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Most real-coded genetic algorithm research has focused on developing effective crossover op-
erators, and as a result, many different types of crossover operators have been proposed. Some
forms of crossover operators are more suitable to tackle certain problems than others, even at
the different stages of the genetic process in the same problem. For this reason, techniques that
combine multiple crossovers, called hybrid crossover operators, have been suggested as alterna-
tive schemes to the common practice of applying only one crossover model to all the elements
in the population. On the other hand, there are operators with multiple offsprings, more than two
descendants from two parents, which present a better behavior than the operators with only two
descendants, and achieve a good balance between exploration and exploitation. C© 2009 Wiley
Periodicals, Inc.

In this paper, we propose a model for the application of the crossover operators
that generate multiple descendants from two parents and select the two best offspring
to replace the parents in the new population. This has been done by means of hybrid
real-parameter crossover operators, which generate the multiple descendants for
every pair of parents, each two offsprings via a different crossover operator. These
hybrid crossover operators are based on the combination of neighborhood crossover
operators that have shown a good behavior using them for generating multiple
offsprings. Experimental results show that these crossover operators improve the
behavior of the classic crossover operators for real-coded genetic algorithms, and
it is possible to achieve a suitable balance between diversity and selective pressure
that it is responsible for improving performance with respect to the use of a single
crossover operator.
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1. INTRODUCTION

Genetic algorithms (GAs)1,2 are adaptive methods based on natural evolution
that may be used for search and optimization problems. They process a population
of search space solutions with three operations: selection, crossover, and mutation.

In the initial formulation of the GAs, the candidate solutions were coded using
the binary alphabet; however, other coding types, such as the real coding, have also
been taken into account to deal with the representation of the problem. The real
coding approach seems particularly natural when tackling optimization problems
of parameters with variables in continuous domains.3 A chromosome is a vector of
floating point numbers whose size is kept the same as the length of the vector, which
is the solution to the problem. GAs based on real number representation are called
real-coded GAs (RCGAs).3,4

The crossover operator is a method for sharing information between chromo-
somes. It has always been regarded as the main search operator in GAs5,6 because it
exploits the available information in previous samples to influence future searches.
This is why most RCGA research has been focused on developing effective real-
parameter crossover operators, and as a result, many different possibilities have been
proposed.3,4 In Ref. 7, a taxonomy is introduced to classify the crossover operators
for RCGAs. It groups the models for these operators into different categories ac-
cording to the way in which they generate the genes of the offspring from the genes
of the parents. Specifically, neighborhood-based crossover operators (NBCOs) are
a family of operators that has currently received special attention. They determine
the genes of the offspring extracting values from intervals defined on neighborhoods
associated with the genes of the parents, throughout probability distributions. The
degree of diversity induced by these operators may be easily adjusted by means of
varying an associated crossover step size parameter. The greater its value is, the
higher the variance (diversity) introduced into the population.

Each crossover operator directs the search toward a different zone in the neigh-
borhood of the parents. The quality of the elements that belong to the visited region
depends on the particular problem to be solved. This means that different crossover
operators perform differently with respect to different problems, even at the different
stages of the genetic process in the same problem. Thus, the simultaneous appli-
cation of different crossover operators on the population could provide effective
models that may be suited to many practical problems. In fact, some studies have
been undertaken to examine the synergy produced by combining different styles of
the traversal of solution space associated with various crossover operators.8−14 Their
objective was to investigate whether or not a combination of crossovers performs
better than the best single crossover amongst them. In Ref. 15, the synergy derived
from the combination of different crossover operators of the taxonomy presented in
Ref. 7 is studied and that reveal complementary properties that are required to build
an effective coupling of real-parameter crossover operators.

Usually, the crossover operator is applied to pairs of chromosomes, generat-
ing two offspring for each one of them, which are introduced in the population.1

However, crossover operators with multiple descendents (CX-MDs) have been
presented,16−23 which produce more than two offspring for each group of
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542 SÁNCHEZ ET AL.

parents. In this case, an offspring selection mechanism limits the number of offspring
that will be population members. These operators are inspired in the nature to obtain
more benefit of the parents by the sampling of a bigger number of possible solutions
resulting of their recombination. All the offspring may be created using the same
offspring generation mechanism17,21 or by means of different offspring generation
mechanisms.19 In Ref.24, an empirical study of a simple model of CX-MDs for
RCGAs is presented. For each pair of parents, nd offspring are created applying
repeatedly the crossover operator to them, and the two best offspring are selected as
the children contributed by the mating. Three different instances of this model were
implemented by considering three well-known neighborhood-based real-parameter
crossover operators, BLX-α, FR, and PNX. The final goodness of the crossover
operator depends of the balance between the diversity associated with the offspring
generation mechanisms and the selective pressure derived from the offspring se-
lection mechanisms. A number of parents and descendants as well as the nature
of offspring generation and selection mechanisms are fundamental factors in this
balance.

The aim of this paper is to design hybrid real-parameter crossover opera-
tors with multiple descendants (HCX-MDs), which generate multiple offspring for
every pair of parents, each two with a different crossover operator. We analyze the
positive synergy among real-parameter crossover operators that belong to the group
of NBCOs.

The paper is set out as follows: In Section 2, we introduce relevant issues
related to the taxonomy of real-parameter crossover operators as proposed in
Ref. 7 (Section 2.1), the characteristics of the multiple descendants (Section 2.2),
and the hybrid crossover operators (Section 2.3). In Section 3, we design
hybrid crossover operators with multiple descendants, which combine the NBCOs.
In Section 4, we introduce the experimental framework (Section 4.1) and the
statistical tests that we have used to compare algorithms (Section 4.2). In addition,
we describe the experimental study aimed at determining the goodness associated
with the hybrid crossover operators with multiple descendants (Section 4.3) and
analyze the synergetic effects produced among their constituent crossover operators
(Section 4.4). In Section 4.5, we compare the best operator of the previous sections
with other hybrid operators, which combine the different groups of the taxonomy. In
Section 5, we present some concluding remarks and summarize some possible future
research areas related to this topic. Finally, two appendixes are included containing
the test functions and the results of the experiments.

