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a b s t r a c t

The subgroup discovery is defined as: ‘‘given a population of individuals and a property of those individ-
uals, we are interested in finding a population of subgroups as large as possible and in having the most
unusual statistical characteristic with respect to the property of interest”.

The subgroup discovery algorithms have to face the scaling up problem which appears in the evalua-
tion of large size data sets. In this paper we are interested in the extraction of subgroups from large size
data sets. To avoid the scaling up problem, we propose the combination of stratification and instance
selection algorithms for scaling down the data set before the subgroup discovery task. In addition, two
new stratification models are proposed to increase the presence of minority classes in data sets, which
affects to the subgroup discovery process on them. The results show that the subgroup discovery extrac-
tion can be executed on large data sets preprocessed independently of the presence of minority classes,
which could not be executed in other way.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The issue of scalability and the effect of increasing the size of
data sets are always present in data mining (Domingo et al.,
2002). The scaling up problem, due to large size data sets (Khosravi
and Kabir, 2007), produces situations where the data mining algo-
rithm cannot be executed. The evaluation necessities to apply the
heuristic are expensive computationally and this cost is directly
proportional to the size of the data set.

Subgroup discovery as data mining task, is situated at the inter-
section of predictive and descriptive induction. In subgroup discov-
ery, the rules or subgroups are discovered using heuristics which
try to find the best subgroups in terms of rule coverage and distri-
butional unusualness (Lavrač et al., 2004). Subgroup discovery
aims at discovering individual rules of interest, which must be rep-
resented in explicit symbolic form and which must be relatively
simple in order to be recognized as actionable by potential users.

In this paper we are interested in the application of the sub-
group discovery task to large data sets analyzing the scaling up
problem. Subgroup discovery algorithms are difficult to be evalu-
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ated in this kind of data sets due to the fact that their heuristics
are expensive computationally, and the costs are directly propor-
tional to the size of the data set.

A possible way to face the scaling up problem that a large size
data set produces consists of scaling down the initial data set.
The scaling down can be applied by means of a pre-processing
stage preceding the subgroup discovery algorithm. The pre-pro-
cessing suggested in this paper consists in the application of data
reduction techniques using instance selection algorithms (Wilson
and Martinez, 2000; Liu and Motoda, 2001). The instance selection
algorithms choose representative instance subsets following a
determined strategy. Those subsets composed by representative
instances are used as input to extract models from them (Riquelme
et al., 2003). Due to the large size of the data set, it is necessary the
stratified execution of the instance selection algorithms (Cano
et al., 2005).

The aim of this paper is to propose the combination of the strat-
ified instance selection and subgroup discovery algorithm to face
the scaling up problem which affects to subgroup discovery task
in large size data sets.

The imbalance data distribution is a problem tackled by several
approaches in the specialized literature (Chawla et al.,2004; Zhang
and Mani, 2003; Yen and Lee, 2006). This problem consists of the
existence of minority classes, those which have few examples with
respect to other classes. One of the techniques proposed in the
class imbalance problem is to use a data reduction stage (Batista
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et al., 2004) (called under-sampling and similar to instance selec-
tion) for reducing the bias of the classifiers towards the majority
class. In this way, the learning of the model could be oriented to re-
duce the misclassification of the minority class.

Minority classes also can be presented in subgroup discovery.
Their presence in data sets produces that the instance selection
stage, in the classic stratified instance selection proposed by Cano
et al. (2005), reduces the presence of these minority classes in the
subset selected used as input for the subgroup discovery process.
In this case, the discovery of subgroups related with minority clas-
ses is hard due to the lost of instances which belong to that classes
in the instance selection stage. To address this situation, we study
two novel stratification proposals which increase the presence of
those minority classes. These new proposals make available the
subgroup discovery process in large size data sets independently
of the presence of minority classes.

In order to do that, the paper is set out as follows. Section 2 is
dedicated to the subgroup discovery task, the algorithm considered
to develop that task and to present two quality measures of the
subgroups discovered. In Section 3, we describe the KDD Cup’99
data set and its characteristics as large size data set used in our
study. Section 4 is devoted to analyzing the scaling up problem
which appears in the subgroup discovery algorithm when large
data sets are used as input. In Section 5, we present the combina-
tion of stratified instance selection and the subgroup discovery
algorithm to face the scaling up problem, analyzing the classical
stratification method and the two novel proposed. Section 6 pre-
sents the experimental study developed and deals with the results
and their analysis. Finally, in Section 7, we point out our conclu-
sions. An appendix is included containing the description of the in-
stance selection algorithms used in this study and presents the
example weighting scheme and the rule quality function which
the subgroup discovery algorithm involves.
2. Subgroup discovery

In this section we extend the subgroup discovery description,
we present the Apriori-SD algorithm and the quality measures con-
sidered to analyze the subgroups discovered.

2.1. Description

Subgroup Discovery was defined by Klöesgen and Wrobel in
(Klöesgen, 1996) and (Wrobel, 1997). In subgroup discovery we
are interested in the identification of relations between a depen-
dent variable (target variable) and usually more explanatory, inde-
pendent variables (Lavrač et al., 2004). Subgroup discovery focus
its interest on partial relations instead of complete relations;
(small) subgroups with interesting characteristics can be sufficient.
The discovered subgroups must satisfy two conditions: they
should be interpretable for the expert, and they need to be inter-
esting according to the criteria of the user. Interestingness is typi-
cally defined by a quality function, which can take certain
statistical or other user-defined quality criteria into account.

