance be-
tween the two parent tours and the generated offspring. In addi-
tion, a restart technique is employed. Clearly, the use of DPX and
the restart technique make the GA to have trends for diversification.
The resulting algorithm was tested on several instances contained
in TSPLIB. The results showed that, with regards to other proposed
approaches, MA with DPX appears to be superior in average solution
quality and running times.

Lozano et al. [61] suggest employing twomechanisms to promote
population diversity of EA component of real-coded MAs: negative
assortative mating [22] and BGAmutation [70]. The former determines
the way chromosomes are mated for applying crossover to them. A
first parent is randomly selected and nass chromosomes are selected
with the same method. Then, similarity between each of these chro-
mosomes and the first parent is computed. The one with less similar-
ity is chosen. Clearly, negative assortative mating increases genetic
diversity in the population bymating dissimilar genomeswith higher
probability. BGA is a mutation operator specializing in continuous
optimization problems. In contrast to some mutation operators that
intend to make an LS at the last stages of the search process, BGA
continuously provides acceptable levels of diversity to the EA. The
application of these two components allows the EA to be specialized
in diversification. The final proposal was tested on eight continuous
optimization problems and its performance was compared with the
one of other GAs and MAs obtaining better results.

Seront et al. [88] present an MA with a clustering method that
reduces the total cost of LS by avoiding the multiple rediscoveries of
local optima. Solutions belonging to a basin of attraction are detected
by the clustering algorithm and only one LS method is started in each
basin of attraction. In addition, the clustering method supplies infor-

mation that can be used to maintain the diversity in the population.
The proposal applies a two level selection strategy. At the local level,
intra-cluster selection is applied on each cluster independently. Each
cluster is treated as a separate population. Only the worst solution of
each cluster is replaced by the local optima to avoid concentration of
all solutions of the cluster toward a single point. At the global level,
selection takes as fitness for a solution x belonging to a cluster C, the
fitness of the local optima detected inside C. Global selection tries to
avoid the convergence of the GA toward a single cluster. Kemenade
[52] presents an MA model based on evolution strategies that cap-
ture similar ideas. This MA applies a clustering process preventing
premature convergence. It uses a two-stage selection process. Dur-
ing the first stage, a subset of the complete population, containing
the best individuals, is selected. During the second one, a clustering
process is applied to the remaining individuals, and the best indi-
vidual of each cluster is selected as a representative of that cluster.
A new population is created by applying the evolutionary operators
to these representatives only. Local optimization is applied to the
representatives only. Applying local optimization to the set of rep-
resentatives reduces the amount of computation required and de-
creases the probability of locating the same local optimum multiple
times.

Parthasarathy et al. [77] and Wei et al. [101] address the issue
of handling explicitly multimodal functions using MAs. In [77], the
adaptive niching method via coevolutionary sharing of Goldberg et al.
[32] is applied to stably maintain a diverse population throughout
the search. This method divides the population into businessmen and
customers. The former represent a list of attractors (local optima) of
the problem, and customers model their basins of attraction. Each
customer usually belongs to the closest businessman. Businessmen
derive their fitness from their customers and customers share their
fitness among other customers belonging to the same businessman.
A minimum distance between businessmen is kept throughout the
run. The combination of this EAD with an LS procedure was tested
on two instances of structural design problems obtaining better so-
lutions than the ones presented in the literature. In [101], an MA is
presented that applies a clearing procedure [80] for the same pur-
pose. Offspring population is merged with the N best previous in-
dividuals. Then, normalized Euclidean distance between every pair
of individuals is calculated. If this distance is inferior to a niche ra-
dius, the individual with lower fitness is punished reducing its fit-
ness value to 0. This EAD is combined with Nelder–Mead's simplex LS
procedure to tackle continuous multimodal optimization problems.
Authors claim that the proposed method alleviates premature con-
vergence and improves weak exploitation capacities of GAs. The re-
sults indicate that, the model may locate the global optimum quickly,
reliably and accurately.

Finally, we should cite the work by Krasnogor and Smith [56]
where they introduce a hybridization scheme for an MA based on an
adaptive helper that uses statistics from the GA population. Their MA
is composed of two optimization processes, a GA and a helper that is
a Monte Carlo method, which serves two purposes. First, when the
population is diverse, it acts like an LS procedure and second, when
the population converges, its goal is to diversify the search. Authors
performed experiments on traveling salesman and protein folding
problems. It was observed that the proposed approach was able to
fine tuning the global search and diversifying the population, which
lead to better solutions than those obtained by a standard GA and
two other MAs.

2.2.2. MAs with EAI
The use of EAI models in MAs as refinement procedures is another

field of increasing interest to create integrative HMH-EAI&D. With
this idea, there have been presented several MAs that use �GAs (GA
with a small population and short evolution) to refine the members
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of the population [49,61,73]. �GA models present some advantages
over classic LS procedures. Most LS techniques lack the ability to fol-
low the proper path to the optimum on complex search spaces. This
difficulty becomes much more evident when the search space con-
tains very narrow paths of arbitrary direction, also known as ridges.
That is due to most LS techniques attempt successive steps along
orthogonal directions that do not necessarily coincide with the di-
rection of the ridge. However, it was observed that �GAs are capable
of following ridges of arbitrary direction in the search space regard-
less of their direction, width, or even, discontinuities [49]. Next, we
describe some recent MA models that employ �GAs as LS operators.

• The �GA presented in [49] is a GAwith five individuals that encode
perturbations. Aptitude values of these individuals depend on a
solution given by the master EA. This feature ensures that search
is focused in the neighborhood of the given solution, whereas low
sized population promotes high selection pressure levels. The pro-
posedMA based on �GAwas tested against 12 different EAmodels,
which include a simple GA and MAs with different hill-climbing
operators, on five hard constrained optimization problems. Sim-
ulation results revealed that this algorithm exhibits good perfor-
mance, surpassing competing algorithms in all test cases with
regard to solution accuracy, feasibility rate, and robustness. We
shall say that �GA has also been successfully applied in combi-
nation with multi-agent GAs [102], multi-objective EAs [64], and
GAs for fuzzy modeling [76].
• The model proposed in [61] is a crossover hill-climbing operator
(XHC) that is specifically designed to tackle continuous optimiza-
tion problems. XHC is a micro-selecto-recombinative real-coded
GA that maintains a pair of parents (the solution being refined and
the best solution found so far) and performs repeatedly crossover
on this pair until some number of offspring is reached. Then,
the best offspring is selected and replaces the worst parent, only
if it is better. The key idea in XHC is to take advantage of the
self-adaptive ability of some crossover operators for real coding,
which sample offspring according to the parent distribution with-
out any adaptive parameter, to induce an effective local tuning.
Experimental results showed that, for a wide range of problems,
the real-coded MA with XHC operator consistently outperformed
other real-coded MAs appeared in the literature.
• Other researchers have extended this EAI model. In particular, in

[73], an adaptive XHC, which adaptively adjusts the length of the
refinement process, is proposed for MAs based on differential evo-
lution. This EAI model performs iterations while offspring outper-
forms the first parent. As soon as this condition is not fulfilled,
control returns to differential evolution. Authors performed exper-
iments on twenty continuous functions. The performance of the
proposed EAI was better than the one of other crossover-based LS
strategies, and the overall performance of the hybrid model was
superior to or at least competitive with some other MAs selected
from literature.
• Soak et al. [91] present another MA model taking some ideas from

particle swarm optimization algorithms. They apply two specific
crossover operators for the degree constrained minimum span-
ning tree problem. One of them shows strong local capacities and
was applied to a population with two individuals. Another one
was employed to recombine elitist solutions only. Both opera-
tors specialize the EA for intensification. On the other hand, mas-
ter EA performs mutation and updates elitist solutions according
to the ideas of particle swarm optimization algorithms. The fi-
nal algorithm was tested on several instances of the degree con-
strained minimum spanning tree problem, obtaining promising
results when compared with the ones of the state of the art edge
window decoder, edge set encoding, network random keys encod-
ing and Prüfer number encoding.

