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Abstract

The performance of information retrieval systems (IRSs) is usually measured using two different criteria, precision and recall.
Precision is the ratio of the relevant documents retrieved by the IRS in response to a user’s query to the total number of documents
retrieved, whilst recall is the ratio of the number of relevant documents retrieved to the total number of relevant documents for the
user’s query that exist in the documentary database. In fuzzy ordinal linguistic IRSs (FOLIRSs), where extended Boolean queries
are used, defining the user’s queries in a manual way is usually a complex task. In this contribution, our interest is focused on the
automatic learning of extended Boolean queries in FOLIRSs by means of multi-objective evolutionary algorithms considering both
mentioned performance criteria. We present an analysis of two well-known general-purpose multi-objective evolutionary algorithms
to learn extended Boolean queries in FOLIRSs. These evolutionary algorithms are the non-dominated sorting genetic algorithm
(NSGA-II) and the strength Pareto evolutionary algorithm (SPEA2).
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Information retrieval (IR) may be defined as the problem of selecting documentary information from storage in
response to searches provided by a user in form of queries [1,2]. Information retrieval systems (IRSs) deal with
documentary databases containing textual, pictorial or vocal information. They process user queries to allow the user
to access relevant information in an appropriate time interval.
Most of the commercial IRSs are based on the Boolean IR model [3], which presents some limitations. Due to

this fact, some paradigms have been designed to extend this IR model and overcome its problems. One of the main
drawbacks is that Boolean IRSs lack the ability to deal with imprecision and subjectivity, both of which are inherently
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present in the IR process. This is the reason why fuzzy IR [4–6] has emerged as an active research area in the past
decades.
Many fuzzy IR models assume numeric weights to characterize the contents of the desired documents [4,7–9].

However, it seems natural to characterize the contents of the desired documents by explicitly associating a linguistic
weight to elements in a query, such as “important” or “very important”, instead of a numerical value. So, some fuzzy
linguistic IRSmodels [10–18] have been proposed using a fuzzy linguistic approach [19–21] tomodel the queryweights.
We call these models “fuzzy ordinal linguistic IRSs” (FOLIRSs).
FOLIRSs present a query language that allows the user to build fuzzy queries composed of statements of ordinal

linguistic weighted terms joined by Boolean operators AND, OR and NOT. This query language allows the system
to improve the retrieval activity solving the problems associated with the Boolean IR model. However, to build fuzzy
ordinal linguistic queries (FOLQs) is not usually easy neither very intuitive [1]. This problem becomes a more serious
issue if the users do not have previous experience with the model. A possible solution to overcome this problem is to
build automatic aid tools to assist users to express their information needs by means of FOLQs. The inductive query by
example (IQBE) paradigm [22], where a query describing the information contexts of a set of key documents provided
by the user is automatically derived or learned, can be an useful paradigm to assist users to express FOLQs. The
most well-known, in the context of fuzzy IR, IQBE approach is that of Kraft et. al. [23], which is based on genetic
programming (GP) [24], called IQBE-GP, that derives fuzzy queries with numeric weights. As it is usual in the field
[25] this approach is guided by a weighted fitness function combining the classical retrieval accuracy criteria, precision
and recall [3]. We will use this approach of IQBE-GP together with a FOLIRS model in this paper.
Given that the retrieval performance of an IRS is usually measured in terms of precision and recall criteria, the

optimization of any of its components, and concretely the automatic learning of queries, is a clear example of a multi-
objective problem. Evolutionary algorithms (EAs) have been commonly used for IQBE purposes and their application
in the area has been based on combining both criteria in a single scalar fitness function by means of a weighting scheme
[25]. However, there is a kind of EAs specially designed for multi-objective problems, multi-objective evolutionary
algorithms (MOEAs) which are able to obtain non-dominated solutions to the problem [26,27]. This characteristic
of MOEAs, applied to IR—specially to the context of the IQBE paradigm, denoted as IQBE MOEA—allows one to
derive a number of queries with a different precision–recall trade-off, which improves the aid possibilities to the users
in the formulation of their FOLQs.
In the literature there are not many IQBE MOEAs to derive queries in IRSs, and besides, they are based on old-

fashioned MOEAs. Three examples are:

• IQBE-MOGA-P [28] based onmulti-objective genetic algorithm (MOGA) [29] and genetic algorithm-programming
[30] to learn fuzzy queries with numeric weights.