2. CROSSOVER OPERATORS FOR RCGAs: PRELIMINARIES

In this section, we deal with the main aspects of the crossover operators for
RCGAs. In Section 2.1, we introduce a taxonomy that groups real-parameter
crossover operators in different categories attending to the way they follow to
generate the genes of the offspring from the genes of the parents. In Section 2.2, we
outline the characteristics of the crossover operators with multiple descendants, and,
finally, in Section 2.3 we point out different approaches for combining crossover
features.
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2.1. Taxonomy

In Ref. 7, a taxonomy is presented, which classifies the crossover operators
for RCGAs (those applied only on two parents) into different groups, focusing
on the features associated with the offspring generation mechanisms that are applied
to the parents to obtain the offspring. This includes whether they preserve the genes
of the parents in the offspring, whether the genes of the offspring are obtained
from an aggregation function in which its arguments are the genes of the parents,
or whether the genes in the offspring are generated from a probability distribution
defined in the neighborhoods of the genes of the parents. The taxonomy includes
the following groups:

• Discrete crossover operators (DCOs). This category groups all the crossover operators
proposed for binary coding, which are directly applicable to real coding. It includes the
two-point and uniform crossover operators. With these crossovers, the value of each gene
in the offspring coincides with the value of this gene in one of the parents (hi ∈ {c1

i , c
2
i }),

i.e., the values of the genes in the parents are not transformed numerically to obtain
the values of the genes in the offspring. Geometrically, DCOs generate a corner of the
hypercube defined by the component of the two parents. The effect of these operators,
according to the intervals of the generation of genes, is shown in Figure 1.

• Aggregation-based crossover operators (ABCOs). These include operators that use an
aggregation function that numerically combines the values of the genes of the parents to
generate the value of the genes of the offspring. If [ai, bi] is the action interval for the
ith gene, an aggregation function, fi : [ai, bi] → [a′

i , b
′
i]([a

′
i , b′

i] ⊆ [ai , bi]) should be
provided. Then, the value for the ith gene of the offspring is calculated as fi(c1

i , c
2
i ). The

arithmetical and geometrical crossover operators are examples of ABCOs. In the case of
the arithmetical crossover, the aggregation function is a linear combination of c1

i and c2
i .

Graphically, ABCOs act as shown in Figure 2. As seen in this figure the ABCOs may
generate genes in the exploitation interval or in the exploration interval.

• Neighborhood -based crossover operators (NBCOs). This group includes crossovers that
determine the genes of the offspring, extracting values from intervals defined in neigh-
borhoods associated with the genes of the parents throughout probability distributions.

Figure 1. Effects of the DCOs.

Figure 2. Possible gene values calculated by ABCOs from c1
i and c2

i .
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Figure 3. Neighborhoods taken into account by NBCOs.

Examples of NBCOs are BLX-α, simulated binary crossover, fuzzy recombination, and
PNX, which are based on uniform, polynomial, triangular, and normal probability dis-
tributions, respectively. Figure 3 represents graphically the neighborhoods considered by
NBCOs.

NBCOs with multiple descendants are crossover-based local search techniques.
With the passing of generations, the RCGA loses diversity due to the selective
pressure. Under this circumstance, the self-adaptive nature of NBCOs (they can
generate offspring adaptively according to the distribution of parents without any
adaptive parameter) allows the creation of offspring distributed densely around the
parents, favoring an effective local tuning.

The main difference between ABCOs and NBCOs is that ABCOs are determin-
istic crossovers, i.e., given two parents, the resultant offspring shall always be the
same, whereas NBCOs include a random component, i.e., they are nondeterministic.

Tables I and II contain the real-parameter crossover operators used in this
paper, along with the category to which they belong: NBCOs in Table I and DCO
and ABCO in Table II. These operators have been selected from the operators studied
in Ref. 7,24 according to their good performance.

Table I. Neighborhood-based crossover operators.

Crossover operator Taxonomy group

Blend crossover (BLX-α) (α = 0.1, 0.3,0.5 and 0.7)25,26 NBCO
Simulated binary crossover (SBX-η)(η = 2 and η = 5)4,27

Fuzzy recombination crossover (FR-d) (d = 0.5)28

Parent-centric normal crossover (PNX-η) (η = 1, 2, 3, and 4)29

Numbers in superscript indicate the references.

Table II. Discrete and aggregation crossover operators.

Crossover operator Taxonomy group

Two-point crossover (2P)30 DCO
Arithmetical crossover (A) (a = 0.5)50 ABCO
Geometric crossover (G) (a = 0.5)31

Dynamic heuristic crossover (DH)32

Numbers in superscript indicate the references.
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2.2. Multiple Descendants

The crossover operator can provide diversity by the generation of multiple
descendants. Obviously, if the number of descendants grows, the exploration on the
search space will be bigger because the number of possible solutions will increase
and will be located anywhere in this space. A bigger exploration helps to the diversity.

On the other hand, the generation of multiple descendants implies the use of
some selection mechanism to decide which of these descendants will be population
members. This selection mechanism has associated a selective pressure that can
derive in premature convergence.

Figure 4 shows the idea of CX-MDs. In this case, from two parents, four
crossover are applied. Each crossover generates two offspring and, finally, the two
best ones are selected.

RCGAs with CX-MDs may be seen as a kind of real-coded memetic algorithm.33

The justification is as follows: Once a standard RCGA has found fit areas of the
search space, it only searches over a small fraction of the neighborhood around each
search point. It must derive its power from integrating multiple single neighborhood
explorations in parallel over successive generations of a population. This “many
points, few neighbors” strategy is in direct contrast with a hill climber, which
potentially focuses effort on a greater fraction of the search neighborhood of one
point but only around one point at a time. This strategy might be called “few points,

Figure 4. Multiple descendants.
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many neighbours.”34 Precisely, with the use of crossover operators with multiple
descendants, RCGAs may follow this strategy, with the aim of inducing an effective
local search on the neighborhood of the parents involved in crossover.

One of the first versions of CX-MDs is brood recombination, which was studied
in genetic programming (GP). Tackett35 devised this method to compensate for
the highly disruptive type of crossover used in genetic programming. With this
mechanism, Tackett attempted to model the observed fact that many animal species
produce far more offspring than are expected to live. Although there are many
different mechanisms, the excess offspring die. This is a hard but effective way to
cull out the results of bad crossover.

In general, CX-MDs promote the idea that by exploring more combinations
of an individual crossover operation, there is more opportunity of success. Even
though with a less efficient evaluation, the diversity will grow.

In general, points of crossover are randomly selected; however, with CX-MDs,
it is selected the best of a big set of random recombinations. Thus, there is a bigger
probability that the offspring are better than their parents.