The subgroup discovery is a task situated between the predic-
tive and descriptive induction. As difference between classification
or association rules and discovered subgroups we can cite Lavrač et
al. (2004) where they emphasize that the goal in standard rule
learning is to generate one model for each class, consisting of rule
sets describing class characteristics in terms of properties occur-
ring in the descriptions of training examples. Subgroup discovery
aims at discovery individual rules of interest which must be repre-
sented in explicit symbolic form and relatively simple to be recog-
nized as actionable by potential users. Standard classification
algorithms use the covering algorithm for rule set construction
which hinders the applicability of classification rule induction ap-
proaches in subgroup discovery (as Lavrac et al. show in (Lavrač
et al., 2004)). In addition, subgroup discovery is different from clas-
sification as it addresses different goals: discovery of interesting
population subgroups instead of maximizing classification accu-
racy of the induced rules set. This is manifested in the fact that
in subgroup discovery tasks, many more false positives (negative
examples incorrectly classified as positives) can be often tolerated
than in classification.

There are some proposals on subgroup discovery algorithms,
like SD-Map (Atzmueller and Puppe, 2006), SubgroupMiner (Klöes-
gen and Michael, 2002), CN2-SD (Lavrač et al., 2004) or Apriori-SD
(Kavšek and Lavrač, 2006). The first one is discarded from our
study due to the fact that it can only be used in two-class data sets.
The last three ones are compared in (Kavšek and Lavrač, 2006) and
the authors reach as conclusions that Apriori-SD acts very similarly
to CN2-SD and is more suitable for predicting the minority classes,
while SubgroupMiner found larger and more accurate subgroups
when dealing with the majority classes. In large data sets, it is used
to find minority classes as it is the case of the KDD Cup’99, where
there are minority classes associated to different kinds of attack.
Therefore, we have selected Apriori-SD as subgroup discovery algo-
rithm in our study.

2.2. Apriori-SD algorithm

Kavšek et al. analyzes the Apriori-SD algorithm in (Kavšek and
Lavrač, 2006), modifying the Apriori-C (which was based originally
in the well-known Apriori algorithm (Agrawal et al., 1996) for min-
ing association rules). In this case, the classification rule discovery
algorithm Apriori-C (Lavrač et al., 2002) is adapted to subgroup
discovery (Kavšek and Lavrač, 2006, 2002).

The association rule learning algorithms (Apriori) can be
adapted for classification purposes (Apriori-C) by implementing
the following steps: discretize continuous attributes, run an asso-
ciation rule learning algorithm, collect rules whose right-hand side
of the rule consists of a single item, representing a value of the tar-
get attribute, and use this set of rules to classify the unclassified
examples.

The main modifications in the Apriori-C algorithm, making it
appropriate for subgroup discovery, involve the implementation
of a weighting scheme example in post-processing rule (described
in Appendix), a modified rule quality function incorporating exam-
ple weights into the weighted relative accuracy heuristic (de-
scribed in Appendix), a probabilistic classification scheme, and
the use of the ROC space for improving the evaluation of discov-
ered rules. The pseudo-code of the Apriori-SD algorithm is given
in Fig. 1.

The input arguments of the algorithm are: Examples, Classes,
minSup, minConf and k. Examples are the set of training examples,
Classes are the values of the class attribute, parameter k determines
the threshold for covered example elimination in rule post-pro-
cessing ensuring the convergence of the algorithm, and parameters
minSup and minConf denote the Apriori minimal support and con-
fidence parameters, constraining rule search.

2.3. Quality measures

As quality measures for each one of the subgroups discovered
we will use the following ones:

� Support: The support measure computes the frequency of cor-
rectly classified covered examples of a rule Ri (Cond ? Class):

SupðRiÞ ¼ pðClass; CondÞ ¼ nðClass; CondÞ
N

ð1Þ



Fig. 1. Pseudocode of Apriori-SD algorithm.

Table 1
Class distribution in the original KDD Cup’99 data set

Normal u2r Dos r2l Probe

97,277 52 391,458 1126 4107
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where, n(Class,Cond) is the number of instances of Class where
the antecedents Cond are true and N the number of instances
in the data set.

� Confidence: To analyze the predictive capabilities of the sub-
groups discovered, the confidence of each rule is obtained. This
measure represents the number of positive instances covered
among all the instances covered by the rule:

Conf ðRiÞ ¼
pðClassjCondÞ

pðCondÞ ¼ nðClass;CondÞ
nðCondÞ ð2Þ

where n(Cond) is the number of instances where the antecedents
Cond are true.

3. A large size data set: KDD Cup’99

The task for the classifier learning contest organized in conjunc-
tion with the KDD Cup’99 conference was to learn a predictive
model (i.e. a classifier) capable of distinguishing between legiti-
mate and illegitimate connections in a computer network. A stan-
dard set of data to be audited, which includes a wide variety of
intrusions simulated in a military network environment, was pro-
vided. The 1999 KDD intrusion detection contest used a version of
this data set.

Each connection is labeled as either normal, or as an attack,
with exactly one specific attack type. Attacks fall into four main
categories: dos (denial-of-service, e.g. syn flood), r2l (unauthorized
access from a remote machine, e.g. guessing password), u2r (unau-
thorized access to local superuser) and probing (surveillance and
other probing, e.g., port scanning).