• IQBE-SPEA [31] based on strength Pareto evolutionary algorithm (SPEA) [32] and GP to derive Boolean queries.
• IQBE-SPEA-GA [33] based on SPEA and Genetic Algorithms [34] to learn fuzzy multi-weighted queries with
ordinal linguistic weights in a multi-granular FOLIRS [14].

Although these approaches have a great performance, there exist other more advanced MOEAs in the specialized
literature [26] that have been never used before in the IQBE context. Those MOEAs can improve the performance
of the existing IQBE MOEAs in the context of automatic derivation of queries (Boolean queries, numeric weighted
queries or ordinal weighted queries) in IRSs.
In this work, an analysis of the performance of two well-known and successful MOEAs applied to the automatic

learning of weighted queries, with linguistic weights, in the context of a FOLIRSmodel is presented. TheMOEAs used
are: the non-dominated sorting genetic algorithm (NSGA-II) [35] and the SPEA2 [36]. Both are adapted to use GP
components and optimize both objectives (precision and recall) simultaneously, extending the Kraft et. al.’s IQBE-GP
[23] proposal to work with ordinal linguistic weights into the multi-objective context.
The analysis of the proposal will include the use of the Cranfield and CACM collections [1,37], the evaluation of

the Pareto fronts with C measure and hypervolume indicator, the analysis of the number of derived queries, and the
comparison with the classical IQBE-GP proposal [23].
To do that, this paper is structured as follows. In Section 2 the IQBE paradigm and the FOLIRS model used in

this paper are drawn. Section 3 describes the two MOEAs with GP components that are studied. In Section 4 the
experimental framework and analysis are presented. Finally, some concluding remarks are pointed out in Section 5.
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2. Preliminaries: IQBE and FOLIRS

In this section, we introduce the IQBE paradigm and the foundations of the FOLIRS model used in this paper,
including the ordinal fuzzy linguistic approach, their components and procedure of evaluation.

2.1. The IQBE paradigm

The IQBE paradigm was proposed by Chen [22] as “a process in which searchers (users) provide documents
(examples) and an algorithm induces (or learns) the key concepts of the examples with the purpose of finding other
equally relevant documents”. In this way, IQBE can be seen as a technique to assist users in the query building process
by using automatic learning methods.
It works taking a set of relevant documents (and optionally non-relevant documents) provided by the user (they can

be obtained from a preliminary query or from a browsing process through the documentary database) and applying an
automatic learning process to generate a query that describes the user information needs (represented by the previous
set of documents). The query that is obtained can be executed in other IRSs to obtain new relevant documents. In this
way, it is not necessary for the user to interact with the IR process which is mandatory in other techniques for query
refinement as the relevance feedback [37].
Several IQBE EAs for different IR models have been proposed and revised in [25]. The most used IQBE models are

based on GP components, with queries being represented by expression syntax trees and the algorithms are articulated
on the basis of the classic operators: cross, mutation and selection.

2.2. Fuzzy ordinal linguistic IRSs

In the following subsections we briefly present the components of the FOLIRS model used in this work, the ordinal
fuzzy linguistic approach, the documentary database, the query subsystem, the matching subsystem and the evaluation
model.

2.2.1. The ordinal fuzzy linguistic approach
The ordinal fuzzy linguistic approach is a fuzzy approximation technique appropriate to deal with qualitative aspects

of problems [13]. It models linguistic information bymeans of ordinal linguistic labels supported by a linguistic variable
[19–21]. A linguistic variable is defined by means of a syntactic rule and a semantic rule. In an ordinal fuzzy linguistic
approach the syntactic rule is defined by considering a finite and totally ordered label set S = {si }, i ∈ {0, . . . ,G}
in the usual sense, i.e., si �s j if i� j , with odd cardinality (such as 7 or 9 labels), where the mid term represents an
assessment of “approximately 0.5”, and the rest of the terms being placed symmetrically around it. The semantics of
the linguistic term set is established from the ordered structure of the term set by considering that each linguistic term
for the pair (si , sG−i ) is equally informative.