In the following, we revise the proposals of multiple descendants from two
parents presented in the specialized literature:

• In Refs. 36 and 18, multiple descendants are generated from two parents, using different
crossover operators, and introducing all the descendants in the new population. In Ref.21,
multiple descendants are generated from two individuals selected randomly from the
parents’ population. Two individuals are selected among the family (the parents and their
children), selecting one of them with the elitist and the other with the roulette wheel, to
gather the population for the next generation.

• A generalization of this last model is proposed in Ref. 4. The multiple descendants are
generated from the best chromosome of the population and other that has been selected
by tournament. Finally, the two best chromosomes of the family are selected.

• In Refs.37,38, a family competition model is shown. In this model, each individual in the
population sequentially becomes the “family parent.” With a probability pc, this family
father and another solution that is randomly chosen from the rest of the parent population
are used as parents for a recombination operation. Then the new offspring or the family
father is operated on by a mutation. For each family father, such a procedure is repeated
L times. Finally, L children are produced, but only the one with the lowest objective
value survives. After the family competition, there are N parents and children left. Two
methods are proposed to obtain a new population with N individuals: “family selection”
and “population selection.”

• In Ref. 19, the Max-min-arithmetical crossover operator generates four descendants, and
the two best chromosomes are selected as final descendants for the new population.

• In Ref. 20, multiple descendants are generated from two parents and the two best offspring
replace the parents in the new population. In this model, different instances are presented
based on the BLX-α crossover operator for real-coded genetic algorithms.

• In Ref. 24, this idea is extended to NBCOs. It is presented an empirical study of a
simple model of CX-MDs for RCGAs. For each pair of parents, nd offspring are cre-
ated, applying repeatedly the crossover operator to them, and the two best offspring are
selected as the children contributed to by the mating. Three different instances of this
model were implemented by considering BLX-α, FR, and PNX crossover operators. The
experimental results obtained confirm that the generation of multiple descendents along
with the offspring selection mechanism that chooses the two best offspring may enhance
the operation of these three crossover operators.
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2.3. Different Approaches for Combining Crossover Features

The idea behind crossover is that by combining features from two good parents
crossover will often produce even better offspring.39 However, the efficiency of
crossover for genetic search is governed by the relationship between the crossover
biases (its traversal style of solution space) and the search problem itself. A particular
crossover operator becomes more effective when its search bias is adjusted to the
structure of the problem to be solved. Thus, some forms of crossover operators are
more suitable for solving certain problems than others, even at the different stages
of the genetic process in the same problem. The no free lunch theorems confirm this
fact.40

An interesting idea to devise crossover-based techniques, which may be suited
to most practical problems, would consist in the simultaneous application of diverse
crossover operators on the population. In fact, some studies have been conducted
in which the synergy produced by combining the different styles of the traversal of
solution space associated with various crossover operators has been examined.8−15

Their objective was to investigate whether or not a combination of crossovers
performs better than the best single crossover amongst them.

There have been different attempts to find synergetic crossover operators:

1. Hybrid crossover operators (HCXs). These crossovers use different kinds of crossover
operators to produce diverse offspring from the same parents. For example, in Ref. 19, an
hybrid real-parameter crossover operator is presented, which generates four offspring for
each pair of parents, applying two explorative crossovers and two exploitative crossovers
to them. The two most promising offspring of the four substitute their parents in the
population. In Ref. 15, it is made a study of the synergy derived from the combination
of different crossover operators that reveal complementary properties that are required to
build an effective coupling of real-parameter crossover operators. This has been done by
means of HCXs, which generate two offspring for every pair of parents, each one with
a different crossover operator. Experimental results show that synergy is possible among
real-parameter crossover operators, and in addition, that it is responsible for improving
performance with respect to the use of a single crossover operator.

2. Gradual distributed GAs. In Ref. 9, a distributed RCGA model maintains, in parallel,
several subpopulations that are processed by independent GAs that apply different forms
of crossover operators. These operators are differentiated according to their associated
exploration and exploitation properties and the degree thereof. Other distributed GA
models that make distinctions between the subpopulations by applying GAs with different
crossovers are described in Refs. 41 and 42. In this case, each subpopulation competes
with other subpopulations, in such a way that it gains or loses individuals depending on
its evolution quality in relation to the others.

3. Adaptive crossover operator probabilities. A set of crossover operators is available,
each with a probability of being used. For each reproduction event, a single operator
is selected probabilistically according to the set of operator probabilities. In addition,
an adaptive process dynamically adjusts the operator probabilities during the course of
evolving a solution. For example, in Refs. 8 and 43, those operators that create and cause
the generation of better chromosomes are given higher probabilities. Another approach
for adaptation involves self-adaptation13,44; operator probabilities are directly coded onto
each member of the population, and this allows them to evolve, i.e., they undergo mutation
and recombination. In Ref. 45 is presented a new adaptive crossover operator based on
the rough set theory that uses the attribute reduction to find candidate schemata with
promising performance.
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Two models of adaptive real-parameter crossover operator probabilities are de-
scribed in Refs. 46 and 47. In Ref. 46, two complementary crossover operators are
considered, UNDX48 and uniform crossover.49 In Ref. 47, an RCGA applies two different
crossover operators; one with exploitation properties and another with exploration prop-
erties. An operator probability parameter defines the frequency of the application of the
exploitative operator.

3. HYBRID REAL-PARAMETER NEIGHBORHOOD-BASED
CROSSOVER OPERATORS WITH MULTIPLE DESCENDANTS

The crossover operators that belong to the NBCO’s group of taxonomy are
expected to provide different traversal styles of search space. NBCOs with multi-
ple descendants are crossover-based local search techniques. With the passing of
generations, the RCGA loses diversity due to the selective pressure. Under this
circumstance, the self-adaptive nature of NBCOs (they can generate offspring adap-
tively according to the distribution of parents without any adaptive parameter) allows
the creation of offspring distributed densely around the parents, favoring an effective
local tuning.

Thus, to carry out a study of the synergy among different operators, we present
several proposals of hybrid real-parameter with multiple descendants neighborhood-
based crossover operators (HCX-MDs-NBCOs). They generate multiple offspring
(six or eight) for every pair of parents by applying a different crossover operator for
every pair of descendants. The two most promising offspring substitute their parents
in the population. In Figure 5, this idea is represented.

HCXs are a simple way of combining crossover operators and, therefore,
constitute a framework that facilitates the study of the synergetic effects of different
real-parameter crossover operators.

