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Abstract In recent years, there has been a growing interest for the experimental
analysis in the field of evolutionary algorithms. It is noticeable due to the existence
of numerous papers which analyze and propose different types of problems, such as
the basis for experimental comparisons of algorithms, proposals of different method-
ologies in comparison or proposals of use of different statistical techniques in algo-
rithms’ comparison.

In this paper, we focus our study on the use of statistical techniques in the analy-
sis of evolutionary algorithms’ behaviour over optimization problems. A study about
the required conditions for statistical analysis of the results is presented by using
some models of evolutionary algorithms for real-coding optimization. This study is
conducted in two ways: single-problem analysis and multiple-problem analysis. The
results obtained state that a parametric statistical analysis could not be appropriate
specially when we deal with multiple-problem results. In multiple-problem analysis,
we propose the use of non-parametric statistical tests given that they are less restric-
tive than parametric ones and they can be used over small size samples of results.
As a case study, we analyze the published results for the algorithms presented in the
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CEC’2005 Special Session on Real Parameter Optimization by using non-parametric
test procedures.

Keywords Statistical analysis of experiments - Evolutionary algorithms -
Parametric tests - Non-parametric tests

1 Introduction

The “No free lunch” theorem (Wolpert and Macready 1997) demonstrates that it is
not possible to find one algorithm being better in behaviour for any problem. On the
other hand, we know that we can work with different degrees of knowledge about
the problem which we expect to solve, and that it is not the same to work without
knowledge about the problem (hypothesis of the “no free lunch” theorem) than to
work with partial knowledge about the problem, knowledge that allows us to design
algorithms with specific characteristics which can make them more suitable for the
solution of the problem.

Once situated in this field, the partial knowledge of the problem and the necessity
of having disposals of algorithms for its solution, the question about deciding when an
algorithm is better than another one is suggested. In the case of the use of evolutionary
algorithms, the latter may be done attending to the efficiency and/or effectiveness
criteria. When theoretical results are not available in order to allow the comparison
of the behaviour of the algorithms, we have to focus on the analysis of empirical
results.

In the last years, there has been a growing interest in the analysis of experiments
in the field of evolutionary algorithms. The work of Hooker is pioneer in this line and
it shows an interesting study on what we must do and not do when we suggest the
analysis of the behaviour of a metaheuristic about a problem (Hooker 1997).

In relation to the analysis of experiments, we can find three types of works: the
study and design of test problems, the statistical analysis of experiments and experi-
mental design.

e Several authors have focused their interest in the design of test problems which
could be appropriate to do a comparative study among the algorithms. Focusing
our attention to continuous optimization problems, which will be used in this paper,
we can point out the pioneer papers of Whitley and co-authors for the design of
complex test functions for continuous optimization (Whitley et al. 1995, 1996),
and the recent works of Gallagher and Yuan (2006); Yuan and Gallagher (2003).
In the same way, we can find papers that present test cases for different types of
problems.

e Centred on the statistical analysis of the results, if we analyze the published
papers in specialized journals, we find that the majority of the articles make
a comparison of results based on average values of a set of executions over a
concrete case. In proportion, a little set of works use statistical procedures in
order to compare results, although their use is recently growing and it is be-
ing suggested as a need for many reviewers. When we find statistical stud-
ies, they are usually based on the average and variance by using parametric
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tests (ANOVA, t-test, etc....) (Czarn et al. 2004; Ozcelik and Erzurumlu 2006;
Rojas et al. 2002). Recently, non-parametric statistical procedures have been con-
sidered for being used in analysis of results (Garcia et al. 2007; Moreno-Pérez et
al. 2007). A similar situation can be found in the machine learning community
(Demsar 2006).

e The experimental design consists of a set of techniques which comprise method-
ologies for adjusting the parameters of the algorithms depending on the settings
used and results obtained (Bartz-Beielstein 2006; Kramer 2007). In our study, we
are not interested in this topic; we assume that the algorithms in a comparison have
obtained the best possible results, depending on an optimal adjustment of their pa-
rameters in each problem.

We are interested in the use of statistical techniques for the analysis of the be-
haviour of the evolutionary algorithms over optimization problems, analyzing the
use of the parametric statistical tests and the non-parametric ones (Sheskin 2003;
Zar 1999). We will analyze the required conditions for the usage of the parametric
tests, and we will carry out an analysis of results by using non-parametric tests.