Example 1. A set with nine linguistic labels could be S = {s0 = Null(N ), s1 = Extremely_Low(EL),
s2 = Very_Low(V L), s3 = Low(L), s4 = Medium(M), s5 = High(H ), s6 = Very_High(V H ), s7 =
Extremely_High(EH ), s8 = Total(T O)}.

In any linguistic approach we need linguistic information management operators, such as

• Minimization operator: MIN(sa, sb) = sa if a <= b,
• Maximization operator: MAX(sa, sb) = sa if a >= b,
• Negation operator: NEG(si ) = s j | j = G − i,
• Aggregation operator: Usually to combine ordinal linguistic information we can use aggregation operators based on
symbolic computation, for example the LOWA operator [38], or the classical t-norm MIN and t-conorm MAX in
the linguistic context.

2.2.2. The documentary database
This component stores the documents and the representation of their contents. Textual documents representation is

typically based on index terms (that can be either single terms or sequences), which work as content identifiers for the
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documents.We assume that the database is built like in usual IRSs [1,2]. Therefore, IRS–user interaction is unnecessary
because it is built automatically. The database stores a finite set of documents D = {d1, . . . , dm}, a finite set of index
terms T = {t1, . . . , tl}, and the representation Rdj of each document d j characterized by a numeric indexing function

F : D×T → [0, 1] such that Rdj = ∑l
i=1 F(d j , ti )/ti is the representation of d j in fuzzy sets notation.F(d j , ti ) = 0

implies that the document d j contents do not deal at all with the concept(s) represented by the index term ti and
F(d j , ti ) = 1 implies that the document d j is perfectly represented by the concept(s) indicated by ti . Using numeric
values in (0,1), F can weight index terms according to their significance in describing the content of a document in
order to improve the retrieval of documents.

2.2.3. The query subsystem
It allows users to formulate their information needs (queries) and presents the relevant documents which are retrieved

by the system. To do this, each query is expressed as a combination of weighted index terms which are connected by the
Boolean operators AND (∧), OR (∨) andNOT (¬). The query component allows users to weigh, using ordinal linguistic
values, each query term according to a threshold semantics. By assigning ordinal linguistic weights in queries, users
specify linguistic restrictions on the documents that the FOLIRS has to satisfy in the retrieval activity. By associating
threshold weights [4,9,39] with terms in a query, the user is asking to see all the documents that are sufficiently related
to the topics represented by such terms. As in [10], we use the linguistic variable Importance to express the ordinal
linguistic weights associated with the query terms. Thus, we consider a set of ordinal linguistic values S to express the
linguistic weights. Then, we define a linguistic weighted Boolean query as any legitimate Boolean expression whose
atomic components (atoms) are tuples 〈ti , wi 〉 belonging to the set, T × S, ti ∈ T and wi ∈ S being an ordinal value
of the linguistic variable Importance, modelling a threshold semantics. Accordingly, the setQ of the legitimate queries
is defined by the following syntactic rules:

1. ∀q = 〈ti , wi 〉 ∈ T × S → q ∈ Q.

2. ∀q, p ∈ Q → q ∧ p ∈ Q.

3. ∀q, p ∈ Q → q ∨ p ∈ Q.

4. ∀q ∈ Q → ¬q ∈ Q.

5. All legitimate queries q ∈ Q are only those obtained by applying rules 1–4, inclusive.

2.2.4. The matching subsystem
It evaluates the degrees (the retrieval status value) to which the document representation satisfies the requirements

expressed in the query, and it retrieves the documents that are judged to be relevant. The evaluation subsystem is
implemented by the matching or evaluation function E , which assesses the relationship betweenQ andD by means of
ordinal linguistic RSVs taken from the linguistic variable “Relevance”. Therefore, the goal of E consists of evaluating
documents in terms of their relevance to an ordinal linguistic weighted query. E is defined by means of a constructive
bottom-up evaluation process that acts in two steps:

1. Firstly, the documents are evaluated according to their relevance only to the weighted terms of the query. In this
step, a partial relevance degree is assigned to each document with respect to every weighted term in the query.