We have built two kinds of HCX-MDs-NBCOs: S-NBCO (all the descendants
are generated with the same NBCO, with different values of parameter for each
two offspring) and D-NBCO (a combination of different NBCOs, so that each two
descendants are generated with a different NBCO), as shown in Tables III and IV
(the number before the operator indicates the amount of descendants generated by it,
two or four). These two types of hybridization allow us to analyze the effects derived
from the union between different exploration and exploitation characteristics:

• With the first type, S-NBCO, all the descendants are obtained with the same NBCO, but
with a different parameter value for each two offspring. The degree of diversity induced
by these operators may be adjusted by means of varying these parameters.

• The second one, D-NBCO, combines different neighborhood crossover operators, al-
lowing us to generate each two descendants with a different probability distribution for
creating the genes of the offspring in restricted search spaces around the regions marked
by the genes of the parents. We have chosen parameter values that have achieved good
results in previous works.

International Journal of Intelligent Systems DOI 10.1002/int



HYBRID CROSSOVER OPERATORS WITH MULTIPLE DESCENDENTS 549

Figure 5. Hybrid crossover operators with multiple descendants.

Table III. S-NBCO hybrid real-parameter crossover operators.

2BLX0.3-4BLX0.5-2BLX0.7
2FR0.3-4FR.5-2FR0.7
2PNX2-4PNX3-2PNX4
2BLX0.1-2BLX0.3-2BLX0.5-2BLX0.7
2FR0.1-2FR0.3-2FR0.5-2FR0.7
2PNX1-2PNX2-2PNX3-2PNX4
2SBX0.01-2SBX1-2SBX2-2SBX5
2BLX0.3-2BLX0.5-2BLX0.7
2FR0.3-2FR.5-2FR0.7
2PNX2-2PNX3-2PNX4
2SBX0.01-2SBX1-2SBX2
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Table IV. D-NBCO hybrid real-parameter crossover operators.

2BLX0.1-2FR0.3-2PNX4
2BLX0.5-2FR0.5-2PNX3
2BLX0.5-2FR0.5-2SBX0.01
2BLX0.5-2PNX3-2SBX0.01
2FR0.5-2PNX3-2SBX0.01
2BLX0.5-2FR0.5-2PNX3-2SBX0.01

4. EXPERIMENTAL STUDY

Minimization experiments on the test suite were carried out with the aim of
determining whether differences on performance exist between classic crossover
operators and the same operators, producing multiple descendants in combination
with others crossover operators. This section is set out as follows:

— In Section 4.1, we describe the algorithms built to do this and the tests functions.
— In Section 4.2, we present nonparametric tests to carry out a statistical analysis of the

results.
— In Section 4.3, we show the results of the hybrid crossover operators S-NBCOs and

D-NBCOs and discuss some conclusions about them.
— In Section 4.4, we analyze the synergetic effects produced among the best HCX-MDs-

NBCO operator and his constituent crossover operators, comparing these operators when
they generate two, four, and eight offspring, with the hybrid operator.

— Finally, in Section 4.5, we compare the best HCX-MDs-NBCO operator with other
HCXs-MDs operators.

4.1. Experimental Framework

For experiments, we have considered a generational RCGA model that applies
the nonuniform mutation operator.50 This operator has been widely used, report-
ing good results.3 The selection probability calculation follows linear ranking51

(ηmin = 0.75), and the sampling algorithm is the stochastic universal sampling.52

The elitist strategy53 is considered as well, which makes sure that the best performing
chromosome always survives intact from one generation to the next.

The population size is 61 individuals, the probability of updating a chromosome
by mutation is 0.125, and the crossover probability is 0.6. We run all the algorithms
30 times, each one with a maximum of 100.000 evaluations.

Minimization experiments on the test suite (see Table V),15,24 were carried out
to study the behavior of the RCGA with the HCX-MDs-NBCOs model presented
in Section 3.3.

4.2. Statistical Tests

We have used four nonparametric tests, Friedman, Iman–Davenport, Holm,
and Wilcoxon, to carry out a statistical analysis of the results.54−56

There is no established procedure for comparing algorithms over multiple
problems. Researchers adopt different statistical and commonsense techniques to
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Table V. Tests functions.

Test functions n f (x∗)

Sphere model53 25 fSph(x∗) = 0
Schwefel’s function 1.257 25 fSch(x∗) = 0
Generalized Rastrigin’s function58 25 fRas(x∗) = 0
Griewangk’s function59 25 fGri(x∗) = 0
Expansion of F1060 25 fF10(x∗) = 0
Generalized Rosenbrock’s function53 25 fRos(x∗) = 0
Systems of linear equations61 10 PSle(x∗) = 0
Frequency modulation sounds parameter identification62 6 Pfms(x∗) = 0
Polynomial fitting problem63 9 PChev(C∗) = 0
Ackley’s function64 25 fAck(x∗) = 0
Bohachevsky’s function65 10 fBoh(x∗) = 0

Numbers in superscript indicate the references.

decide whether the differences between the algorithms are real or random. Statistical
analyses have been carried out to find significant differences among the results
obtained by the studied methods. However, on the use of statistical tests, there are
some assumptions to take into account, depending on the test applied. There are
mainly two groups of statistical tests, parametric and nonparametric ones.

The most used statistical tests in comparisons are the parametric tests that use
for each algorithm and function the mean error achieved from a set of executions.
Using these values, these tests can indicate when a difference between two algo-
rithms is statistically significant. An example of these tests is t-Student test (for
comparisons one to one) and ANOVA (for multiple comparisons). To be able to
apply parametric tests, results must assume normal distribution and homogeneity
of variance. When these constraints are satisfied, a parametric statistical analysis of
results will be right and safe, and more sensitive than nonparametric tests. But, when
these conditions are not satisfied, parametric tests are not robust and nonparametric
should be applied.

We will use a set of simple, safe, and robust nonparametric tests for statistical
comparisons:

— Friedman’s test.66 It is equivalent to the repeated-measures ANOVA. Friedman assigns
for function to each algorithm an order position (rj for algorithm j with k algorithms,
rj ∈ [1, . . . , k], 1 to the best and k to the worst value, respectively). The null hypothesis
of Friedman implies that all algorithms are equivalent. If this condition is true, the
Friedman’s statistic value

X2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k (k + 1)

4

2
⎤
⎦

follows an X2
F distribution with k − 1 degree of freedom, with Rj = 1

/
N

∑
i r

j

i , and N
the number of functions.

— Iman–Davenport’s test. It is a variation of the Friedman test. Iman and Davenport showed
that Friedman’s X2

F is undesirably conservative and derived a better
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statistic

FF = (N − 1) X2
F

N (k − 1) − X2
F

which is distributed according to the F -distribution with k– 1 and (k– 1)(N– 1) degrees
of freedom.