The raw training data was about 4 GB of compressed binary
dump data from seven weeks of network traffic. This was pro-
cessed into about five million connection records. It is available
in the UCI Repository (Newman et al., 1998). In this study, we work
with its ten percent version which is available in the UCI Reposi-
tory. It is composed by 494,020 instances (connections) with 41
attributes each, and 5 classes (the four previously mentioned and
the one normal connection as Table 1 shows). The results for the
KDD Cup’99 contest are available in (Elkan, 2000).

In the last years, this data set has been widely studied. In (Gao
et al., 2006), Gao et al. proposed a novel LS-SVM intrusion detec-
tion model using kernel space approximation through greedy
searching. Chen et al. in (Chen et al., 2007) offered an intrusion
detection system model based on a general and enhanced flexible
neural tree. The paper of Gunes et al. (2007) is dedicated to the
application of a hierarchy of self-organizing feature maps to net-
work intrusion detection. Yu et al. proposed in (Yu et al., 2007)
an intrusion detection system which automatically tunes the
detection model on-the-fly according to the feedback provided
by the system operator when false predictions are encountered.
4. Analysis of the scaling up problem for subgroup discovery:
the case of Apriori-SD

Apriori-SD extracts a set of rules which are generated using a
determined heuristic (see Section 2.2). The evaluation needed to
apply the heuristic is expensive computationally, and this cost is
directly proportional to the size of the data set.

To execute the Apriori-SD it is necessary to execute previously
the Apriori-C, which has as precondition the discretization of the
features which compose the instances. The discretization process
is other bottleneck in the execution time when the size of the data
set increases. As discretizer algorithm we use the Fayyad one
(Fayyad and Irani, 1993), as the authors indicate in its previous
work (Lavrač et al., 2004).

To analyze the effect of the size of the data set, we will split the
data set and create subsets of different sizes (the percentages of in-
stances per class are maintained), executing the discretization
method (Fayyad discretization) and the subgroup discovery algo-
rithm (Apriori-SD) over them (the parameters fixed for Apriori-
SD appear in Section 6). Table 2 and Fig. 2 present the results of
that analysis. The first column of the table is the number of in-
stances in the subset. The second, third and fourth columns, show
the execution time of the Fayyad discretization algorithm, the exe-
cution time of the Apriori-SD and their combined times, respec-
tively (all in seconds).

The results which appear in Table 2 show that the execution
time needed by Apriori-SD when the size of data set increases
(due to its own execution time and its discretization method asso-
ciated) makes it difficult to be used in large size data sets.



Table 2
Fayyad discretization and Apriori-SD execution times in seconds increasing the size of
a KDD Cup’99 subset

Number of
instances

Fayyad discr.
time

Apriori-SD
exec.time

Exec. time
(Fayyad + Apriori-SD)

200 0.062 0.453 0.515
400 0.156 1.172 1.378
800 0.438 4.625 5.063
1600 2.001 18.656 20.657
3200 6.437 52.203 58.640
6400 26.958 205.750 232.708
12,800 149.438 1548.062 1697.500
25,600 2456.719 Not runnable Not runnable

Test Set (TS)i

D D D D

Subgroups
Discovered

Data Set (D)

1 2 3 t

1 2 3 tDS DS DS DS

Training Set (TR)i

ISAISAISAISA

ISA: Instance Selection Algorithm

Stratified Training Subset Selected (STSS)i

Subgroup Discovery 
Algorithm (AprioriSD)

Fig. 3. Stratified instance selection previous the subgroup discovery.
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5. Stratified instance selection for subgroup discovery

In this paper we face the scaling up problem by means of the
application of a pre-processing stage to reduce the initial data set
previously to the subgroup discovery process, using instance selec-
tion algorithms.

Another process used for reducing the number of instances in
training data is the prototype generation, which consists of build-
ing new examples by combining or computing several metrics
among original data and including them into the subset of training
data (Viswanath et al., 2006). Many of the examples of these gen-
erated sets may not coincide with examples belonging to the origi-
nal training set, due to the fact that they are artificially generated.
In some applications, this behaviour is not desired, like in Kdd
Cup’99 data set, which is composed of information about real con-
nections, and if new instances were generated, it could be possible
that they do not correspond to valid real connections. This is the
reason why the instance selection has been chosen.

In instance selection we want to isolate the smallest set of in-
stances which enable us to predict the class of a query instance
with the same quality as the initial data set (Liu and Motoda,
2001). By reducing the ‘useful’ data set size we can reduce the
space complexity and decrease computational cost of the data
mining algorithms that will be applied later, improving their gen-
eralization capabilities due to the elimination of noise.

As instance selection algorithms we have selected for this study
those which show the best behaviour in (Cano et al., 2003), with
low resources consumption and high reduction rates: Cnn (Hart,
1968), Ib3 (Aha et al., 1991) and Evolutionary instance selection
based on CHC algorithm (EIS-CHC) (Cano et al., 2003). They are de-
scribed in Appendix.

The instance selection algorithms are also affected by the size of
the input data set (Cano et al., 2005). To avoid the drawbacks asso-
ciated to large size data sets we apply the instance selection com-
bined with stratified strategy as it was suggested in (Cano et al.,
2005) with promising results.

In the following subsections we present the classic stratified
strategy and two novel proposals which face the drawback intro-
Fig. 2. Graphical representation of the execution time evolution in Fayyad
duced by the classic one in relation to the presence of minority
classes.