2. Secondly, the documents are evaluated according to their relevance to the Boolean combination of the weighted
terms (their partial relevance degree), and so on, working in a bottom-up fashion until the whole query is processed.
In this step, a total ordinal linguistic relevance degree is assigned to each document. It is then used to rank the
documents from the most relevant to the less relevant one. The final ordinal linguistic relevance degree is taken
from the linguistic variable Relevance.

Thus, given any query q ∈ Q, we define E : D × Q → S according to the following four evaluation rules:

1. If q = 〈ti , wi 〉 then

E(d j , q) = g(d j , ti , wi ).
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where g : D × T × S → S is the linguistic matching function to model the threshold semantics defined in the
following expression:

g(d j , ti , wi ) =
{
sa if sa �wi ,

s0 otherwise,

where sa = Label(F(d j , ti )), Label : [0, 1] → S is a function that assigns a label in S to a numeric value r ∈ [0, 1]
according to the expression: Label(r ) = si with i = round(G · r ), being round(·) the usual “round” operator.

2. If q = 〈∧k=1qk〉, qk ∈ Q, then

E(d j , q) = MIN(RSV1
d j

, . . . ,RSVk
d j
),

with RSVk
d j

= E(d j , qk) ∀k.
3. If q = 〈∨k=1qk〉, qk ∈ Q, then

E(d j , q) = MAX(RSV1
d j

, . . . ,RSVk
d j
),

with RSVk
d j

= E(d j , qk) ∀k.
4. If q is negated then

E(d j , ¬q) = NEG(E(d j , q)).

When the evaluation subsystem finishes, the FOLIRS presents the retrieved documents arranged in ordinal linguistic
relevance classes in decreasing order of E in such a way that the maximal number of classes is limited by the cardinality
of the set of labels chosen for the linguistic variable Relevance.

2.2.5. Evaluation of IRSs
There are several ways to measure the quality of an IRS, such as the system efficiency and effectiveness, and several

subjective aspects related to user satisfaction [1]. Traditionally, the retrieval effectiveness is based on the document
relevance with respect to the users needs. There are different criteria to measure this aspect, but precision (P) and recall
(R) [3] are the most used. Precision is the ratio of the relevant documents retrieved by the IRS in response to a query and
the total number of documents retrieved, whilst recall is the ratio between the number of relevant documents retrieved
and the total number of relevant documents for the query that exist in the database [3]. The mathematical expression
of each of them is

P = Drr

Dtr
; R = Drr

Dr t
,

where Drr is the number of relevant documents retrieved, Dtr is the total number of documents retrieved and Dr t is
the total number of relevant documents for the query which exist in the database. P and R are defined in [0, 1], being 1
the optimal value.
We notice that the only way to know all the relevant documents existing for a query in the database (value used in

the R measure) is to evaluate all documents. Due to this fact and taking into account that relevance is subjective, there
are some classic documentary databases (TREC, CACM, Cranfield, ADI, CISI, etc.) available, each one with a set of
queries for which the relevance judgments are known, so that they can be used to verify the new proposals in the field
of IR [1,37]. In this contribution, we use the Cranfield and CACM collections.

3. Structure of the MOEAs with GP components

For the purpose of this research, two well-known and widely used MOEAs have been selected for performance
evaluation: NSGA-II [35] and SPEA2 [36] (that improves the classical SPEA behaviour). A brief overview of these
algorithms is given in this section. First, we introduce some basic definitions which are necessary in this research.
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f1

f2

dominated by f

f

Fig. 1. Concept of dominance.

3.1. Objectives and evaluation of MOEAs

In multi-objective optimization problems, the definition of the quality concept is substantially more complex than in
single-objective ones, since the processes of optimization imply several different objectives.
The key concepts to evaluate MOEAs are the dominance relation and the Pareto sets.
The algorithms presented in this paper assume the two classical criteria to evaluate IRSs, i.e., precision and recall [3]

whose expressions are introduced in Section 2.2.5. The studied IQBEMOEAapproaches assume that all objectives have
to be maximized. The solutions are represented by objective vectors, which are compared according to the dominance
relation defined below and displayed in Fig. 1.