— Holm’s test. This test sequentially tests the hypotheses ordered by their significance. We
will denote the ordered p values by p1,p2, . . . , so that p1 ≤ p2 ≤≤ pk−1.The test com-
pares each piwith α/(k– i). Holm’s step-down procedure starts with the most significant
p value. If p1 is below α/(k– 1), the corresponding hypothesis is rejected and we are al-
lowed to compare p2 with α/(k – 2). If the second hypothesis is rejected, the test proceeds
with the third, and so on. As soon as a certain null hypothesis cannot be rejected, all the
remaining hypotheses are retained as well.

— Wilcoxon’s test. This is a nonparametric alternative to the paired t-test, which ranks the
differences in performances of two classifiers for each data set, ignoring the signs and
compares the ranks for the positive and the negative differences. For each function, the
difference is calculated between the values obtained by the algorithm to compare and
the reference algorithm. The differences are ranked according to their absolute values;
Average ranks are assigned in the case of ties. Let R+ be the sum of ranks for the functions
on which the second algorithm outperformed the first, and R− is the sum of the ranks
for the opposite. If the smaller of R+ and R− is smaller than or equal to the value of the
T distribution of Wilcoxon for N degrees of freedom (Table B.12 in Ref. 56) the null
hypothesis is rejected.

4.3. Analysis of the Results for Hybrid NBCOs with Multiple Descendants

In this section, we analyze the behavior of the HCX-MDs-NBCOs. First,
in Section 4.3.1, we analyze D-NBCO operators (introduced in Table IV) and,
second, in Section 4.3.2, we analyze S-NBCO operators (introduced in Table III).
In Section 4.3.3, we compare the best crossovers obtained in the previous sections
between them.

4.3.1. D-NBCO Hybrid Real-Parameter Crossover Operators

To apply the nonparametric test, for each test suite, the crossover operators
have been ordered according to the algorithm behaviors in the different test suites
(see Table A.3). The operator with the smallest value is the best. Then, we have
obtained the rank of each crossover operator for the total of test suites. Table VI
shows the average ranking of each crossover for the 11 test suites.

Friedman test compares the rank of the algorithms. Under the null hypothesis,
which states that all the algorithms are equivalent and so their ranks should be
equal, Friedman’s statistics is distributed according to a value obtained according
to the number of test suites and algorithms, with a degree of freedom equal to the
number of algorithms –1. In Table VII, we can see the results of Friedman and
Iman–Davenport with α = 0.05. Clearly, there are significant differences between
them.

Holm’s test, with a standard error SE = 0.7937, compares the algorithm with the
best rank, 2BLX0.5-2FR0.5-2PNX3-2SBX0.01, with each one of the five remaining
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Table VI. Ranking of the algorithms
with the different D-NBCOs.

Rank

2BLX0.1-2FR0.3-2PNX4 4.59
2FR0.5-2PNX3-2SBX0.01 4.27
2BLX0.5-2FR0.5-2SBX0.01 4.05
2BLX0.5-2FR0.5-2PNX3 3.82
2BLX0.5-2PNX3-2SBX0.01 2.50
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 1.77

Table VII. Friedman and Iman–Davenport’s test.

Friedman value X2
F value Iman-Davenport value FF value

17.41 11.070 4.63 2.40

Table VIII. Holm’s test with control algorithm 2BLX0.5-2FR0.5-2PNX3-2SBX0.01.

i Algorithm Z = (R0 − Ri/SE) P α/i

5 2BLX0.1-2FR0.3-2PNX4 (1.77 − 4.59)/0.7937 = 3.55 0.0004 0.01
4 2FR0.5-2PNX3-2SBX0.01 (1.77 − 4.27)/0.7937 = 3.14 0.0016 0.0125
3 2BLX0.5-2FR0.5-2SBX0.01 (1.77 − 4.05)/0.7937 = 2.87 0.0042 0.17
2 2BLX0.5-2FR0.5-2PNX3 (1.77 − 3.82)/0.7937 = 2.58 0.0098 0.025
1 2BLX0.5-2PNX3-2SBX0.01 (1.77 − 2.5)/0.7937 = 0.91 0.3628 0.05

ones. There are significant differences with four of them because the P values are
smaller than the α value. Table VIII shows the results of Holm test. The algorithms
are ordered in rank from better (1) to worse (5).

As we can observe, there are not significant differences between the operators
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 and 2BLX0.5-2PNX3-2SBX0.01.

4.3.2. S-NBCO Hybrid Real-Parameter Crossover Operators

Once more, to apply the nonparametric test, for each test suite, the crossover
operators have been ordered according to the average of each algorithm in the
different test suites (see Table A.1). Then, we have obtained the rank of each
crossover operator for the total of test suites. Table IX shows the ranking of each
crossover for the test suites.

In Table X, we can see the results of Friedman and Iman–Davenport with α =
0.05. Clearly, there are significant differences between the S-NBCOs.

Holm’s test, with a standard error SE = 1.4142, compares the algorithm
with best rank, 2BLX0.3-4BLX0.5-2BLX0.7, with each one of the 10 remaining
S-NBCOs. There are significant differences with four of them because the P values
are smaller than the α value. Table XI shows the results of Holm test. The algorithms
are ordered in rank from better (1) to worse (10).

Because Holm’s test shows enough equality between seven S-NBCO operators,
in the next section we will compare these operators with the best one of the previous
section.
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Table IX. Ranking of the algorithms with the different S-NBCOs.

Average rank

2SBX0.01-2SBX1-2SBX2 8.82
2SBX0.01-2SBX1-2SBX2-2SBX5 8.18
2PNX2-2PNX3-2PNX4 7.45
2PNX1-2PNX2-2PNX3-2PNX4 7.36
2PNX2-4PNX3-2PNX4 6.55
2BLX0.1-2BLX0.3-2BLX0.5-2BLX0.7 5.45
2FR0.3-4FR.5-2FR0.7 5.09
2FR0.1-2FR0.3-2FR.5-2FR0.7 5.00
2FR0.3-2FR.5-2FR0.7 4.91
2BLX0.3-2BLX0.5-2BLX0.7 3.73
2BLX0.3-4BLX0.5-2BLX0.7 3.45

Table X. Friedman and Iman–Davenport’s test.