5.1. Classical stratified instance selection approach

In classic stratified strategy, initial data set D is divided into t

disjoint sets Dj, strata of equal size, D1, D2, . . . , and Dt, keeping
the classes distribution within each set in the partitioning process.
The test set TS will be the TR complementary one in D:

TR ¼
[
j2J

Dj; J � f1;2; . . . ; tg ð3Þ

TS ¼ D n TR ð4Þ

Instance selection algorithms are applied to each Dj obtaining a sub-
set selected DSj (see Fig. 3). The prototype selected set is obtained
using DSj (see Eq. (5)) and it is called Stratified Training Subset Se-
lected (STSS),

STSS ¼
[
j2J

DSj; J � f1;2; . . . ; tg ð5Þ

This stratification offers an interesting behaviour when the original
data set is big enough to keep instances from all the classes in each
one of the strata created.

In the original stratification proposal (Cano et al., 2005) the stra-
ta are created splitting randomly the initial data set and using the
same distribution of classes than the initial one. The situation is
that in the KDD Cup’99 data set there are high minority classes
so when we split the data set, some of the strata could lose in-
stances from one concrete class (as we can see in Table 3 in the
case of class u2r). Following the classical stratification strategy
there are too few or none instances from the minority classes in
discretization and Apriori-SD when the size of the data set increases.



Table 3
Class distribution per strata in number of instances and ratio class instances/majority class instances, considering 100 strata, in the Classic Stratification Strategy previous to the
instance selection process

Normal u2r Dos r2l Probe

# Ratio # Ratio # Ratio # Ratio # Ratio

Original data set 97,277 24.84% 52 0.013% 391,458 100% 1126 0.287% 4107 1.045%
Strat. classical 972 24.83% 1 or 0 �0% 3914 100% 11 0.281% 41 1.021%

1 We consider minority classes those which relation between the number of
stances in the class and the number of instances in the biggest class (Ratio in Tables
and 4) is smaller than 1% of the biggest one (case of u2r and r2l in KDD Cup’99 data

set).
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the strata so for the selection process is difficult or impossible to
select them. In that case, in the subset selected after the classic
stratified instance selection process (STSSi subset in Fig. 3) the in-
stances belonging to the minority classes are a few or none so
the subgroup discovery task applied over it can’t discover subgroup
of the minority classes (in the case of KDD Cup’99 data set the
minority class u2r is interesting due to it is an attack).

5.2. Two novel approaches for stratified instance selection based on
increasing the presence of minority classes

The drawback of the classical stratification model is that it af-
fects notably to minority classes. That situation makes that the
Apriori-SD presents more difficulty to extract useful information
(subgroups) from these classes.

To avoid the drawback which classic stratified strategy intro-
duces when minority classes appear we offer two novel stratifica-
tion proposals:

� Instance selection in all classes (IS-AC): We just randomly split the
majority classes over the strata created. After the majority clas-
ses have been divided, the whole minority classes are added to
each strata. After the instance selection process developed in
each strata, the subsets selected are reunited removing instance
duplicities. In the case of KDD Cup’99 the split of the majority
classes is the same than the classic stratification, so in each
strata will have (in the case of 100 strata) the 1% of the number
of instances of the majority classes. The difference appears in the
minority classes. Following this strategy, in each strata we keep
all the instances of the minority classes (we keep all the
instances belonging to r2l and u2r, 1126 and 52, respectively,
in each strata). After that, the selection process starts. With this
strategy, the most representative instances from all the classes
are selected from each strata. The instance selection process
selects the most representative instances belonged to all classes,
reducing the number of instances. This situation produces that
the STSSi subset, obtained after the reunion of the instances
selected from the strata, can present a small number of
instances from the minority classes (as Tables 4 and 5 show in
the case u2r). The instances which appear in the STSSi subset
are the most representative of all the classes but the minority
classes maybe are not enough represented for a proper subgroup
discovery task due to the stratified instance selection.That is the
reason why we study the IS-MC alternative. The idea is to pro-
tect the minority classes from the instance selection process.

� Instance selection in majority classes (IS-MC): In the second pro-
posal we randomly split the majority classes over the strata cre-
ated, but the minority classes are not added nor divided. The
selection process is applied without the minority ones, just in
the majority classes (see Table 4). The instances which belong
to the minority classes are added to the STSSi subset after the
reunion of the subsets selected and before the subgroup discov-
ery task starts. In this case, the instances which appear in STSSi

are the most representative of the majority classes and all the
instances belonging to the minority ones. Following this strat-
egy, the instance selection process reduces the initial data set
making it available for its use as input in Apriori-SD and does
not affect to the presence of instances from the minority classes
which makes possible the subgroup discovering process in those
classes too.

In Table 4 we show the example of the class distribution in the
whole data set, and in one strata considering the original stratifica-
tion proposal (Strat classical), and the two proposals suggested,
splitting the original data set in 100 strata. We present the number
of instances and the ratio class instances/majority class instances
to detect the minority classes.1 The strata distribution is offered
previous to the instance selection. In the IS-MC case, where the
minority classes are not considered for the selection process, the
minority classes are tagged with ‘*’ and their ratio in the strata with
‘-’ due to its absence.

With the proposal IS-AC, the idea is that the minority classes are
not affected by the splitting process, appearing in small number in
each strata. The proposal IS-MC tries to reduce the effect of the in-
stance selection in the minority classes, keeping them till the mo-
ment that the subgroups are discovered.