• Mutoh et al. [71] proposes a multi-step crossover model to per-
form LS. It consists in repeating the crossover operation with best
offspring, a number of times. First, offspring generated by the first
parents are evaluated for their fitness. Then, a number of top off-
spring with an elite rate set beforehand are selected as the next
parents. These operations are repeated for several steps. Authors
also propose a set of rules adapting the number of steps this EAI
performs. Then, this model was included in a master EA perform-
ing selection on a set of solutions. Empirical studies, on four con-
tinuous optimization problems, were carried out in order to an-
alyze the benefits of applying adaptive multi-step crossover with
regards to the application of this operator with a fixed number of
steps. Results showed that the proposed model could obtain an
optimal solution faster than the conventional model.

Other EAI approaches, following some other ideas different from
�GAs, have been proposed as subordinate algorithms for MAs. In
[25], an interesting MAmodel is presented for the traveling salesman
problem. In this case, the subordinate EAI is aimed at refining partial
subtours within the solutions of the master EA. A set of continuous
cities are chosen to create the subtour. The EAI is applied to the
subtour, for finding the local optimal solution to replace the original
part chosen from the main tour. The subtour is an open tour. The
length of the tour is calculated from the start city to the end city,
not including the distance between the end city and the start city.
Another important point is that all individuals in the population of
the EAI have the same start and end cities during the processing.
This imperative is for avoiding the main tour becoming longer at the
connection points after the recombination of the subtour. At the end
of the EAI processing, the length of the best individual is computed.
If the length is shorter than the one of the original subtour, it is
recombined back into the main tour to replace the original part. The
proposal was tested on a simple instance of the double concentric
circle. Good results were obtained when the number of cities of the
subtour was set to around half the number of cities of the main tour.

Nowadays, there are promising progresses on the design of EAI
models based on estimation distribution algorithms. In particular, in
[86], an LS procedure using a competent neighborhood structure to
search in the building-block space of the tackled problem is pro-
posed. First a linkage-group identification procedure is applied on
the best members of the population. Then, a mutation operator tries
every combination of values for each group of linked variables. At
the end, best combinations are retained. Authors derived an analyt-
ical bound and empirically verified the scalability of the proposed
model on boundedly difficult additively separable problems. The re-
sults showed that the proposal successfully solves hard problems,
requiring only subquadratic number of evaluations. Then, authors
suggests to integrate this EAI-based LS procedure in a master esti-
mation distribution algorithm in charge of global search and updat-
ing the linkage-group identification. In [60], a similar procedure for
hierarchical problems, where building-blocks overlap themselves, is
described. The proposal consists in the combination of Bayesian op-
timization algorithm and a hill-climbing operator using the obtained
linkage model. Hill-climbing is performed for a proportion of the
population to speedup convergence to good solutions. In each it-
eration, Bayesian optimization algorithm is applied to capture the
(in)dependencies between the variables of the problem. Then, vari-
ables are considered according to the ancestral reverse ordering of
variables in the obtained Bayesian network, taking the values associ-
ated with the maximal substructural fitness. Finally, the control re-
turns to Bayesian optimization algorithm to continue the run. The re-
sults showed that incorporating the proposed hill-climbing operator
in Bayesian optimization algorithm leads to a significant reduction
in the number of generations necessary to solve the problem, while
providing substantial speedups in terms of number of evaluations.
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Fig. 4. MHs with evolutionary I&D components.

Fig. 5. General schema of BLGA.

2.3. MHs with evolutionary I&D components

We have identified a third method to build HMH-EAI&D, which
concerns the incorporation of EAI&D into classical MHs, with the aim
of replacing determinate I&D components. The idea is to build cus-
tomized EAI&D playing the same role as particular I&D components,
but more satisfactorily, i.e., evolutionary I&D components (Fig. 4).

In this way, we transform a classical MH into an integrative
HMH-EAI&D (because one of its components is another MH). This
prospective line of research was not very explored in the past. We
have only found two examples in the literature. They are two in-
stances of multi-start LS that incorporate recent EAI as LS procedures,
the binary local GA (BLGA) [27] and the covariance matrix adaptation
evolution strategy (CMA-ES) [35,36].

BLGA is a steady-state GA that inserts one single new member
into the population (P) in each iteration. It uses a crowding replace-
ment method in order to favor the formation of niches in P (groups
of chromosomes with high quality located in different and scattered
regions of the search space). BLGA performs LS by orientating the
search in the nearest niches to an external chromosome, the leader
chromosome (Sc). In particular, it iteratively crosses Sc with indi-
viduals of the population belonging to the nearest niches, and then,
the best solution between Sc and the offspring becomes the new
leader solution, whereas the other one is inserted in the population
by means of the crowding method (see Fig. 5).

An outstanding feature of BLGA is that it performs LS by describing
a trajectory in the search space, as classical LS procedures do. Most
LS algorithms follow a hill-climbing paradigm; they commence from

a single solution and, at each step, a candidate solution is generated
using a move operator of some sort. They simply move the search
from the current solution to a candidate solution if the candidate has
better fitness. The basic idea of BLGA is to use hill-climbing as the
move accepting criterion of the search and crossover as the move
operator. This scheme of LS based on crossover was first suggested
by Jones [48] and O'Reilly et al. [75], and it has been followed to
obtain different EAI approaches (Section 2.2.2). The main novelty of
BLGA concerns the acquisition of information about the location of
the best search regions (by favoring the formation of niches), which
is then employed to generate individuals around Sc by means of
the crossover operator. A multi-start LS was implemented using this
algorithm as LS operator, which consistently outperformed other
instances of this MH incorporating classic LS procedures from the
literature.

CMA-ES was originally introduced to improve the LS performance
of evolution strategies. Although CMA-ES even reveals competitive
global search performances [38], it has exhibited effective abilities
for the local tuning of solutions (it is extremely good at detecting and
exploiting local structure in continuous optimization problems); in
fact, it was used as continuous LS algorithm of an instance of multi-
start LS, which was called L-CMA-ES [5]. At the 2005 congress of
evolutionary computation, L-CMA-ES was one of the winners of the
real-parameter optimization competition [37].

In CMA-ES, not only is the step size of the mutation opera-
tor adjusted at each generation, but so too is the step direction
in the multidimensional problem space, i.e., not only is there a
mutation strength per dimension but their combined update is
controlled by a covariance matrix whose elements are updated as
the search proceeds. (�W ,�) CMA-ES is the most commonly uti-
lized CMA-ES model. For every generation, this algorithm generates
a population of � offspring by sampling a multivariate normal
distribution:

xi ∼ N(m,�2C)=m+ �Ni(0,C) for i= 1, . . . ,�,

where the mean vectorm represents the favorite solution at present,
the so-called step-size � controls the step length, and the covari-
ance matrix C determines the shape of the distribution ellipsoid.
Then, the � best offspring are recombined into the new mean value
using a weighted intermediate recombination:

∑�
i=1 wixi:�, where the

positive weights sum to one. The covariance matrix and the step-
size are updated as well following equations that may be found
in [36,38]. The default strategy parameters are given in [38]. Only
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Iterated Local Search

1. S0 ← Generate Initial Solution ()

2. S* ← LocalSearch (S0)

3. while (termination conditions not met) do

4. SP ← Perturbation (�p, S*, history)

5. SLS ← LocalSearch (SP)

6. S* ← AcceptanceCriterion (S*, SLS, history)

7. return S*

Fig. 6. Pseudocode algorithm for ILS.

the initial m and � parameters have to be set depending on the
problem.

Hansen et al. [36] interpret any evolution strategy that uses inter-
mediate recombination as an LS strategy. CMA-ES employs interme-
diate recombination to create a single parent based on the average
position of the current population. The next generation of offspring
is based on a mutation distribution that surrounds this single par-
ent. Once the initial mutation distribution has decreased, this vari-
ation of the traditional evolution strategy will behave much like an
LS algorithm. Thus, since CMA-ES is extremely good at detecting and
exploiting local structure, it turns out to be a particularly reliable
and highly competitive EA for local optimization [5]. In fact, in order
to obtain an advanced continuous LS algorithm, the LS characteris-
tics of CMA-ES may be stressed by tuning some of its strategy pa-
rameters. For example, [5] recommended using a 100 times smaller
initial step-size than is recommended as default and sticking to the
default population size (between 10 and 15 times the search space
dimensions). A different approach to enhance the LS abilities of this
algorithm was introduced in [67], where it was used as LS operator
of an MA.