Friedman value X2
F value Iman–Davenport value FF value

31.81 18.307 4.06 1.93

Table XI. Holm’s test with control algorithm 2BLX0.3-4BLX0.5-2BLX0.7.

i Algorithm Z = (R0 − Ri/SE) P α/i

10 2SBX0.01-2SBX1-2SBX2 (3.45 − 8.82)/1.4142 = 3.79 0.0002 0.005
9 2SBX0.01-2SBX1-2SBX2-2SBX5 (3.45 − 8.18)/1.4142 = 3.34 0.0008 0.0055
8 2PNX2-2PNX3-2PNX4 (3.45 − 7.45)/1.4142 = 2.82 0.0048 0.00625
7 2PNX1-2PNX2-2PNX3-2PNX4 (3.45 − 7.36)/1.4142 = 2.76 0.0058 0.07
6 2PNX2-4PNX3-2PNX4 (3.45 − 6.55)/1.4142 = 2.19 0.0286 0.08
5 2BLX0.1-2BLX0.3-2BLX0.5-2BLX0.7 (3.45 − 5.45)/1.4142 = 1.41 0.1616 0.01
4 2FR0.3-4FR.5-2FR0.7 (3.45 − 5.09)/1.4142 = 1.15 0.2502 0.0125
3 2FR0.1-2FR0.3-2FR.5-2FR0.7 (3.45 − 5.0)/1.4142 = 1.09 0.2758 0.17
2 2FR0.3-2FR.5-2FR0.7 (3.45 − 4.91)/1.4142 = 1.03 0.3030 0.0125
1 2BLX0.3-2BLX0.5-2BLX0.7 (3.45 − 3.73)/1.4142 = 0.19 0.8494 0.05

4.3.3. Comparison between D-NCBOs and S-NBCOs

With the aim of obtaining the best HCX-MDs-NBCO operators, we have
compared the best operators of Section 4.3.1 and 4.3.2. Because in Section 4.3.1,
the two best operators have similar behavior, we have chosen only one of them,
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 operator, for the study because it presented
the best rank. Table XII shows the ranking of each crossover for the 11 test suites.

In Table XIII, we can see the results of Friedman and Iman–Davenport with
α = 0.05. Clearly, there are significant differences between the eight best crossover
operators of the two previous sections.

Holm’s test, with a standard error SE = 1.0219, compares the algorithm with
best rank, 2BLX0.5-2FR0.5-2PNX3-2SBX0.01, with each one of the seven remain-
ing operators. There are significant differences with all of them. Table XIV shows
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Table XII. Ranking of the algorithms with
different crossover operators.

Average rank

2PNX2-4PNX3-2PNX4 6.09
2BLX0.1-2BLX0.3-2BLX0.5-2BLX0.7 5.55
2FR0.3-2FR.5-2FR0.7 4.82
2FR0.1-2FR0.3-2FR.5-2FR0.7 4.73
2FR0.3-4FR.5-2FR0.7 4.64
2BLX0.3-2BLX0.5-2BLX0.7 4.36
2BLX0.3-4BLX0.5-2BLX0.7 4.00
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 1.82

Table XIII. Friedman and Iman–Davenport’s test.

Friedman value X2
F value Iman–Davenport value FF value

20.76 15.507 3.69 2.14

Table XIV. Holm’s test with control algorithm 2BLX0.5-2FR0.5-2PNX3-2SBX0.01.

i Algorithm Z = (R0 − Ri/SE) P α/i

7 2PNX2-4PNX3-2PNX4 (1.82 − 6.09)/1.0219 = 4.17 <0.0002 0.07
6 2BLX0.1-2BLX0.3-2BLX0.5-2BLX0.7 (1.82 − 5.55)/1.0219 = 3.65 0.0002 0.08
5 2FR0.3-2FR.5-2FR0.7 (1.82 − 4.82)/1.0219 = 2.93 0.0034 0.01
4 2FR0.1-2FR0.3-2FR.5-2FR0.7 (1.82 − 4.73)/1.0219 = 2.84 0.0046 0.0125
3 2FR0.3-4FR.5-2FR0.7 (1.82 − 4.64)/1.0219 = 2.75 0.0060 0.017
2 2BLX0.3-2BLX0.5-2BLX0.7 (1.82 − 4.36)/1.0219 = 2.48 0.0132 0.025
1 2BLX0.3-4BLX0.5-2BLX0.7 (1.82 − 4.00)/1.0219 = 2.13 0.0332 0.05

the results of Holm’s test with the algorithms ordered in rank from better (1) to
worse (7).

According to these results, we can conclude that the crossover operators, which
generate multiple descendants by the combination of different NBCOs, show a better
behavior than the crossover operators that generate all the descendants with the same
operator even if with different parameters.

4.4. Synergy of 2BLX0.5-2FR0.5-2PNX3-2SBX0.01 with Their Components

With the aim to study the synergy between the crossover operators, we have
compared the best HCX-MDs-NBCO, 2BLX0.5-2FR0.5-2PNX3-2SBX0.01, with
each one of the four classic operators that compose it (BLX0.5, FR0.5, PNX3,
SBX0.01).

For that purpose, in Section 4.4.1, we compare this operator with each one of
the classic operators when they generate two offspring, and in Section 4.4.2, with
all the combinations of two crossover (of the four classic operators) generating four
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descendants, two for each operator. In Section 4.4.3, we compare the HCX-MDs-
NBCO with each one of its components when they generate eight descendants in a
homogeneous way, that is to say, all the descendants are generated with the same
operator.

4.4.1. Analysis of 2BLX0.5-2FR0.5-2PNX3-2SBX0.01 versus
the Classic Simple Operators

Table XV shows the ranking of each crossover for the 11 test suites (see Table
A.5). The HCX-MDs-NBCO operator has the best rank.

In Table XVI. we can see the results of Friedman and Iman–Davenport with α =
0.05. Clearly, there are significant differences between the five crossover operators.

Holm’s test, with a standard error SE = 0.6708, shows that 2BLX0.5-2FR0.5-
2PNX3-2SBX0.01 is better statistically, although this operator does not present
significant differences between FR-0.5 and α = 0.05 (it shows differences with
α = 0.1). Table XVII shows the results of Holm’s test with the algorithms ordered
in rank from better (1) to worse (4).

We have applied the Wilcoxon’s test, Table XVIII, to compare the 2BLX0.5-
2FR0.5-2PNX3-2SBX0.01 operator with the 2FR-0.5 operator. The value obtained,
6, is smaller than the critical value for α = 0.05, 11. Then, we can conclude that
HCX-MDs-NBCOs is better than the classic operator.