6. Experimental study

The experimental study is defined in two aspects: data sets and
algorithm’s parameters. They are as follows:

� Data sets: The KDD Cup’99 one, divided in 100 strata.
� Parameters: The parameters are chosen considering the authors

suggestions in the literature. For each one of the algorithms
there are:
– Apriori-SD: minimum support = 0.03, minimum confi-

dence = 0.8, k = 5. The selection of the cut points for the
numeric antecedents of the rules have been done using the
Fayyad discretization method (Lavrač et al., 2004).

– Cnn: It has not parameters to be fixed.
– Ib3: acceptance level = 0.9 and drop level = 0.7.
– EIS-CHC: evaluations = 10,000, population = 50 and a = 0.5.
The deterministic algorithms have been executed one time for
each partition in the 10-fold cross validation and three times the
non-deterministic ones.

The experimental section is divided into two sections. In the
first one we analyze the effect of stratified instance selection in
the execution time of Apriori-SD. In the second one we study the
quality of the subgroups discovered using both stratification meth-
ods, comparing them with random selections.

6.1. Execution time perspective: analysis of the stratified instance
selection with Apriori-SD

As we have shown in Section 4, the Apriori-SD algorithm pre-
sents difficulties in its execution with data sets larger than
13,000 instances. So, in Table 5 we analyze the size of the subsets
in
3



Table 4
Class distribution per strata in number of instances and ratio class instances/majority class instances, considering 100 strata, in the three kinds of stratifications previous to the
instance selection process

Normal u2r Dos r2l Probe

# Ratio # Ratio # Ratio # Ratio # Ratio

Original data set 97,277 24.84% 52 0.013% 391,458 100% 1126 0.287% 4107 1.045%
Strat. classical 972 24.83% 1 or 0 �0% 3914 100% 11 0.281% 41 1.021%
IS-AC 972 24.83% 52 1.328% 3914 100% 1126 28.76% 41 1.021%
IS-MC 972 24.83% 52* – 3914 100% 1126* – 41 1.021%

Table 5
Size of the subsets selected by the stratified instance selection algorithms and its class distribution

Algorithm KDD Cup’99 subset size selected (instances) Normal Dos Probe u2r r2l

Cnn IS-AC 113,535 5794 106,545 914 38 244
Ib3 IS-AC 7401 1499 4328 892 51 631
EIS-CHC IS-AC 7355 1644 4718 253 35 705
Cnn IS-MC 118,972 3062 113,844 888 52 1126
Ib3 IS-MC 5754 1739 1986 851 52 1126
EIS-CHC IS-MC 5342 1008 2875 281 52 1126
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that the stratified instance selection algorithms offer for the KDD
Cup’99 data set. The first column in the table presents the name
of the instance selection algorithms and the model of stratification
considered. The second column contains the number of instances
which compose the subset selected after the stratified instance
selection execution. The remaining columns indicate the distribu-
tion of the instances in the classes.

Analyzing Table 5 we can point out the following conclusions:

� Cnn presents low reduction rates, independently of the stratifi-
cation model considered, so the subsets selected are still too
large to be used as input for the Apriori-SD algorithm. The
others instance selection methods (Ib3 and EIS-CHC) reduce sig-
nificantly the initial data set defeating the scaling up problem.

� The first Stratification method (IS-AC) maintains the original
majority classes in the same proportion in the subsets selected,
while the second stratification model (IS-MC) offers more bal-
anced proportions among classes.

With those subsets selected, we proceed with the subgroup dis-
covery process that could not be executed using the whole initial
data set. Due to the large size of the subsets selected by the Cnn,
in this stage we use the one obtained for Ib3 and EIS-CHC with both
stratification methods.

Table 6 presents the execution times of the subgroup discovery
process. In the first column we offer the name of the instance selec-
tion algorithm, the stratification used, the following discretization
method and the subgroup discovery algorithm applied. The second,
third and fourth columns present the execution time consumed for
the discretization method, the subgroup discovery execution time
and the combined times for both, respectively.

Analyzing Table 6 we can point out that the pre-processing pro-
duces an important reduction in execution time as in discretization
Table 6
Discretization and subgroup discovery execution time (in seconds) results for the subsets

Algorithm Discr. time (Fayyad)

Ib3 IS-AC + Fayyad + Apriori-SD 1090.342
EIS-CHC IS-AC + Fayyad + Apriori-SD 1180.383
Ib3 IS-MC + Fayyad + Apriori-SD 851.077
EIS-CHC IS-MC + Fayyad + Apriori-SD 722.969
as in the subgroup discovery process. The combination of stratifica-
tion and instance selection algorithm let us carry out a subgroup
discovery task in large size data sets which could not be evaluated
in other way. The stratification IS-MC with instance selection asso-
ciated offers the smallest subsets and that situation reduces the
execution time of Apriori-SD.
6.2. Subgroup discovery quality perspective: analysis of the stratified
instance selection with Apriori-SD

In this section we analyze the subgroups discovered considering
both stratification methods combined with the instance selection
algorithms which present the biggest reduction rates (EIS-CHC
and Ib3). In addition, we will compare the quality (confidence
and support) of the subgroups extracted using the subsets selected
by the stratified instance selection with the quality of the sub-
groups extracted using random selections over the original data
set of the same size. The objective is to evaluate if the selection that
the instance selection algorithms offers improves the random one,
leaving us with the extraction of higher quality subgroups for all
classes.

Table 7 shows the classes distribution using each one of the
selection methods combined with stratification, including random
selection for analyzing the instance selection algorithms quality:

In Table 8 we show the number of subgroups extracted per class
in previous cases (combinations of EIS-CHC, Ib3 and random and
IS-AC and IS-MC with Apriori-SD).