Definition 1 (Dominance relation). Let f, g ∈ Rm . Then f is said to dominate g, denoted as f 
 g, iff

1. ∀i ∈ {1, . . . ,m} : fi �gi ,
2. ∃ j ∈ {1, . . . ,m} : f j > g j .

Based on the concept of dominance, the Pareto set can be defined as follows.

Definition 2 (Pareto set). Let F ⊆ Rm be a set of vectors. Then the Pareto set F∗ of F is defined as follows: F∗
contains all vectors g ∈ F which are not dominated by any vector f ∈ F , i.e.,

F∗ := {g ∈ F |� f ∈ F : f 
 g}.
Several quantitative measures based on the Pareto set concept have been proposed in the specialized literature
[26,27,40,41]. Two of them are the C measure, and the hypervolume indicator.

Definition 3 (Coverage of two sets [42]). Let A, B be two sets of objective vectors. The function C maps the ordered
pair (A, B) to the interval [0, 1]:

C(A, B) = |{a ∈ A; ∃b ∈ B : b 
 a}|
|A|

measures the ratio of individuals of the Pareto A that are dominated by individuals of the Pareto B. A value of 1
indicates that all individuals of the Pareto A are dominated by individuals of the Pareto B; on the other hand, a value of
0 indicates that none of the individuals of A is dominated by individuals of B. Note that always both directions have to
be considered, since C(A, B) is not necessarily equal to 1 − C(B, A).

Definition 4 (Hypervolume [32]). This indicator measures the hypervolume of that portion of the objective space that
is dominated by a Pareto set A, and is to be maximized (see Fig. 2). In order to measure this quantity, the objective
space must be bounded. If it is not, a bounding reference point that is dominated by all points should be used, as shown
in Fig. 2. In our case, the reference point is (0, 0).

We will use both C and hypervolume in this study.
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Fig. 2. The hypervolume indicator.

3.2. NSGA-II-GP

NSGA-II [35] is one of the most well-known and frequently usedMOEAs for general multi-objective optimization in
the literature. As in other EAs, first NSGA-II generates an initial population. Then an offspring population is generated
from the current population by selection, crossover and mutation. The next population is constructed from the current
and offspring populations. The generation of an offspring population and the construction of the next population are
iterated until a stopping condition is satisfied. NSGA-II algorithm has two features, which make it a high-performance
MOEA. One is the fitness evaluation of each solution based on Pareto ranking and a crowding measure, and the other
is an elitist generation update procedure.
Each solution in the current population is evaluated in the following manner. First, Rank 1 is assigned to all non-

dominated solutions in the current population. All solutions with Rank 1 are tentatively removed from the current
population. Next, Rank 2 is assigned to all non-dominated solutions in the reduced current population. All solutions
with Rank 2 are tentatively removed from the reduced current population. This procedure is iterated until all solutions
are tentatively removed from the current population (i.e., until ranks are assigned to all solutions). As a result, a
different rank is assigned to each solution. Solutions with smaller ranks are viewed as being better than those with
larger ranks. Among solutions with the same rank, an additional criterion called a crowding measure is taken into
account. The crowding measure for a solution calculates the distance between its adjacent solutions with the same rank
in the objective space. Less crowded solutions with larger values of the crowding measure are viewed as being better
than more crowded solutions with smaller values of the crowding measure.
A pair of parent solutions are selected from the current population by binary tournament selection based on the

Pareto ranking and the crowding measure. When the next population is to be constructed, the current and offspring
populations are combined into a merged population. Each solution in the merged population is evaluated in the same
manner as in the selection phase of parent solutions using the Pareto ranking and the crowding measure. The next
population is constructed by choosing a specified number (i.e., population size) of the best solutions from the merged
population. Elitism is implemented in NSGA-II algorithm in this manner.
Considering the components previously defined and the descriptions of the authors in [35], NSGA-II consists of the

next steps:

1. A combined population Rt is formed with the initial parent population Pt and offspring population Qt (initially
empty).