Table XV. Ranking of the algorithms with
different crossover operators.

Average rank

2SBX0.01 4.55
2PNX3 3.64
2BLX0.5 3.45
2FR0.5 2.27
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 1.09

Table XVI. Friedman and Iman–Davenport’s test.

Friedman value X2
F value Iman–Davenport value FF value

31.66 11.070 25.65 5.72

Table XVII. Holm’s test with control algorithm 2BLX0.5-2FR0.5-2PNX3-2SBX0.01.

i Z = (R0 − Ri /SE) P α/i

4 2SBX0.01 (1,09 − 4,55)/0.6708 = 5,15 <0.0002 0.0125
3 2PNX3 (1,09 − 3,64)/0.6708 = 3.80 0.0002 0.17
2 2BLX0.5 (1,09 − 3,45)/0.6708 = 3.51 0.0004 0.025
1 2FR0.5 (1,09 − 2,27)/0.6708 = 1.75 0.0802 0.05
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Table XVIII. Wilcoxon’s
test comparing 2BLX0.5-
2FR0.5-2PNX3-2SBX0.01
and 2FR0.5.

R+ R− Hyp.

2FR0.5 6 60 Reject

4.4.2. Analysis of 2BLX0.5-2FR0.5-2PNX3-2SBX0.01 versus Its Components
Generating Four Descendants

In this section, we have compared 2BLX0.5-2FR0.5-2PNX3-2SBX0.01 oper-
ator with each one of the possible combinations of its components, in couples, to
generate four descendants. Table XIX shows the ranking of each crossover for the
11 test suites (see Table A.2). The HCX-MDs-NBCO operator has the best rank.

In Table XX, we can see the results of Friedman and Iman–Davenport with α =
0.05. Clearly, there are significant differences between 2BLX0.5-2FR0.5-2PNX3-
2SBX0.01 and the combinations in couples of its components.

Holm’s test, with a standard error SE = 0.9210, compares the algorithm with
best rank, 2BLX0.5-2FR0.5-2PNX3-2SBX0.01, with each one of the possible com-
binations of its components, in couples. There are significant differences between
all of them. Table XXI shows the results of Holm’s test with the algorithms ordered
in rank from better (1) to worse (6).

Table XIX. Ranking of the algorithms with
different crossover operators.

Average rank

2PNX3-2SBX0.01 5.00
2BLX0.5-2PNX3 4.00
2BLX0.5-2SBX0.01 4.00
2FR0.5-2PNX3 3.91
2BLX0.5-2FR0.5 3.64
2FR0.5-2SBX0.01 3.55
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 1.18

Table XX. Friedman and Iman–Davenport’s test.

Friedman value X2
F value Iman–Davenport value FF value

31.66 11.070 9.21 2.25
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Table XXI. Holm’s test with control algorithm
2BLX0.5-2FR0.5-2PNX3-2SBX0.01.

i Z = (R0 − Ri /SE) P α/i

6 2PNX3-2SBX0.01 (1.18 − 5)/0.9210 = 4.1476 <0.0022 0.08
5 2BLX0.5-2PNX3 (1.18 − 4)/0.9210 = 3.0618 0.0022 0.01
4 2BLX0.5-2SBX0.01 (1.18 − 4)/0.9210 = 3.0618 0.0022 0.0125
3 2FR0.5-2PNX3 (1.18 − 3.91)/0.9210 = 2.9641 0.0030 0.17
2 2BLX0.5-2FR0.5 (1.18 − 3.64)/0.9210 = 2.6710 0.0076 0.025
1 2FR0.5-2SBX0.01 (1.18 − 3.55)/0.9210 = 2.5732 0.0102 0.05

4.4.3. Analysis of 2BLX0.5-2FR0.5-2PNX3-2SBX0.01 versus Homogeneous
Operators with Eight Descendants

In this section, we have compared 2BLX0.5-2FR0.5-2PNX3-2SBX0.01 with
its components when they generate eight descendants. Table XXII shows the ranking
of each crossover for the 11 test suites (see Table A.6).

In Table XXIII, we can see the results of Friedman and Iman–Davenport with
α = 0.05. Clearly, there are significant differences between the five operators.

Holm’s test, with a standard error SE = 0.6708, compares the algorithm with
the best rank, 2BLX0.5-2FR0.5-2PNX3-2SBX0.01, with each one of homogeneous
operators. There are significant differences between all of them. Table XXIV shows
the results of Holm test with the algorithms ordered in rank from better (1) to
worse (4).

Then, we can conclude that in the generation of multiple descendants, it is
interesting to use HCXs that combine the features of the classic operators to improve
their efficiency.

Table XXII. Ranking of the algorithms with
different crossover operators.

Average rank

8BLX0.5 2.64
8FR0.5 3.18
8PNX3 4.00
8SBX0.01 3.91
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 1.27

Table XXIII. Friedman and Iman–Davenport’s test.

Friedman value X2
F value Iman–Davenport value FF value

21.92 11.070 6.62 2.61
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Table XXIV. Holm’s test with control algorithm
2BLX0.5-2FR0.5-2PNX3-2SBX0.01.

i Z = (R0 − Ri/SE) P α/i

4 8PNX3 (1,27 − 4)/0.6708 = 4,06 <0.0002 0.0125
3 8SBX0.01 (1,27 − 3,91)/0.6708 = 3.93 <0.0002 0.17
2 8FR0.5 (1,27 − 3,18)/0.6708 = 2.84 0.0046 0.025
1 8BLX0.5 (1,27 − 2,64)/0.6708 = 2.04 0.0414 0.05

4.5. Analysis with Other HCX-MDs

In this section, we extend our study to other HCX-MDs operators. We have
chosen the most relevant operators of each group of the taxonomy presented in
Section 2.1 to group them to form different HCXs, generating six and eight de-
scendants. We apply operators that propitiate diversity at the gene level (NBCOs)
and operators that introduce diversity at the chromosome level (DCOs) at the same
time, and this diversity is complemented with the powerful exploitation of ABCOs
(HCX-MDS-ABCOs-NBCOs-DCOs) (see Section 2.1).

We try to decide whether differences on performance exist between the best
HCX-MDs-NBCOs operator and HCX-MDs-ABCOs-NBCOs-DCOs operators. For
that purpose, we compare the best operator achieved in the previous sections with
the new operators.

Table XXV shows the ranking of the best HCX-MDs-NBCOs operator and
HCX-MDs-ABCOs-NBCOs-DCOs operators for the 11 test suites (see Table A.4).