In Tables 9 and 10 we present some of the subgroups discov-
ered. We offer the subgroup with highest confidence for each class
if it is present, and their quality measures (confidence and support
in test), using both stratification strategies and the random selec-
tions of the same size:
previously selected

Apriori-SD exec. time Exec. time (Fayyad + Apriori-SD)

9907.085 10997.427
9625.901 10806.284
6441.992 8144.146
5466.016 6188.985



Table 8
Number of subgroups per class in each selection using Apriori-SD

Class EIS-CHC IS-
AC + Apriori-SD

EIS-CHC IS-
MC + Apriori-SD

Ib3 IS-AC Ib3 IS-MC

Normal 8 7 14 12
dos 12 14 11 17
Probe 0 4 6 9
u2r 0 0 0 0
r2l 4 6 0 9

Random
1 + Apriori-SD

Random
2 + Apriori-SD

Random
3 + Apriori-SD

Random
4 + Apriori-SD

Normal 11 11 9 9
dos 8 8 9 7
Probe 0 0 0 0
u2r 0 0 0 0
r2l 0 0 0 6

Table 9
Subgroup discovered using EIS-CHC with IS-AC and IS-MC, and random selections
combined with Apriori-SD

EIS-CHC IS-AC + Apriori-SD EIS-CHC IS-MC + Apriori-SD

IF protocol_type = icmp THEN Class dos IF land = 0 AND logged_in = 0 AND
Confidence: 0.991; Support: 0.569 dst_host_count = 255 THEN Class dos

Confidence: 0.951; Support: 0.786
IF service = http THEN Class normal IF

dst_host_srv_diff_host_rate P 0.015
AND

Confidence: 0.965; Support: 0.145 dst_host_srv_diff_host_rate < 0.075
THEN Class normal
Confidence: 0.996; Support: 0.066

IF service = ftp_data AND logged_in = 1
THEN Class r2l

IF service = ftp AND logged_in = 1
THEN Class r2l

Confidence: 0.196; Support: 0.001 Confidence: 0.464; Support: 0.001
IF diff_srv_rate P 0.570 AND
dst_host_srv_count = 1 THEN Class
probe
Confidence: 0.704; Support: 0.004

Random 1 + Apriori-SD Random 2 + Apriori-SD
IF dst_host_same_src_port_rate P 0.305

THEN Class dos
IF
dst_host_same_src_port_rate < 0.305
THEN Class dos

Confidence: 0.944; Support: 0.569 Confidence: 0.944; Support: 0.569
IF protocol_type = tcp AND src_bytes = SF

THEN Class normal
IF
dst_host_srv_diff_host_rate P 0.015
AND

Confidence: 0.952; Support: 0.182 dst_host_srv_diff_host_rate < 0.275
THEN Class normal
Confidence: 0.979; Support: 0.078

Table 7
Classes distribution using instance and random selection keeping both stratification
methodologies

Algorithm KDD Cup’99 subset size
selected (instances)

Normal Dos Probe u2r r2l

EIS-CHC IS-AC 7355 1644 4718 253 35 705
Random 1 7355 1454 5825 58 1 17
EIS-CHC IS-MC 5342 1008 2875 281 52 1126
Random 2 5342 801 3327 36 52 1126
Ib3 IS-AC 7401 4428 1399 892 51 631
Random 3 7401 1463 5876 45 0 17
Ib3 IS-MC 5754 2089 1636 851 52 1126
Random 4 5754 929 3599 48 52 1126

Table 10
Subgroup discovered using Ib3 with IS-AC and IS-MC, and random selections
combined with Apriori-SD

Ib3 IS-AC + Apriori-SD Ib3 IS-MC + Apriori-SD

IF serror_rate P 442.015 THEN Class
dos

IF src_bytes = SF AND count P 510.489
THEN Class dos

Confidence: 1.000; Support: 0.564 Confidence: 1.000; Support: 0.459
IF hot = 0 AND logged_in = 1 THEN

Class normal
IF service = http AND flag < 4.5 THEN Class
normal

Confidence: 0.990; Support: 0.140 Confidence: 0.993; Support: 0.104
IF diff_srv_rate P 0.530 AND IF num_outbound_cmds = 0 AND

diff_srv_rate P 0.754 AND
dst_host_srv_count = 1 THEN Class

probe
dst_host_diff_srv_rate P 0.505 THEN Class
probe

Confidence: 0.705; Support: 0.004 Confidence: 1.000; Support: 0.004
IF service = ftp AND logged_in = 1 THEN
Class r2l
Confidence: 0.464; Support: 0.001

Random 3 + Apriori-SD Random 4 + Apriori-SD
IF dst_host_srv_serror_rate P 0.0150

THEN Class dos
IF srv_rerror_rate P 0.015

Confidence: 0.983; Support: 0.175 AND srv_rerror_rate < 0.355 THEN Class
dos
Confidence: 0.996; Support: 0.216

IF protocol_type = tcp AND IF dst_host_srv_diff_host_rate P 0.015
AND

dst_host_srv_count = 255 THEN Class
normal

dst_host_srv_diff_host_rate < 0.075 THEN
Class normal

Confidence: 0.973; Support: 0.111 Confidence: 0.996; Support: 0.066
IF is_guest_login = 1 THEN Class r2l
Confidence: 0.471; Support: 0.001
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Paying attention to Tables7–10, we can point out the following:

� The random 1 process selects too few instances which belong to
the minority classes so it is difficult to extract subgroups from
them. The random 2, which retains all the instances for the
minority classes u2r and r2l is not able to generate subgroups
for them when Apriori-SD is applied. Random 3 and 4 show
the same behaviour as the two previous ones.