Finally, we should point out that, in the next section, we ana-
lyze the performance of an ILS model that incorporates an evolu-
tionary perturbation technique. The main objective is to investigate
the potential of the method described in this section to obtain new
HMH-EAI&D and show how customized EAI&D may help classical MHs
to improve their behavior.

3. ILS with evolutionary perturbation technique

ILS [45,63] belongs to the group of MHs that extend classical LS
methods by adding diversification capabilities. The essential idea of
ILS is to perform a biased, randomized walk in the space of locally
optimal solutions instead of sampling the space of all possible can-
didate solutions. This walk is built by iteratively applying first a per-
turbation to a locally optimal solution, then applying an LS algorithm,
and finally using an acceptance criterion which determines to which
locally optimal solution the next perturbation is applied. Despite its
simplicity, it is at the basis of several state-of-the-art algorithms for
real-world problems [16,17,45,85,95,99].

A high level description of ILS as it is described in [63] is given in
Fig. 6. The algorithm starts by applying LS to an initial solution and
iterates a procedure where a perturbation is applied to the current
solution S∗ in order to move it away from its local neighborhood; the
solution so obtained is then considered as initial point for a new LS
processing, resulting in another locally optimal solution SLS. Then, a
decision is made between S∗ and SLS to decide from which solution
the next iteration continues.

The perturbation operator is a key aspect to consider, because it
allows ILS to reach a new solution from the set of local optima by
escaping from basis of attraction of the previous local optimum. The

perturbation is usually non-deterministic in order to avoid cycling.
For example, for the case of binary problems, the perturbation oper-
ator flips the bits with a fixed probability. Its most important char-
acteristic is the perturbation strength (�p), roughly defined as the
amount of changes made on the current solution. The perturbation
strength should be large enough such that the LS does not return
to the same local optimum in the next iteration. However, it should
not be too large; otherwise the search characteristics will resemble
those of a multi-start LS algorithm.

The history component in Perturbation and AcceptanceCriterion
(Steps 4 and 6 in Fig. 6) indicates that also the search history may in-
fluence the decisions made in these procedures. Yet, oftenMarkovian
implementations of ILS are applied, i.e., the output of Perturbation
and AcceptanceCriterion is independent of the search history [92].

An important aspect in the perturbation and the acceptance cri-
terion is to introduce a bias between I&D of the search. Intensifica-
tion can be reached by applying the perturbation always to the best
solution found and using small perturbations. On the other hand,
diversification is achieved by accepting every new solution S∗ and
applying large perturbations. Then, the perturbation operator arises
as one of the most determinant I&D component of ILS. In addition,
it is a key aspect to consider in the design of ILS; as claimed by [63]:
“A good perturbation transforms one excellent solution into an ex-
cellent starting point for a LS”.

Another determinant aspect of ILS is the mechanism to perform
perturbations. This may be a random mechanism (as was aforemen-
tioned), or it may be produced by a semi-deterministic method (e.g.,
an LS different from the one used in the main algorithm [11]). In this
respect, we should point out that different EA principles have been
used to build new perturbation models. Examples are:

• Population-based ILS (PILS): Thierens [98] proposes an MH that
combines the power of ILS with the principle of extracting use-
ful information about the search space by keeping a population
of solutions. In addition to ILS, PILS also keeps a small population
of neighboring solutions and restricts the perturbation of ILS to
the subspace where the current solution and a population mem-
ber disagree, thus preserving their common substructure. The key
assumption of the PILS algorithm is that local optimal solutions
possess common substructures that can be exploited to increase
the efficiency of ILS.
• Genetic ILS (GILS): Katayama et al. [50,51] introduced a new per-

turbation mechanism for an ILS instance developed for the trav-
eling salesman problem, which was called GILS. This perturbation
approach uses a crossover operator specifically designed to deal
with this problem. In each iteration, GILS perturbs the best found
solution, Sbest , generating SP . Then, it applies the crossover opera-
tor to Sbest and SP , producing the final solution that will be refined
by the LS operator.
• ILS with guided mutation (ILS/GM): Zhang et al. [106] used the

guided mutation operator [105] as perturbation operator in ILS for
the quadratic assignment problem. Guided mutation uses the idea
of estimation of distribution algorithms to improve conventional
mutation operators. It provides a mechanism for combining global
statistical information about the search space and the position
information of a good solution found during the previous search
for generating new trial solution.

In this section, we present an evolutionary ILS-perturbation
mechanism that involves a micro-CHC algorithm that explores the
neighborhood of the solution that should undergo the perturbation
operator. First, in Section 3.1, we describe the CHC algorithm, then,
in Section 3.2, we explain our proposal, and finally, in Section 3.3,
we report the results from an empirical analysis carried out on this
new ILS approach.
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Fig. 7. ILS with evolutionary perturbation technique.

3.1. CHC algorithm

The key idea of the CHC algorithm (Crossgenerational elitist se-
lection, Heterogeneous recombination, and Cataclysmic mutation) [21]
concerns the combination of a selection strategy with a very high
selective pressure and several components inducing a strong di-
versity. The four main components of the algorithm are shown as
follows:

• Elitist selection: The N members of the current population are
merged with the offspring population obtained from it and the
best N individuals are selected to compose the new population. In
case that a parent and an offspring have the same fitness value,
the former is preferred to the latter.
• Half uniform crossover: It is a highly disruptive crossover that

crosses over exactly half of the non-matching alleles (the bits to
be exchanged are chosen at random without replacement). This
way, it guarantees that the two offspring are always at the max-
imum Hamming distance from their two parents, thus proposing
the introduction of a high diversity in the new population and
lessening the risk of premature convergence.
• Incest prevention mechanism: During the reproduction step, each

member of the parent (current) population is randomly chosen
without replacement and paired for mating. However, not all these
couples are allowed to crossover. Before mating, the Hamming
distance between the potential parents is calculated and if half
this distance does not exceed a difference threshold d, they are
not mated and no offspring coming from them is included in the
offspring population. The aforementioned threshold is usually ini-
tialized to L/4 (with L being the chromosome length). If no off-
spring is obtained in one generation, the difference threshold is
decremented by one.
• Cataclysmic mutation: CHC uses no mutation in the classical sense

of the concept, but instead, it goes through a process of cata-
clysmic mutation when the population has converged. The dif-
ference threshold is considered to measure the stagnation of the
search, which happens when it has dropped to zero and sev-
eral generations have been run without introducing any new in-
dividual in the population. Then, the population is reinitialized
by considering the best individual as the first chromosome of
the new population and generating the remaining N − 1 ones by
randomly flipping a number of its bits, determined by the cat-
aclysmic mutation rate, pcm (usually pcm = 0.35). After invoking
the cataclysmic mutation, the difference threshold is reinitiated to
pcm ∗ (1− pcm) ∗ L.

The CHC algorithm was tested against different GA approaches,
giving better results, especially on hard problems [103]. So, it has
arisen as a reference point in the GA literature.

3.2. Evolutionary ILS-perturbation technique

As was clearly stated above, a promising research line that may
be followed to improve ILS performance involves the utilization of
different EA principles to design the perturbation mechanism. In
this section, we present an evolutionary ILS-perturbation technique,
which is based on the CHC algorithm. It will be denominated �CHC.
Our main idea is to build a new ILS model, called ILS-�CHC, which
follows pseudo-code in Fig. 6 replacing Step 4 by

4. SP ← �CHC(�p, S∗).

We have conceived �CHC to be an effective explorer in the neigh-
borhood of S∗. At the beginning of this algorithm, S∗ is used to create
its initial population. Then, it is performed throughout a predeter-
mined number of fitness function evaluations. The best reached in-
dividual is then considered as starting point for the next LS process
(Fig. 7).

We have chosen the CHC algorithm as basis to build our evolu-
tionary ILS-perturbation method because it suitably combines pow-
erful diversification mechanisms with an elitist selection strategy.
The filtering of high diversity by means of high selective pressure
favors the creation of useful diversity; many dissimilar solutions are
produced during the run and only the best ones are conserved in the
population, allowing diverse and promising solutions to be main-
tained. From our point of view, this behavior is desirable for an EA
assuming the work of a perturbation operator. Finally, we should
point out that �CHC may be seen as an EAD, because its main mis-
sion is to effectively explore the neighborhood of S∗ by promoting
useful diversity in this search region.