In Table XXVI, we can see the results of Friedman and Iman–Davenport with
α = 0.05. Clearly, there are significant differences between the 13 operators.

Table XXV. Ranking of the algorithms with different HCX-MDs.

Average rank

2DINH-2(2PTOS)-2FR0.5 10.95
2DINH-2 (2PTOS) 2FR 0.5-2BLX05 9.64
2FR 0.5-2BLX 0.5-A0.5-G0.5 9.27
2(2PTOS)-2FR0.5-2BLX05-A0.5-G0.5 8.18
2DINH-2FR 0.5-2BLX05 7.55
2DINH-2FR-2BLX05-2SBX0.01 7.55
2(2PTOS)-2BLX05-2SBX0.01-A0.5-G0.5 6.68
2(2PTOS)-2FR 0.5-2BLX05 6.55
2(2PTOS)-2FR0.5-2PNX3 6.50
2(2PTOS)-2FR0.5-2BLX0.5-2PNX3 5.55
2(2PTOS)-2BLX0.5-2SBX0.01-2PNX3 5.36
2(2PTOS)-2FR0.5-2BLX05-2SBX0.01 5.09
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 2.14
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Table XXVI. Friedman and Iman–Davenport’s test.

Friedman value X2
F value Iman–Davenport value FF value

45.30 21.02 5.22 1.83

Table XXVII. Holm’s test with control algorithm 2BLX0.5-2FR0.5-2PNX3-2SBX0.01.

i Z = (R0 − Ri /SE) P α/i

13 2DINH-2(2PTOS)-2FR0.5 (2.14 − 10.95)/1.6605 = 5.30 <0.0002 0.0041
11 2DINH-2 (2PTOS) 2FR 0.5-2BLX05 (2.14 − 9.64)/1.6605 = 4.51 <0.0002 0.0045
10 2FR 0.5-2BLX 0.5-A0.5-G0.5 (2.14 − 9.27)/1.6605 = 4.29 <0.0002 0.005
9 2(2PTOS)-2FR0.5-2BLX05-A0.5-G0.5 (2.14 − 8.18)/1.6605 = 3.63 0.0002 0.0055
8 2DINH-2FR 0.5-2BLX05 (2.14 − 7.55)/1.6605 = 3.25 0.0012 0.00625
7 2DINH-2FR-2BLX05-2SBX0.01 (2.14 − 7.55)/1.6605 = 3.25 0.0012 0.07
6 2(2PTOS)-2BLX05-2SBX0.01-A0.5-G0.5 (2.14 − 6.68)/1.6605 = 2.73 0.0064 0.08
5 2(2PTOS)-2FR 0.5-2BLX05 (2.14 − 6.55)/1.6605 = 2.65 0.0080 0.01
4 2(2PTOS)-2FR0.5-2PNX3 (2.14 − 6.50)/1.6605 = 2.62 0.0088 0.0125
3 2(2PTOS)-2FR0.5-2BLX0.5-2PNX3 (2.14 − 5.55)/1.6605 = 2.05 0.04024 0.17
2 2(2PTOS)-2BLX0.5-2SBX0.01-2PNX3 (2.14 − 5.36)/1.6605 = 1.93 0.0536 0.025
1 2(2PTOS)-2FR0.5-2BLX05-2SBX0.01 (2.14 − 5.09)/1.6605 = 1.77 0.0768 0.05

Holm’s test, with a standard error SE = 1.6605, compares the algorithm with the
best rank, 2BLX0.5-2FR0.5-2PNX3-2SBX0.01, with each one of the HCX-MDs-
ABCOs-NBCOs-DCOs operators. Table XXVII shows the results of Holm test with
the algorithms ordered in rank from better (1) to worse (13). As we can observe, the
HCX-MDs-NBCO operators are similar to a pair of HCX-MDs-ABCOs-NBCOs-
DCOs operators with α = 0.05 (but it is the best with α = 0.1).

We have also applied Wilcoxon’s test to determine which of them presents
the best behavior. Tables XXVIII and XXIX show the results. The values that we

Table XXVIII. Wilcoxon’s test comparing
2BLX0.5-2FR0.5-2PNX3-2SBX0.01 and
2(2PTOS)-2BLX0.5-2SBX0.01-2PNX3.

R+ R− Hyp.

2(2PTOS)-2BLX0.5-2SBX0.01-2PNX3 10.5 55.5 Reject

Table XXIX. Wilcoxon’s test comparing
2BLX0.5-2FR0.5–2PNX3-2SBX0.01 and
2(2PTOS)-2FR0.5-2BLX05-2SBX0.01.

R+ R− Hyp.

2(2PTOS)-2FR0.5-2BLX05-2SBX0.01 9.5 56.5 Reject
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have obtained, 10.5 and 9.5, are smaller than the critical value for α = 0.05, 11.
Then, we can conclude that 2BLX0.5-2FR0.5-2PNX3-2SBX0.01 is better than the
combination of ABCO-NBCO-DCO operators.

5. CONCLUSIONS

This paper proposes a model of HCX-MDs-NBCOs operator. This kind of
crossover operator generates eight offspring for every pair of parents by applying a
different NBCO for every pair of descendants. The two most promising offspring
substitute their parents in the population. The main conclusions achieved are

— The generation of multiple descendants provides a bigger exploration of the search space.
This fact affects the increase of the diversity in balance with the selective pressure of the
selection of the two best descendants.

— The combination of the different NBCOs with different probability distributions to create
the genes of the offspring, provides a bigger diversity because the different operator
components of the HCX contribute to complementary features.

— The operator with best behavior is the operator that generates eight descendants using
the four NBCOs : 2BLX0.5-2FR0.5-2PNX3-2SBX0.01. This operator has been com-
pared with each one of the four classic operators that compose it (BLX0.5, FR0.5,
PNX3, SBX0.01) when they generate two offspring, and with all the combinations of two
crossover (of the four classic operators) generating four descendants, two for each oper-
ator. In all cases, we show that a positive synergy is caused between the components of
the best HCX-MDs-NBCO operator. We have also compared the best HCX-MDs-NBCO
operator with other HCX-MDs operators of other groups of the taxonomy, and clearly,
the NBCOs combination is better than the ABCO–NBCO–DCO combination.

Then, we can conclude that the operator 2BLX0.5-2FR0.5-2PNX3-2SBX0.01
improves the behavior of the RCGA with other crossover operators. The combi-
nation of different NBCOs with positive synergy, and the generation of multiple
descendants, helps to the diversity.
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