2. Generate all non-dominated fronts F = (F1, . . . , Fm) of Rt .
3. Initialize Pt+1 = ∅ and i = 1.
4. Repeat until the parent population is filled.
5. Calculate crowding-distance in Fi .
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Rt

Pt

Qt

F1

F2 Pt+1

F3

Fm

Nondominated
sorting

Rejected

Crowding distance
sorting

Fig. 3. NSGA-II procedure.

6. Include i-th non-dominated front in the parent population.
7. Check the next front for inclusion.
8. Sort in descending order using crowded-comparison operator.
9. Choose the first (N − |Pt+1|) elements of Fi .

10. Use selection, crossover and mutation to create a new population Qt+1.
11. Increment the generation counter.

The general NSGA-II procedure is drawn in Fig. 3.
In this paper NSGA-II will be adapted to use GP components. It will be denoted as IQBE-NSGA-II-GP.

3.3. SPEA2-GP

SPEA2 [36] was designed to overcome the problems of its predecessor for general multi-objective optimization,
SPEA algorithm [32]. In contrast with SPEA, SPEA2: (1) incorporates a fine-grained fitness assignment strategy which
takes into account for each individual the number of individuals that it dominates and the number of individuals by
which it is dominated; (2) uses the nearest neighbour density estimation technique which guides the search more
efficiently; (3) has an enhanced archive truncation method which guarantees the preservation of boundary solutions.
Next, we briefly describe the complete SPEA2 algorithm.
SPEA2 uses a fixed population and archive size. The population forms the current base of possible solutions, while the

archive contains the current solutions. The archive is constructed and updated by copying all non-dominated individuals
in both archive and population into a temporary archive. If the size of this temporary archive differs from the desired
archive size, individuals are either removed or added as necessary. Individuals are added by selecting the best dominated
individuals, while the removal process uses a heuristic clustering routine in the objective space. The motivation for this
is that one would like to try to ensure that the archive contents represent distinct parts of the objective space. Finally,
when selecting individuals for participating in the next generation all candidates are selected from the archive using a
binary tournament selection scheme. Considering the components defined and the descriptions of the authors in [36],
SPEA2 algorithm consists of the next steps:
Input:

• N (population size),
• N (external population size),
• T (maximum number of generations).

Output: A (non-dominated set).

1. Generate an initial population P0 and create the empty external population P0 = ∅.
2. Calculate fitness values of individuals in Pt and Pt .
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AND

AND OR

<t9,w9><t4,w4><t1,w1>

<t7,w7>

NOT

Fig. 4. An example of linguistic weighted Boolean query.

3. Copy all non-dominated individuals in Pt
⋃

Pt to Pt+1. If |Pt+1| > N apply truncation operator. If |Pt+1| < N
fill with dominated in Pt

⋃
Pt .

4. If t�T , return A and stop.
5. Perform binary tournament selection with replacement on Pt+1 in order to fill the mating pool.
6. Apply crossover and mutation operators to the mating pool and set Pt+1 to the resulting population. Go to step 2

with t = t + 1.

In this paper SPEA2 will be adapted to use GP components. It will be denoted as IQBE-SPEA2-GP.

3.4. GP components for MOEAs

The two MOEAs-GP studied in this paper share the following components:

Codification scheme: Extended Boolean queries are encoded in expression syntax trees, whose terminal nodes are
atoms (terms and linguistic weights 〈ti , wi 〉) as defined in Section 2.2.3, and whose inner nodes
are the Boolean operators AND, OR and NOT. Besides, each terminal node has an ordinal
linguistic value associated, corresponding to the threshold semantics. Fig. 4 shows a graphical
example of this kind of queries. Hence, the natural representation is to encode the query within
a tree and to work with a GP algorithm [24] to evolve it, as done by previous approaches devoted
to the derivation of Boolean queries [31,43] or extended Boolean queries (fuzzy queries with
numerical weights) [23,44,45].

Crossover operator: Subtrees are randomly selected and crossed over in two randomly selected queries, as drawn in
Fig. 5.

Mutation operator: A randomly selected term,weight or operator is changed in a randomly selected tree.An example
is shown in Fig. 6.

Initial population: All individuals of the first generation are generated in a random way. The population is created
including all the terms in the relevant documents provided by the user. Those that appear in
more relevant documents will have greater probability of being selected.