� The instance selection algorithms combined with IS-MC, and
using the same number of instances as the random selections,
extract subgroups from most of the classes. The proper selection
of the representative instances of each class by means of
instance selection algorithms improve the number and the qual-
ity of subgroups discovered as Tables from 7 and 10 indicate.

� For the stratification IS-AC, there are subgroups discovered from
the majority classes but none of them from the minority classes
in the subsets selected. The small number of instances in those
minority classes is not enough to discover rules with Apriori-
SD with measure levels higher than the indicated by the authors
(support greater than 0.03 and confidence greater than 0.8).

� As we have just indicated, the use of stratification IS-MC lets us
extract subgroups for the majority of classes. There are not sub-
groups for the u2r class, which has the minimal representation
(52 instances in a data set composed by 494,020). That class pre-
sents too few instances for the discovering process with Apriori-
SD.

� Considering the quality of the subgroups, we can indicate that
the ones discovered using the previous process of stratified
instance selection present better behaviour in confidence with
similar support. The use of the most representative instances
improves the quality of the subgroups extracted.

� Both stratification methods combined with instance selection
algorithms improve the number of subgroups discovered, com-
pared with the random processes.

As conclusion, we point out that the combination of the in-
stance selection algorithms with stratification lets us run the Apri-
ori-SD subgroup discovery algorithm in large size data sets that
could not be used as input using the original data set. The instance
selection in majority classes proposed allows us the extraction of
subgroups for most of the classes, including most of the minority
ones, with high levels of confidence and support measures.



Fig. 5. Pseudocode of Ib3 algorithm.
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7. Concluding remarks

This paper addresses the scaling up problem involved when
large size data sets are used as input in subgroup discovery algo-
rithms. To avoid the drawbacks introduced by the data set size,
we propose the combination of stratification and instance selection
previous the subgroup discovery task.

An experimental study has been carried out to analyze the ef-
fect of the data set size in subgroup discovery algorithms, and
how the proposal can face this effect. The main conclusion reached
is that the combination of stratification and instance selection
algorithms as pre-processing makes available the subgroup discov-
ery task in large size data sets, which could not be executed in
other way. In addition, the proper election of the instances previ-
ous the subgroup discovery process improves the quality of the
subgroups extracted. As stratification method we stress the second
one proposed, instance selection in majority classes (IS-MC), be-
cause it suits better large data sets with different class distribu-
tions than the other stratification strategies.

Appendix

The description of the instance selection algorithms considered
in the study is the following:

� Cnn (Hart, 1968) – tries to find a consistent subset, which cor-
rectly classifies all of the remaining points in the sample set.
The Cnn algorithm finds a subset S of the training set TR such
that every member of TR is closer to a member of S of the same
class than to a member of S of a different class. The subset S can
be used to classify all the instances in TR correctly. A description
of the algorithm is given in Fig. 4.

� Ib3 (Aha et al., 1991) – instance x from the training set TR is
added to the new set S if the nearest acceptable instance in S
(if there are not acceptable instances a random one is used)
has different class than x. The acceptable concept is defined as
the confidence interval:

pþ z2

2n� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp�1Þ

n þ z2

2n2

q
1þ z2

n

ð6Þ

where z is the confidence factor (0.9 is used to accept, 0.7 to re-
ject). p is the classification accuracy of a x instance (while x is
added to S). n is the number of classification-trials for the given
instance (while added to S). The algorithm proceeds as shown in
Fig. 5.

� Evolutionary instance selection based on CHC algorithm (EIS-
CHC) (Cano et al., 2003; Eshelman, 1991) – Evolutionary algo-
rithms (Back et al., 1997) are general-purpose search algorithms
that use principles inspired by natural genetic populations to
Fig. 4. Pseudocode of Cnn algorithm.
evolve solutions to problems, and they have been used to solve
the instance selection problem, with promising results (Kuncheva,
1995; Kim, 2006). The election of CHC as instance selection algo-
rithm is based on its behaviour showed in (Cano et al., 2003;
Cano et al., 2005). During each generation the EIS-CHC develops
the following steps:
1. It uses a parent population of size pop to generate an inter-

mediate population of pop individuals, which are randomly
paired and used to generate pop potential offspring.

2. Then, a survival competition is held where the best pop chro-
mosomes from the parent and offspring populations are
selected to form the next generation.

Other important characteristics of this algorithm are:
– CHC also implements a form of heterogeneous recombination

using HUX, a special recombination operator. HUX exchanges
half of the bits that differ between parents, where the bit
position to be exchanged is randomly determined. CHC also
employs a method of incest prevention. Before applying
HUX to two parents, the Hamming distance between them
is measured. Only those parents who differ from each other
by some number of bits (mating threshold) are mated. The
initial threshold is set at L/4, where L is the length of the
chromosomes. If no offspring are inserted into the new pop-
ulation then the threshold is reduced by 1.