Next, we detail the main adaptations made on the original formu-
lation of CHC to obtain our evolutionary ILS-perturbation technique:

1. Population size: �CHC manages a population with few individu-
als (N = 5), and thus, it may be seen as micro-EA. In standard ILS
models, the number of fitness function evaluations required by
the perturbation mechanism is very low as compared with the
one for the LS method. With the aim of preserving, as far as pos-
sible, the essence of ILS, we have considered an EA with a low
sized population; for being able to work adequately under the
requirement of spending reduced number of evaluations.

2. Number of evaluations: In particular, we have limited this
number through the following strategy: the number of
evaluations assigned to �CHC for a particular invocation will be
a fixed proportion, pevals, of the number of evaluations consumed
by the previously performed LS method. It is worth noting that
pevals should be set to a low value.

3. Initial population: Every individual in the initial �CHC population
is generated by performing standard perturbation on the current
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solution, S∗ (Fig. 6), using the perturbation strength �p (which
becomes a parameter associated with �CHC).

4. Cataclysmic mutation: It fills the population with individuals cre-
ated by the same way as initial population is built (by perturb-
ing S∗) and preserves the best performing individual found in the
previous evolution. After applying cataclysmic mutation, the dif-
ference threshold is set to �p ∗(1−�p)∗L (i.e., we have considered
that �p = pcm).

5. Mating with S∗: Finally, we should highlight that �CHC incorpo-
rates the appealing principle in GILS [51] of recombining S∗ with
another solution. In addition to the typical recombination phase
of CHC, our algorithm always mates S∗ with an individual in the
population (selected at random) and, if they are finally crossed
over (attending on the incest prevention mechanism), the result-
ing offspring will be introduced into the offspring population of
�CHC.

It is worth to mention that the first implementation of micro-EA
was reported by Krishnakumar [58], who used a GA model with
population size of five individuals, tournament selection, single-
point crossover, elitism, and restart operator. He showed that his
�GA could avoid premature convergence and performs better than
a simple GA for selected multimodal problems. Specific micro-
EAI have been built to serve as LS operators for MAs (see Section
2.2.2). The novelty of our proposal involves the use of a micro-
EA as diversification agent to replace the perturbation operator
of ILS.

Finally, we may highlight that our proposal gathers together the
idea in GILS of using a crossover operator with the one of PILS of
managing a population of solutions. In this way, it attempts to com-
bine the best of these methods.

3.3. Experiments

We have carried out experiments on a test suite composed by 19
binary optimization problems (Appendix A), in order to study the
behavior of the ILS model based on the evolutionary perturbation
mechanism presented in the previous section. Firstly, we detail the
experimental setup and statistical method applied (Section 3.3.1),
then, we analyze the results obtained from different experimental
studies carried out with ILS-�CHC. In particular, our aim is: (1) to
ascertain whether the innovative design of �CHC is suitable to allow
this algorithm to outperform other ILS models with contemporary
perturbation methods of the literature (Section 3.3.2), (2) to inves-
tigate the way the specific design of our algorithm may affect its
performance (Section 3.3.3), (3) to compare its results with the ones
of other ILS instances that were built with the specific objective of
enhancing diversification (Section 3.3.4), and (4) to validate the in-
novative design for hybridizing an EA with an LS method that un-
derlies in ILS-�CHC. In order to do this, we pit this algorithm against
several MA instances, which represent the most widely accepted
approach, at present, for combining these two ingredients (Section
3.3.5). The results of all executed ILS algorithms may be found in
Appendix C.

3.3.1. Experimental setup and statistical method
In this section, we describe the basic scheme of the ILS algorithms

(Fig. 6) compared in our experiments. They were specifically im-
plemented to tackle optimization problems in a fixed-length binary
search space:

• LS procedure: It is the first-improvement hill-climbing algorithm,
which consists in having one individual and keep mutating each
gene, one at a time, in a predefined random sequence, until the
resulting individual is fitter than the original. In that case, the new

individual replaces the original and the procedure is repeated un-
til no improvement can be made further.
• Initial solution: It is a fixed-length binary string generated at ran-

dom.
• Acceptation criterion: We have used the requirement that new so-

lutions should have a better (or at least equal) fitness value than
the current solution.

All the algorithms were executed 50 times (initial solutions were
the same for the corresponding runs for all the ILS instances), each
one with a maximum of 100,000 fitness function evaluations.

Non-parametric tests have been used for comparing the results
of different search algorithms [46]. Given that the non-parametric
tests do not require explicit conditions for being conducted, it is rec-
ommendable that the sample of results would be obtained following
the same criterion, which is, to compute the same aggregation (we
have considered the average of the best fitness function found at the
end of each run) over the same number of runs for each algorithm
and problem. In particular, we have used theWilcoxon matched-pairs
signed-ranks test to compare the results of our proposal with the
ones of other ILS approaches. We explain, with detail, this statistical
test in Appendix B.

3.3.2. Comparison of �CHC with other perturbation methods
The main aim of this section is to compare �CHC with other

contemporary perturbation techniques of the literature. In order to
do this, we have implemented several ILS algorithms that follow the
basic scheme described in the previous section and are distinguished
uniquely by the perturbation operator:

• ILS with standard binary-perturbation (SILS): This perturbation
method flips the bits with a fixed probability, the perturbation
strength, �p.
• PILS [98]: The values for the parameters associated with the per-

turbation operator in this algorithm are N = 5, Pratio = 0.5, and
Pmaskmut = 0.25.
• GILS [51]:We have considered uniform crossover for implementing

the perturbation strategy for this algorithm.
• ILS/GM [106]: We have implemented the guided mutation oper-

ator proposed in [105] to manipulate binary-coded chromosomes
(� was set to 0.005). We used guidelines in [106] to adapt this
operator as perturbation mechanism for ILS.

�CHC uses standard binary-perturbation for generating initial
population and populations after applying cataclysmic mutation. In
addition, it assumes pevals=0.25, i.e., at each invocation, it consumes
the 25% of number of evaluations utilized by the previous processing
of LS procedure.

Since all the implemented ILS algorithms are distinguished
uniquely by the perturbation policy, we may determine the signifi-
cance of our newly proposed method. In order to make the compari-
son, firstly, we investigate the influence of �p on the performance of
these ILS algorithms. In particular, we analyze the behavior of these
algorithms when different values for this parameter are considered
(�p = 0.1, 0.25, 0.5, and 0.75).

For each ILS algorithm, Fig. 8 shows the average ranking obtained
by its instances with different �p values when compared among
them. This measure is obtained by computing, for each problem,
the ranking rj of the observed results for instance j assigning to the
best of them the ranking 1, and to the worst the ranking k (k is the
number of instances). Then, an average measure is obtained from
the rankings of this instance for all test problems. For example, if
a certain instance achieves rankings 1, 3, 1, 4, and 2, on five test
functions, the average ranking is (1+ 3+ 1+ 4+ 2)/5= 11

5 . Clearly,
the lower a column is, the better its associated ILS instance is.
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Fig. 8. Average rankings obtained by ILS instances with different �p values.

Table 1
ILS-�CHC (�p = 0.25) vs. ILS algorithms with other perturbation models (Wilcoxon's
test with p-value = 0.05).

ILS-�CHC vs. R+ R− Critical value Sig. differences?