4. Experimental study

This section describes the used experimental framework and analysis.

4.1. Experimental framework

The experimental study has been developed using the Cranfield and CACM collections [1,37]:

• Crandfield is composed of 1398 documents about Aeronautics.
• CACM contains 3204 document published in the journal Communications of the ACM between 1958 and 1979.
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AND

AND OR

<t5 ,w5><t3, w3> <t6, w6>

AND

AND <t5, w5>

AND

<t1, w1>

<t3, w3>

<t4, w4>

OR

<t9, w9> NOT

<t ,w >

AND

AND

AND

<t1, w1>

<t3, w3>

<t4, w4>

OR

<t9, w9> NOT

OR

<t5,w5> <t6,w6>

Fig. 5. An example of crossover on two queries.

AND

AND <t5, w5>

AND

<t1, w1>

<t4, w4>

OR

<t9, w9> NOT

AND

AND

AND

<t1, w1>

<t3, w3>

<t4, w4>

<t9, w9> NOT

AND

<t6, w6>

<t5, w5>

Fig. 6. An example of mutation.

In both collections, the textual documents have been automatically indexed in the usual way 1 by first extracting
the non-stop words and performing a stemming process, thus obtaining a total number of 3857 and 7562 different
indexing terms, respectively. Then a t f · id f scheme [37] has been used to generate the term weights in the document
representations. Both collections have a number of test queries associated (225 in the Cranfield collection and 64 in the
CACMcollection). In our problem, each test query generates a different experiment and our goal involves automatically
deriving a set of queries that describes the information contents of the set of documents associated with it. Instead of
working with the complete test query set, we have selected a representative sample that allows to study the behaviour
of the studied IQBE MOEA-GP approaches.
The role of the user who provides documents will be played by the test queries associated with the considered

collection, and more exactly, by the relevance judgements associated with them. In this way, for example, if there are
29 relevant documents for test query #1 in the Cranfield collection, this test query will mimic a situation in which the
user provides 29 documents related to his information needs. Besides, the remaining 1369 documents (1398–29) will
be considered as non-relevant documents for the IQBE process.
The studied IQBEMOEA-GP approaches generate a set of queries from the relevant and the non-relevant documents

sets. To do so, it is necessary to consider sufficiently representative number of positive examples (relevant documents),
so test queries with more relevant documents associated have been selected:

• Among the 225 test queries associated with the Cranfield collection, those test queries presenting 20 or more relevant
documents have been taken into account. The seven resulting test queries (number #1, #2, #23, #73, #157, #220 and
#225) have 29, 25, 33, 21, 40, 20 and 25 relevant documents associated, respectively.

1 To do so, we use the classical Salton’s SMART IRS [46].
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Table 1
Common parameters.

Parameter Value

Cross probability 0.8
Mutation probability 0.2
Nodes per query 19 maximum
Population size (M) 800
Elite population 200
Other parameters Term set S with cardinality G + 1 = 9

Table 2
Average results of the C measure for each test query and the two studied IQBE MOEAs-GP on Cranfield and CACM collections.

Cranfield CACM

Query C(X, Y ) C(Y, X ) Query C(X, Y ) C(Y, X )

#1 0.082 0.976 #10 0.148 1.000
#2 0.111 0.974 #14 0.352 1.000
#23 0.047 0.978 #25 0.113 0.975
#73 0.228 0.959 #26 0.163 1.000
#157 0.028 0.972 #43 0.232 0.996
#220 0.211 0.959 #58 0.322 1.000
#225 0.174 0.943 #59 0.143 1.000

#61 0.175 0.967

X = IQBE-NSGA-II-GP, Y = IQBE-SPEA2-GP.

• On the other hand, CACM provides 64 test queries, of which those that have 30 or more relevant documents have
been selected. The eight resulting test queries (number #10, #14, #25, #26, #43, #58, #59, #61) have 35, 44, 51, 30,
41, 30, 43 and 31 relevant documents associated, respectively.