– No mutation is applied during the recombination phase.
Instead, when the population converges or the search stops
making progress (i.e., the difference threshold has dropped
to zero and no new offspring are being generated which are
better than any members of the parent population) the pop-
ulation is reinitialized to introduce new diversity to the
search. The chromosome representing the best solution
found over the course of the search is used as a template to
re-seed the population. Re-seeding of the population is
accomplished by randomly changing 35% of the bits in the
template chromosome to form each of the other n � 1 new
chromosomes in the population. The search is then resumed.
The description of the example weighting scheme which Apri-
ori-SD involves is the following:

In this weighting scheme each covered positive examples are
not deleted when the currently best rule is selected in the post-pro-
cessing step of the algorithm. Instead, each time a rule is selected,
the algorithm stores with each example a count i of how many
times (with how many rules) the example has been covered so
far. Weights of positive examples covered by the selected rule de-
crease according to the formula wðej; iÞ ¼ 1

iþ1. In the first iteration
all target class examples are assigned the same weight
w(ej,0) = 1, while in the following iterations the contributions of
examples are inverse proportional to their coverage by previously
selected rules. In this way the examples already covered by one or
more selected rules decrease their weights while rules covering
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many yet uncovered target class examples whose weights have not
been decreased will have a greater chance to be covered in the fol-
lowing iterations. Covered examples are completely eliminated
when their weights fall below a given threshold (e.g., when an
example has been covered more than k times).

The description of the rule quality function which includes
example weights considered in Apriori-SD is the following:

Weighted relative accuracy (WRAcc) is used in subgroup discov-
ery to evaluate the quality of induced rules. Weighted relative
accuracy (Lavrač et al., 1999; Todorovski et al., 2000) is defined
as follows (considering the rule X ? Y, and p( ) the corresponding
probability):

WRAccðX ! YÞ ¼ pðXÞ � ðpðY jXÞ � pðYÞÞ ð7Þ

Weighted relative accuracy consists of two components: generality
p(x), and relative accuracy P(Y—X) � P(Y). Relative accuracy, is the
accuracy gain of rule X ? Y relative to the fixed rule true ? Y, which
predicts all instances to be of class Y; rule X ? Y is only interesting
if it improves upon this default accuracy.

The rule quality measure WRAcc used in Apriori-SD has been
further modified to enable handling example weights, which pro-
vide the means to consider different parts of the example space
when selecting the best rules. The modified WRAcc measure is de-
fined as follows (wWRAcc):

wWRAccðX ! YÞ ¼ n0ðXÞ
N0
� n0ðX;YÞ

n0ðXÞ �
nðYÞ

N

� �
ð8Þ

where N0 is the sum of the weights of all examples, n0(X) is the sum
of the weights of all covered examples, n0(X,Y) is the sum of the
weights of all correctly covered examples, n(Y) is the number of
examples of class Y, and N is the number of all examples.

References

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I., 1996. Fast discovery
of association rules. In: Advances in Knowledge Discovery and Data Mining.
AAAI Press, pp. 307–328.

Aha, D.W., Kibler, D., Albert, M.K., 1991. Instance-based learning algorithms. Mach.
Learn. 6, 37–66.

Atzmueller, M., Puppe, F., 2006. SD-Map – A fast algorithm for exhaustive subgroup
discovery. In: Proc. 10th European Conf. on Principles and Practice of
Knowledge Discovery in Databases (PKDD 2006), LNAI, vol. 4213, Springer-
Verlag, pp. 6–17.

Back, T., Fogel, D., Michalewicz, Z., 1997. Handbook of Evolutionary Computation.
Oxford University Press.

Batista, G.E.A.P.A., Prati, R.C., Monard, M.C., 2004. A study of the behavior of several
methods for balancing machine learning training data. SIGKDD Explorations 6
(1), 20–29.

Cano, J.-R., Herrera, F., Lozano, M., 2003. Using evolutionary computation as
instance selection for data reduction in KDD: An experimental study. IEEE
Trans. Evol. Comput. 7 (6), 561–575.

Cano, J.-R., Herrera, F., Lozano, M., 2005. Stratification for scaling up evolutionary
prototype selection. Pattern Recognition Lett. 26, 953–963.

Chen, Y., Abraham, A., Yang, B., 2007. Hybrid flexible neural-tree-based intrusion
detection systems. Internat. J. Intell. Systems 22, 337–352.

Chawla, N.V., Japkowicz, N., Kolcz, A., 2004. Editorial: Special issue on learning from
imbalanced data sets. SIGKDD Explorations 6 (1), 1–6.

Domingo, C., Gavaldá, R., Watanabe, O., 2002. Adaptive sampling methods for
scaling up knowledge discovery algorithms. Data Mining Knowledge Discov. 6
(2), 131–152.
Elkan, C., 2000. Kdd’99 knowledge discovery contest. ACM SIGKDD Explorations
Newslett. 1 (2), 78.

Eshelman, L.J., 1991. The CHC adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. Found. Genetic
Algorithms 1, 265–283.

Fayyad, U.M., Irani, K.B., 1993. Multi-interval discretisation of continuous valued
attributes for classification learning. In: Proceedings of the 13th International
Joint Conference on Artificial Intelligence. Morgan Kaufmann, pp. 1022–
1027.

Gao, H., Wang, X., Yang, H., 2006. LS-SVM based intrusion detection using kernel
space approximation and kernel-target alignment. In: Proc. 6th World Congress
on Intelligent Control and Automation, Dalian, China.

Gunes, H., Nur, A., Heywood, M.-I., 2007. A hierarchical SOM-based intrusion
detection system. Eng. Appl. Artif. Intell. 20, 439–451.

Hart, P.E., 1968. The condensed nearest neighbour rule. IEEE Trans. Inform. Theory
18 (3), 431–433.
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