SILS (�p = 0.1) 177.0 13.0 46 Yes
SILS (�p = 0.25) 186.0 4.0 46 Yes
SILS (�p = 0.5) 183.0 7.0 46 Yes
SILS (�p = 0.75) 171.0 19.0 46 Yes

PILS (�p = 0.1) 180.0 10.0 46 Yes
PILS (�p = 0.25) 186.0 4.0 46 Yes
PILS (�p = 0.5) 173.0 17.0 46 Yes
PILS (�p = 0.75) 164.0 26.0 46 Yes

GILS (�p = 0.1) 170.0 20.0 46 Yes
GILS (�p = 0.25) 182.0 8.0 46 Yes
GILS (�p = 0.5) 187.0 3.0 46 Yes
GILS (�p = 0.75) 186.0 4.0 46 Yes

ILS/GM (�p = 0.1) 167.0 23.0 46 Yes
ILS/GM (�p = 0.25) 185.0 5.0 46 Yes
ILS/GM (�p = 0.5) 187.0 3.0 46 Yes
ILS/GM (�p = 0.75) 185.0 5.0 46 Yes

An important remark from Fig. 8 is that the best ranked instance
of ILS-�CHC uses �p = 0.25 while one for the other ILS algorithms
employ �p = 0.1. This indicates that ILS-�CHC achieves its best be-
havior by working in more extensive neighborhoods than other ILS
algorithms do, i.e., its performance becomes better by processing
higher diversification levels than its competitors. Next, we inves-
tigate whether this mode of operating allows it to obtain better
results. Then, we have undertaken a comparative analysis between
ILS-�CHC with �p = 0.25 and each one of the other ILS algorithms
(with all �p values) by means of Wilcoxon's test (Appendix B).
Table 1 summarizes the results of this procedure, where the values
of R+ (associated to ILS-�CHC) and R− of the test are specified to-
gether with the critical values. Last column indicates whether our
algorithm performs statistically equivalent to the other algorithm
(the null hypothesis of equality of means is accepted) or there

Table 2
ILS-�CHC (�p = 0.25) vs. ILS-REx and ILS-�GA (Wilcoxon's test with p-value = 0.05
and 0.1).

ILS-�CHC vs. R+ R− Critical value
(p= 0.05/p= 0.1)

Sig. differences?
(p= 0.05/p= 0.1)

ILS-REx (�p = 0.1) 147.0 43.0 46/53 Yes/yes
ILS-REx (�p = 0.25) 166.0 24.0 46/53 Yes/yes
ILS-REx (�p = 0.5) 174.0 16.0 46/53 Yes/yes
ILS-REx (�p = 0.75) 163.0 27.0 46/53 Yes/yes

ILS-�GA (�p = 0.1) 142.0 48.0 46/53 No/yes
ILS-�GA (�p = 0.25) 153.0 37.0 46/53 Yes/yes
ILS-�GA (�p = 0.5) 170.0 20.0 46/53 Yes/yes
ILS-�GA (�p = 0.75) 160.0 30.0 46/53 Yes/yes

exist significant differences between them (the null hypothesis of
equality of means is rejected).

From Table 1, we clearly notice that ILS-�CHC obtained improve-
ments with regards to the other algorithms, which are statistically
significant (because all R− values are lower than both R+ ones and
critical values). These initial experiments suggest that our evolution-
ary ILS-perturbation technique may really enhance the operation of
ILS and, thus, it becomes prospective for effectively exploring the
neighborhood of S∗.

3.3.3. Analyzing useful diversification of �CHC
In the previous section, we have observed that the best instance

of ILS-�CHC processes higher diversity levels than the ones managed
by best instances of other ILS algorithms, even outperforming these
ones. This fact shows that the inherent ability of �CHC to handle
useful diversify (Section 3.2) becomes very profitable for the task
of exploring the neighborhood of S∗. In this section, we attempt to
corroborate this affirmation by comparing ILS-�CHC with alternative
ILS approaches based on perturbation mechanisms that explore this
region as well, but following other strategies:

• ILS with perturbation based on random exploration (ILS-REx): This
perturbation method consists in generating nr solutions by apply-
ing standard perturbation and selecting the best one as SP . We
should point out that this perturbation scheme was suggested in
[34] for a particular type of ILS called VNS.
• ILS with perturbation based on standard �GA (ILS-�GA): This EA is
a generational GA that uses a population size of five individuals,
tournament selection, uniform crossover with probability pc = 1,
elitism, and no mutation [58]. The population was considered con-
verged when less than 5% of the population bits were different
from the bits of the best individual. The mechanisms to create ini-
tial population and populations after restarts are like the ones for
�CHC.

The number of fitness function evaluations assigned to these two
perturbation methods is computed as for �CHC (25% of number of
evaluations utilized by previous invocation of LS procedure).

Now, we undertake the comparative analysis among ILS-�CHC
and ILS-REx and ILS-�GA using Wilcoxon's test. Table 2 contains the
results of this statistical test for p-value = 0.05 and 0.1.

Results outlined in Table 2 reveal that, in general, ILS-�CHC out-
performs ILS-REx and ILS-�GA; being the superiority statistically sig-
nificant (most R− values are lower than both R+ ones and critical
values). Only with p-value = 0.05, there are not significant differ-
ences between our algorithm and ILS-�GA (�p = 0.1), nevertheless,
it shows clear advantage on this algorithm with p-value = 0.1.

The improvements with regards to a perturbation mechanism
with random exploration and another one based on standard �GA
suggest that the careful design of �CHC made with the aim of
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providing useful diversification really allows fruitful starting points
to be found for LS processing.

3.3.4. Comparison with ILS models with strategies to enhance
diversification

In this section, we compare ILS-�CHC with other ILS models built
by enhancing diversification properties of standard ILS:

• ILS with random walk acceptance (ILS-RW): The acceptance cri-
terion can roughly be used to control the balance between I&D
for ILS search [63]. A simple way to illustrate this is to consider
a Markovian acceptance criterion. A very strong intensification is
achieved if only better solutions are accepted. At the opposite ex-
treme is the random walk acceptance criterion (denoted by RW)
which always applies the perturbation to the most recently vis-
ited local optimum, irrespective of its cost. This criterion clearly
favors diversification over intensification, because it promotes a
stochastic search in the space of local optima.
• Guided restart ILS (GRILS) [66] is based on basic ILS plus a restart-

ing mechanism, which is used to generate the new solution that
undergoes LS. This mechanism makes use of the search history of
previous restarts and the best found solution. The aim is to bias
the solution construction in favor of solutions which are likely not
to belong to already explored regions (diversification). For each
variable xi, the frequency freqi of assignments to 1 is computed.
This frequency is used as the probability to have the assignment
xi = 0 in the new initial solution. Therefore, the higher the fre-
quency of 1's in the last k restart solutions, the lower the probabil-
ity of having the same assignment to xi in the new initial solution.
This diversification mechanism is counterbalanced by considering
also the best solution found xbest = (xbest1 , . . . , xbestn ) to compute the
probability vector. The frequency is incremented if xbesti = 0 and
decremented for the opposite assignment. Therefore, the proba-
bility vector is slightly moved toward the current most promis-
ing region. The length of the list of the last recently visited solu-
tion has been set to 10. It is worth noting that GRILS follows an
idea that is opposite to the one underlying in ILS/GM [106] (see
Section 3).
• Collaborative ILS (CILS): Another convenient way of empowering

ILS exploration involves the idea of replacing a single ILS run by a
population of ILS runs that interact each other in some way [92]
(we call this ILS model CILS). The aim of this strategy is to avoid
a stagnation behavior by, in some sense, delaying the decision on
which solution one has to concentrate to find the highest solu-
tion quality; by the use of a population of ILS runs, the algorithm
is not forced to concentrate the search only around the best so-
lution found as done in single ILS runs. We have implemented a
variant of CILS, called replace-worst, that starts with � solutions
each of which follows a standard ILS algorithm, except that ev-
ery nIt iterations a copy of the current best solution replaces the
worst solution in the population. We have considered �= 20 and
tried two different situations with regards to the communication
strategy among ILS runs: (1) without communication (i.e., multi-
ple independent trials of an ILS algorithm) and (2) with nIt = 3.
They are denoted as CILS-wc and CILS-3, respectively.

The performance comparison among ILS-�CHC and each one of
these algorithms was carried out by means of Wilcoxon's test. Table
3 has the results for p-value = 0.05.

Results of Wilcoxon's test in Table 3 advise us that our algorithm
consistently outperforms all ILS algorithms based on strategies to
enhance diversification. In particular, an interesting remark from im-
provement on CILS is that it becomes more fruitful executing only
one ILS instance with a perturbation operator that focuses on diver-
sification by managing a set of solutions (such as ILS-�CHC does)

Table 3
ILS-�CHC (�p = 0.25) vs. ILS algorithms with enhanced diversification (Wilcoxon's
test with p-value = 0.05).

ILS-�CHC vs. R+ R− Critical value Sig. differences?