The studied IQBEMOEAs-GP in this contribution have been run 30 times for each test query and collection (a total
of 900 runs) with different initializations for each selected test query. The number of chromosome evaluations is 50,000
per run. We use a 3.4GHz Pentium IV computer with 1Gb of RAM. The common parameter values considered are
presented in Table 1.

4.2. Results and analysis

From each run a Pareto set is obtained and a later filtration process is performed in the decision space in order to
remove those queries that are identical to another. The two filtered Pareto sets obtained by each run and test query are
compared with the performance C measure and the hypervolume indicator.

In Table 2 we present the average results for the 30 runs of the C measure for each pair of IQBE MOEAs-GP and
test query for the Cranfield and CACM collections, where values in bold denote the best results.
In Table 3 we present the average results for the on 30 runs of the hypervolume indicator for each pair of IQBE

MOEAs-GP and test query for the Cranfield and CACM collections, where values in bold denote the best results. Note
that HV(X) denotes the hypervolume indicator of the Pareto set achieved by the IQBE MOEA-GP X.
The experimental results show that IQBE-NSGA-II-GP, is the IQBE MOEA-GP approach that achieves a better

performance, i.e., it achieves better non-dominated solutions sets (view values in bold in Tables 2 and 3) in the process
of learning FOLQs than IQBE-SPEA2-GP.
In Table 4 we present the average number of different queries in the decision space for the 30 runs achieved by each

IQBE MOEAs-GP for each test query for the Cranfield and CACM collections, where values in bold denote the best
results. These results show that IQBE-NSGA-II-GP, is the IQBE MOEA-GP approach that achieves more different
queries, in both decision and objective space, for a unique run.
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Table 3
Average results of the hypervolume indicator for each test query and the two studied IQBE MOEAs-GP on Cranfield and CACM collections.

Cranfield CACM

Query HV (X ) HV (Y ) Query H (X ) H (Y )

#1 0.425 0.356 #10 0.321 0.273
#2 0.471 0.390 #14 0.267 0.216
#23 0.379 0.308 #25 0.245 0.204
#73 0.467 0.376 #26 0.372 0.317
#157 0.331 0.272 #43 0.285 0.239
#220 0.480 0.392 #58 0.345 0.293
#225 0.431 0.359 #59 0.274 0.229

#61 0.364 0.309

X = IQBE-NSGA-II-GP, Y = IQBE-SPEA2-GP.

Table 4
Average number of different queries for each test query and the two studied IQBE MOEAs-GP on Cranfield and CACM collections.

Cranfield CACM

Query X Y Query X Y

#1 232.77 11.70 #10 340.93 12.50
#2 333.67 10.87 #14 500.10 12.27
#23 307.43 9.43 #25 478.33 14.40
#73 456.50 9.20 #26 323.23 11.53
#157 279.97 10.77 #43 417.23 13.80
#220 390.53 10.17 #58 284.73 10.73
#225 312.53 9.90 #59 355.90 14.00

#61 320.70 12.37

X = IQBE-NSGA-II-GP, Y = IQBE-SPEA2-GP.
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Fig. 7. Pareto sets achieved by IQBE-NSGA-II-GP, IQBE-SPEA2-GP and Kraft et. al.’s IQBE-GP for the test query #1 on Cranfield collection.

In Fig. 7 we present the queries achieved 2 in a unique run, by IQBE-NSGA-II-GP, IQBE-SPEA2-GP and the Kraft
et. al.’s IQBE-GP proposal, adapted to use ordinal linguistic weights in the objective space. In it, we can see as IQBE-
NSGA-II-GP gets a good set of solutions, with a good precision–recall trade-off. It also improves the performance of
the Kraft et. al.’s IQBE-GP proposal.

2 The results correspond to the test query #1 of Cranfield collection.
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5. Conclusions

In this contribution, an analysis of performance, in the FOLIRSs context, of two of the most currently used MOEAs
in the specialized literature has been done. The studied MOEAs have been applied on the automatic learning of FOLQs
adapted to use GP components. All of them extend the Kraft et al.’s IQBE-GP proposal [23] to work with ordinal
linguistic weights in the multi-objective context.
The experimental results show that NSGA-II, with GP (IQBE-NSGA-II-GP) achieves better results than IQBE-

SPEA2-GP.
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