ILS-RW (�p = 0.1) 190.0 0.0 46 Yes
ILS-RW (�p = 0.25) 190.0 0.0 46 Yes
ILS-RW (�p = 0.5) 185.0 5.0 46 Yes
ILS-RW (�p = 0.75) 163.0 27.0 46 Yes

GRILS (�p = 0.1) 161.0 29.0 46 Yes
GRILS (�p = 0.25) 170.0 20.0 46 Yes
GRILS (�p = 0.5) 183.0 7.0 46 Yes
GRILS (�p = 0.75) 171.0 19.0 46 Yes

CILS-wc (�p = 0.1) 182.0 8.0 46 Yes
CILS-wc (�p = 0.25) 182.0 8.0 46 Yes
CILS-wc (�p = 0.5) 179.0 11.0 46 Yes
CILS-wc (�p = 0.75) 163.0 27.0 46 Yes

CILS-3 (�p = 0.1) 181.0 9.0 46 Yes
CILS-3 (�p = 0.25) 180.0 10.0 46 Yes
CILS-3 (�p = 0.5) 179.0 11.0 46 Yes
CILS-3 (�p = 0.75) 163.0 27.0 46 Yes

than favoring diversification by keeping multiple collaborative ILS
runs that employ standard perturbation operator.

These results and ones obtained in previous sections allow us to
conclude that our evolutionary perturbation technique may really
enhance the operation of the ILS algorithm; in fact, the ILS instance
performing this perturbation technique resulted very competitive
with the state-of-the-art on this well-known MH for binary opti-
mization problems. In this way, this proposal makes an important
step in the progression of understanding the design of promising
HMH-EAI&D models by embedding evolutionary I&D components in
MHs.

3.3.5. Comparison with MAs
ILS with �CHC is a new hybrid MH that combines a GA model

(a customized version of CHC) with an LS method. Nowadays, there
exist other kinds of hybrid MH models combining EAs and LS proce-
dures, such as MAs (Section 2.2). One commonly used formulation
of MAs applies LS to members of the EA population after recombina-
tion and mutation, with the aim of exploiting the best search regions
gathered during the global sampling done by the EA. In this case,
the LS procedure works within the EA. The rationale behind MAs is
to provide an effective and efficient global optimization method by
compensating for deficiency of EA in local exploitation and inade-
quacy of LS in global exploration.

Many different instantiations of MAs have been reported across
a wide variety of application domains that range from scheduling
and floor-planning problems, to pattern recognition, vehicle routing,
control systems, aircraft, and drug design, to name but a few. This
large body of evidence has revealed that MAs not only converge to
high-quality solutions, but also search vast, and sometimes noisy, so-
lution spaces more efficiently than their conventional counterparts.
Thus, MAs are the preferred methodology for many real-world ap-
plications, and nowadays receives more attention [40,41,74]. In view
of that, it becomes primordial to clarify the differences between the
MA approach and ILS with �CHC, in order to characterize our al-
gorithm as a new technique for hybridizing GAs and LS methods,
which becomes different from the one represented by MAs. Next,
we attempt to explain them:

1. Both MAs and ILS with �CHC are integrative hybrid MHs (see
Section 2.2). In MAs, the EA is the master MH, whereas in our
hybrid MH, �CHC is the subordinate MH. �CHC has been designed
as a component of ILS, and was embedded in the framework of
this MH preserving its essence as much as possible.
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Table 4
ILS-�CHC (�p = 0.25) vs. MA instances (Wilcoxon's test with p-value = 0.05).

ILS-�CHC vs. R+ R− Critical value Sig. differences?

MA-CHC 175 15 46 Yes
MA-Hart 158 32 46 Yes

2. MAs follows the idea of population-based MHs, which perform
search processes that describe the evolution of a set of points in
the search space. On the other hand, our ILS approach belongs to
the group of search algorithms working on single solutions, called
trajectory methods, which all share the property of describing a
single trajectory in the search space during the search process
(see Fig. 7).

3. Themain task of EAs inMAs is to act as global diversification agents.
They attempt to induce reliability in the search process by ensur-
ing that different promising search zones of the search space are
the focus of the LS method throughout the run. In fact, in the MA
literature, keeping population diversity while using LS together
with an EA is always an issue to be addressed, either implicitly or
explicitly [61,96]. On the other hand, �CHC incorporates mecha-
nisms aimed to induce reliability in the ILS operation by explor-
ing the neighborhood of a particular solution, S∗, i.e., it provides
a kind of “local diversification”.
Now, we are interested in determining whether our ILS model

really provides an improved alternative to the scheme for combining
EAs and LS procedures represented by MAs. In order to do this, we
pit ILS-�CHC against two common MA implementations:

• MA-CHC: CHC arises as a very adequate EA for designing MAs, be-
cause it incorporates different techniques to promote high pop-
ulation diversity. MA-CHC consists in an original version of CHC
(N = 50 and pcm = 0.35; see Section 3.1) that invokes the LS algo-
rithm (first-improvement hill-climbing algorithm) to refine every
chromosome created by the crossover operator.
• MA-Hart: Most MA models apply the LS operator to all the indi-

viduals generated by the genetic operators [57]. However, in this
case, the additional fitness function evaluations required for the LS
increment considerably the computational cost of the MA, which
may be prohibitive for many problems. Hart introduced a param-
eter, called LS probability, pLS, that determines the probability of
applying LS to every created chromosome [39]. In [39], pLS=0.0625
was considered appropriate for many practical cases. We have im-
plemented a variation of MA-CHC, called MA-Hart, which follows
this MA approach.

Table 4 summarizes the existence or absence of statistical differ-
ences by using Wilcoxon's test between ILS-�CHC and the two MAs,
MA-CHC and MA-Hart. The superiority of ILS-�CHC is clearly seen
on the results presented in this table. Hence, it may be claimed that
we might develop a hybrid MH integrating a specific version of the
CHC algorithm and an LS method (by following the ideas stated in
Section 2.3) that exhibits better performance compared to one of the
most well-accepted models for combining GAs with LS procedures,
i.e., the MA approach. We think that this becomes an interesting
remark; since CHC has arisen as a reference point in the GA litera-
ture [43,103], obtaining powerful hybrid MHs incorporating this GA
model as component is a topic of great importance.

4. Conclusions

In this paper, we provided an overview of different ways EAI&D
may be combined with other MHs, and even with other kinds of
search algorithms, to obtain effective hybridMHs.We have identified
three lines of research in this topic: collaborative HMH-EAI&D, in-

tegrative HMH-EAI&D, and MHs with evolutionary I&D components.
With the aim of complementing the review, we have taken an im-
portant next step along the less investigated HMH-EAI&D approach
by contributing with an ILS algorithm with an evolutionary pertur-
bation method based on CHC. This algorithm has turned out to be
very competitive with state-of-the-art ILS MH for binary optimiza-
tion problems. Thus, we might confirm that it is possible to design
evolutionary I&D components that replace, without great difficul-
ties, determinate I&D components of classical MHs, developing their
work more effectively and with a relatively low computational cost.
In addition, the superior performance shown by our ILS instance in
comparison with MAs indicates that its implicit innovative scheme
for combining CHC with an LS method arises as a significant alter-
native to the one in the well-accepted memetic approach.

The good performance of the reviewed HMH-EAI&D and the
suitable results shown by the proposed instance allow an addi-
tional conclusion to be pointed out: the use of EAI&D for building
hybrid MHs becomes a prospective research area for finding more
effective search algorithms. Therefore, the research line focused
in this paper is indeed worth of further studies. We are currently
extending our investigation to build evolutionary ILS-perturbation
techniques being well-suited to deal with real-world problems
(traveling salesman problem, quadratic assignment problem, etc.).
Also we intend to: (1) incorporate local GAs and CMA-ES (Section
2.3) in different MHs based on LS procedures (ILS, VNS, MAs, GRASP,
ant colony optimization, etc.) and (2) design versions specializing in
I&D of other population-based MHs, such as ant colony optimization
algorithms [18] and particle swarm optimization algorithms [53],
using recent studies on these algorithms [10,15,44,84], and then,
build new HMH-EAI&D models with them.

Appendix A. Test suite

The test suite that we have used for different experiments con-
sists of 19 binary-coded optimization problems. Tables 5 shows
their names, reference where a detailed description may be found,
the length of the binary solutions (L), whether they are formulated
as maximization or minimization problems, and finally, the fitness
value of the global optimum. Since problems from fSch to fSLE are de-
fined on continuous domains, their variables were encoded into bit

Table 5
Test suite.

Name Ref. L Max/Min Fit. op.

Deceptive problem (D) [30] 120 Max 900
Massively multimodal deceptive
problem (MMD)

[31] 240 Max 40

Bipolar deceptive problem (BD) [78] 120 Max 20
Overlapping deceptive problem (OD) [78] 150 Max 74
Trap problem (T) [98] 180 Max 1100
Trap-5 problem (T5) [79] 150 Max 150
Royal road problem (RR) [24] 200 Max 200
Hierarchical if-and-only-if problem [47]

HIFF1 128 Max 1024
HIFF2 256 Max 2304

Zero/one multiple knapsack problem [97]
K1 (weing7 [42]) 105 Max 1,095,445
K2 (weish26 [42]) 90 Max 9584

Schwefel's function 2.21 (fSch) [26] 100 Min 0
Quartic noise function (fQN) [26] 100 Min 0
Rotated generalized Rastrigin's
function (fRRas)

[26] 100 Min 0

Generalized Griewank function (fGri) [26] 100 Min 0
Composed fGri − fRos (fC) [26] 100 Min 0
Schaffer's function (fScha) [26] 100 Min 0
Expanded F10 (EF10) [26] 100 Min 0
Systems of linear equations (fSLE) [26] 200 Min 0
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Table 6
Results of the algorithms.

Algorithm (�p) D MMD BD OD T T 5 RR HIFF 1 HIFF 2 K 1 K 2 fSch fQN fRRas fGri fC fScha EF10 fSLE

ILS-�CHC (0.1) 848.3 30.8 18.9 72.7 1057.9 121.8 126.7 568.1 1025.4 1,093,127 11,771.1 1.2e−4 3.2e−4 2.2 2.2e−2 1.4e−1 8.2e−2 2.0 389.3
ILS-�CHC (0.25) 853.6 30.8 18.6 71.5 1065.8 122.8 134.4 606.2 1097.4 1,093,321 11,757.6 1.8e−4 4.8e−4 5.2e−1 1.1e−2 1.0e−1 1.1e−1 1.8 270.9
ILS-�CHC (0.50) 853.8 29.7 18.5 70.6 1062.2 123.7 130.9 595.0 1067.2 1,093,070 11,702.0 2.1e−4 6.3e−4 5.0e−1 1.8e−2 1.5e−1 1.7e−1 1.5 231.7
ILS-�CHC (0.75) 869.6 29.4 18.5 70.0 1057.0 129.6 129.6 548.6 915.4 1,092,181 11,697.5 2.4e−4 6.9e−4 4.2e−1 2.0e−2 1.1e−1 1.5e−1 1.6 266.7
SILS (0.1) 850.6 28.4 18.8 71.0 999.3 121.9 88.6 512.2 845.4 1,084,554 11,358.3 3.3e−4 6.8e−4 6.6e−1 1.6e−2 2.3e−1 8.1e−1 6.9 339.4
SILS (0.25) 853.3 28.3 18.6 69.8 984.5 123.3 53.4 440.3 784.5 1,071,749 11,218.4 7.7e−4 2.3e−3 6.8e−1 3.2e−2 2.9e−1 2.5 7.9 475.9
SILS (0.5) 858.1 28.3 18.5 69.0 984.3 125.6 36.6 414.6 763.4 1,059,084 10,677.0 8.3e−4 7.1e−3 1.4 3.4e−2 2.6e−1 5.0 1.3e+ 1 523.2
SILS (0.75) 866.3 28.3 18.6 69.2 979.9 131.1 33.4 439.0 782.2 1,053,160 10,091.3 9.7e−4 1.3e−2 2.8 4.1e−2 2.6e−1 8.4 1.5e+ 1 670.3
GILS (0.1) 849.6 28.4 18.7 71.7 1005.2 122.4 77.6 553.3 913.4 1,086,851 11,442.8 1.5e−4 5.2e−4 8.4e−1 1.2e−2 2.1e−1 1.3 5.2 335.2
GILS (0.25) 851.2 28.4 18.7 70.7 995.8 122.6 78.2 481.9 833.1 1,081,913 11,339.9 3.6e−4 7.7e−4 7.0e−1 1.8e−2 2.0e−1 1.8 5.4 412.2
GILS (0.5) 853.1 28.3 18.6 69.8 986.5 123.4 53.4 436.2 782.1 1,071,898 11,242.8 6.4e−4 2.3e−3 7.6e−1 2.7e−2 1.9e−1 2.5 9.4 509.1
GILS (0.75) 855.6 28.2 18.6 69.3 982.1 124.4 40.8 415.6 769.6 1,064,176 11,054.9 6.7e−4 4.6e−3 1.1 3.2e−2 2.1e−1 3.6 1.0e+ 1 519.4
PILS (0.1) 850.6 28.2 18.6 70.7 1004.9 121.9 75.7 510.9 879.9 1,085,840 11,418.8 1.4e−4 4.9e−4 6.2e−1 1.2e−2 3.0e−1 6.6e−1 7.6 354.7
PILS (0.25) 851.9 28.3 18.6 70.0 998.8 123.1 61.1 459.6 822.8 1,083,017 11,392.9 2.6e−4 7.0e−4 7.2e−1 1.6e−2 2.4e−1 7.0e−1 8.0 425.0
PILS (0.5) 857.0 28.3 18.6 69.8 992.0 125.4 57.0 449.5 811.0 1,079,100 11,355.9 2.9e−4 1.2e−3 9.2e−1 1.6e−2 2.4e−1 2.0 9.4 449.6
PILS (0.75) 866.0 28.3 18.6 70.0 995.0 130.8 57.9 459.2 829.0 1,077,558 11,352.9 3.4e−4 1.7e−3 1.1 1.6e−2 2.8e−1 2.3 1.1e+ 1 459.7
ILS/GM (0.1) 848.6 28.5 18.7 71.9 1010.2 121.7 81.1 542.1 905.4 1,086,622 11,459.9 1.6e−4 4.5e−4 7.4e−1 1.1e−2 2.3e−1 1.0 6.0 336.6
ILS/GM (0.25) 851.7 28.5 18.7 70.6 997.3 122.2 81.1 494.3 829.4 1,083,295 11,368.4 3.5e−4 7.9e−4 5.4e−1 1.8e−2 2.3e−1 1.0 7.7 437.5
ILS/GM (0.5) 853.2 28.3 18.6 69.7 987.8 123.2 52.5 445.2 778.8 1,073,329 11,244.4 7.1e−4 1.9e−3 6.2e−1 2.2e−2 2.6e−1 2.4 9.2 442.7
ILS/GM (0.75) 854.8 28.4 18.6 69.4 985.3 124.4 40.0 419.1 767.3 1,066,857 11,102.6 8.9e−4 4.6e−3 9.2e−1 3.1e−2 2.3e−1 3.3 1.1e+ 1 558.6
ILS-REx (0.1) 858.2 30.1 18.9 71.5 1037.6 123.3 11,2.2 573.0 960.8 1,089,066 11,618.3 2.0e−4 3.1e−4 3.4 1.8e−2 2.3e−1 1.3e−1 4.6 329.2
ILS-REx (0.25) 857.0 28.9 18.5 69.2 1005.6 126.2 68.5 471.6 830.5 1,077,038 11,258.6 7.0e−4 8.6e−4 1.6e−1 2.1e−2 2.1e−1 3.3e−1 2.7 288.9
ILS-REx (0.50) 860.3 28.7 18.5 68.5 990.1 127.3 43.5 427.4 784.5 1,064,490 10,816.5 8.1e−4 5.8e−3 1.4 4.7e−2 3.6e−1 2.9 7.4 459.7
ILS-REx (0.75) 868.7 29.0 18.6 69.1 987.0 132.3 42.4 469.2 833.4 1,052,373 10,205.9 1.0e−3 1.4e−2 2.9 5.2e−2 3.3e−1 8.2 1.3e+ 1 606.2
ILS-�GA (0.1) 851.8 30.8 18.9 72.5 1049.7 122.2 124.6 604.7 1038.2 1,091,402 11,694.7 1.2e−4 3.3e−4 2.5 1.5e−2 2.0e−1 8.2e−2 2.2 304.8
ILS-�GA (0.25) 857.3 29.1 18.6 69.4 1020.2 125.7 77.6 495.0 873.9 1,081,448 11,396.3 5.5e−4 9.4e−4 2.0e−1 1.2e−2 1.4e−1 2.2e−1 1.5 173.6
ILS-�GA (0.5) 861.1 28.8 18.5 68.5 1000.0 128.0 44.0 435.4 806.0 1,067,168 10,887.6 8.6e−4 6.0e−3 1.2 4.0e−2 2.8e−1 1.2 2.8 368.5
ILS-�GA (0.75) 872.2 29.2 18.6 69.3 990.9 135.0 41.9 491.4 878.2 1,054,886 10,305.1 1.1e−3 1.5e−2 2.7 5.1e−2 2.8e−1 6.1 9.5 482.7
ILS-RW (0.1) 847.2 27.1 18.3 68.0 950.6 121.8 51.0 411.1 757.3 1,067,993 11,193.3 5.0e−4 3.8e−3 1.9 3.0e−2 2.5e−1 1.6 8.6 427.4
ILS-RW (0.25) 848.4 27.9 18.5 68.5 962.8 122.2 39.4 411.0 763.6 1,062,459 11,128.5 7.4e−4 5.6e−3 1.6 3.3e−2 3.2e−1 4.1 1.0e+ 1 525.3
ILS-RW (0.5) 856.5 28.3 18.6 69.1 981.3 125.3 35.5 413.4 761.0 1,060,107 10,628.4 9.1e−4 7.4e−3 1.6 3.6e−2 3.0e−1 5.4 1.3e+ 1 574.9
ILS-RW (0.75) 869.3 27.8 18.5 69.9 998.8 131.8 36.5 415.9 765.6 1,057,666 10,433.2 9.1e−4 8.3e−3 1.6 4.8e−2 3.1e−1 5.9 1.3e+ 1 574.6
GRILS (0.1) 875.2 28.3 18.5 69.8 995.4 135.2 43.8 413.8 762.8 1,061,194 10,976.9 7.0e−4 5.1e−3 1.5 3.4e−2 2.3e−1 2.0 7.7 391.5
GRILS (0.25) 863.4 28.4 18.5 69.5 991.0 128.2 44.3 417.4 762.6 1,060,786 10,992.6 8.7e−4 6.0e−3 1.4 3.5e−2 2.9e−1 3.6 8.1 479.6
GRILS (0.5) 859.2 28.4 18.5 69.5 989.1 126.0 44.8 417.8 762.0 1,062,518 10,977.8 9.0e−4 6.8e−3 1.3 3.8e−2 2.6e−1 5.2 1.3e+ 1 527.3
GRILS (0.75) 864.6 28.3 18.5 69.5 990.3 130.0 43.0 413.3 768.5 1,061,962 10,990.9 7.6e−4 6.3e−3 1.4 3.7e−2 2.6e−1 4.0 1.5e+ 1 627.8
CILS-wc (0.1) 855.0 27.9 18.5 69.5 977.2 124.7 61.1 452.9 786.1 1,078,104 11,294.0 5.4e−4 1.7e−3 1.2 3.2e−2 8.2e−2 3.5 4.8 454.9
CILS-wc (0.25) 855.2 28.1 18.6 69.2 975.9 124.7 45.4 424.2 776.8 1,067,631 11,191.3 7.0e−4 3.9e−3 1.2 3.3e−2 8.2e−2 3.7 4.8 454.9
CILS-wc (0.5) 858.0 28.3 18.5 69.0 982.1 125.5 36.5 413.2 767.1 1,060,215 10,626.9 8.7e−4 7.4e−3 1.3 3.4e−2 8.2e−2 3.6 4.8 454.9
CILS-wc (0.75) 869.7 28.0 18.6 69.7 991.9 132.3 34.9 425.3 774.0 1,054,873 10,247.6 7.4e−4 9.0e−3 1.6 3.5e−2 8.2e−2 4.0 4.8 454.9
CILS-3 (0.1) 855.0 27.8 18.5 69.3 975.9 124.7 57.4 442.8 779.8 1,074,807 11,263.1 5.0e−4 1.9e−3 1.3 2.8e−2 8.2e−2 3.5 4.8 454.9
CILS-3 (0.25) 854.9 28.1 18.5 69.1 974.2 124.7 44.8 422.0 774.1 1,068,276 11,174.8 7.0e−4 3.9e−3 1.1 3.1e−2 8.2e−2 3.7 4.8 454.9
CILS-3 (0.5) 857.9 28.3 18.5 69.1 982.9 125.6 36.5 414.1 767.0 1,057,433 10,683.8 8.6e−4 7.2e−3 1.4 3.8e−2 8.2e−2 3.6 4.8 454.9
CILS-3 (0.75) 869.6 28.1 18.5 69.7 992.9 132.2 35.8 423.1 771.1 1,054,968 10,287.4 7.4e−4 8.8e−3 1.7 3.9e−2 8.2e−2 4.0 4.8 454.9
MA-CHC 855.8 28.1 18.5 69.1 977.5 125.2 61.3 431.5 768.7 1,084,379.9 11,409.4 7.7e−4 8.2e−4 1.2 2.5e−2 4.6e−2 3.5 2.6 373.7
MA-Hart 853.1 27.7 18.4 68.4 973.2 123.9 131.4 467.1 776.9 1,095,168.8 11,800.7 1.3e−4 7.8e−4 9.4e−1 1.7e−2 2.0e−1 2.2 11 534.5
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strings using binary reflected Gray coding, with 20 binary genes as-
signed to each variable. The dimension of the search space is 10 for
fSLE and 5 for the remaining continuous test functions. These con-
tinuous functions were considered for our experimental study as
benchmark functions for comparison purposes between search algo-
rithms that handle binary-coded solutions. Thus, our pretension was
not to improve the results obtained by other search algorithms on
these problems, such as G-CMA-ES [6], which is long recognized as
one of the best optimizers for continuous problems. In fact, it was
the winner of the real-parameter optimization competition organized
in the 2005 IEEE congress on evolutionary computation (as recognized
by Langdon [59]).

Appendix B. The Wilcoxon matched-pairs signed-ranks test

Wilcoxon's test is used for answering this question: Do two sam-
ples represent two different populations? It is a non-parametric proce-
dure employed in a hypothesis testing situation involving a design
with two samples. It is the analogous of the paired t-test in non-
parametrical statistical procedures; therefore, it is a pairwise test
that aims to detect significant differences between the behavior of
two algorithms.

The null hypothesis for Wilcoxon's test is H0 : �D = 0; in the un-
derlying populations represented by the two samples of results, the
average of the difference scores equals zero. The alternative hypoth-
esis is H1 : �D �0, but also can be used H1 : �D >0 or H1 : �D <0 as
directional hypothesis.

In the following, we describe the test computations. Let di be the
difference between the performance scores of the two algorithms on
i-th out of N functions. The differences are ranked according to their
absolute values; average ranks are assigned in case of ties. Let R+ be
the sum of ranks for the functions on which the second algorithm
outperformed the first, and R− the sum of ranks for the opposite.
Ranks of di = 0 are split evenly among the sums; if there is an odd
number of them, one is ignored:

R+ =
∑

di>0

rank(di)+
1
2

∑

di=0
rank(di)

and

R− =
∑

di<0

rank(di)+
1
2

∑

di=0
rank(di).

Let T be the smallest of the sums, T=min(R+,R−). If T is less than
or equal to the value of the distribution of Wilcoxon for N degrees
of freedom (Table B.12 in [104]), the null hypothesis of equality of
means is rejected.

The obtaining of the p-value associated to a comparison is per-
formed by means of the normal approximation for the Wilcoxon T
statistic (Section VI, Test 18 in [89]). Furthermore, the computation
of the p-value for this test is usually included in well-known statis-
tical software packages (SPSS, SAS, R, etc.).

Appendix C. Results of the algorithms

Table 6 outlines the average of the best fitness function found at
the end of each run for all algorithms executed for the experimental
studies carried out in the paper.
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