The study of this paper will be organized into two parts. The first one, we will
denoted it by single-problem analysis, corresponds to the study of the required condi-
tions of a safe use of parametric statistical procedures when comparing the algorithms
over a single problem. The second one, denoted by multiple-problem analysis, will
suppose the study of the same required conditions when considering a comparison of
algorithms over more than one problems simultaneously.

The single-problem analysis is usually found in specialized literature (Bartz-
Beielstein 2006; Ortiz-Boyer et al. 2007). Although the required conditions for using
parametric statistics are usually not fulfilled, as we will see here, a parametric statis-
tical study could obtain similar conclusions to a non-parametric one. However, in the
multiple-problem analysis, due to the dissimilarities in the results obtained and the
small size of the sample to be analyzed, a parametric test may reach erroneous con-
clusions. In recent papers, authors start using single-problem and multiple-problem
analysis simultaneously (Ortiz-Boyer et al. 2007).

Non-parametric tests can be used for comparing algorithms whose results rep-
resent average values for each problem, in spite of the inexistence of relationships
among them. Given that the non-parametric tests do not require explicit conditions
for being conducted, it is recommendable that the sample of results is obtained fol-
lowing the same criterion, that is, computing the same aggregation (average, mode,
etc.) over the same number of runs for each algorithm and problem. They are used
for analyzing the results of the CEC’2005 Special Session on Real Parameter Opti-
mization (Suganthan et al. 2005) over all the test problems, in which average results
of the algorithms for each function are published. We will show significant statisti-
cal differences among the algorithms compared in the CEC’2005 Special Session on
Real Parameter Optimization, supporting the conclusions obtained in this session.

In order to do that, the paper is organized as follows. In Sect. 2, we describe the
setting of the CEC’2005 Special Session: algorithms, tests functions and parameters.
Section 3 shows the study on the required conditions for safe use of parametric tests,
considering single-problem and multiple-problem analysis. We analyze the published
results of the CEC’2005 Special Session on Real Parameter Optimization by using
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non-parametric tests in Sect. 4. Section 5 points out some considerations on the use
of non-parametric tests. The conclusions of the paper are presented in Sect. 6. An
introduction to statistics and a complete description of the non-parametric tests pro-
cedures are given in Appendix A. The published average results of the CEC 2005
Special Session are shown in Appendix B.

2 Preliminaries: settings of the CEC’2005 Special Session

In this section we will briefly describe the algorithms compared, the test functions,
and the characteristics of the experimentation in the CEC’2005 Special Session.

2.1 Evolutionary algorithms

In this section we enumerate the eleven algorithms which were presented in the
CEC’2005 Special Session. For more details on the description and parameters used
for each one, please refer to the respective contributions. The algorithms are: BLX-
GL50 (Garcia-Martinez and Lozano 2005), BLX-MA (Molina et al. 2005), CoEVO
(Posik 2005), DE (Ronkkdnen et al. 2005), DMS-L-PSO (Liang and Suganthan
2005), EDA (Yuan and Gallagher 2005), G-CMA-ES (Auger and Hansen 2005a),
K-PCX (Sinha et al. 2005), L-CMA-ES (Auger and Hansen 2005b), L-SaDE (Qin
and Suganthan 2005), SPC-PNX (Ballester et al. 2005).

2.2 Test functions

In the following we present the set of test functions designed for the Special Session
on Real Parameter Optimization organized in the 2005 IEEE Congress on Evolution-
ary Computation (CEC 2005) (Suganthan et al. 2005).

It is possible to consult in Suganthan et al. (2005) the complete description of the
functions, furthermore in the link the source code is included. The set of test functions
is composed of the following functions:

e 5 Unimodals functions
Sphere function displaced.
— Schwefel’s problem 1.2 displaced.
Elliptical function rotated widely conditioned.
— Schwefel’s problem 1.2 displaced with noise in the fitness.
Schwefel’s problem 2.6 with global optimum in the frontier.
e 20 Multimodals functions
— 7 basic functions
* Rosenbrock function displaced.
Griewank function displaced and rotated without frontiers.
Ackley function displaced and rotated with the global optimum in the frontier.
Rastrigin function displaced.
Rastrigin function displaced and rotated.
Weierstrass function displaced and rotated.
Schwefel’s problem 2.13.

* K K X K ¥
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— 2 expanded functions.
— 11 hybrid functions. Each one of them have been defined through compositions
of 10 out of the 14 previous functions (different in each case).

All functions have been displaced in order to ensure that their optima can never be
found in the centre of the search space. In two functions, in addition, the optima can
not be found within the initialization range, and the domain of search is not limited
(the optimum is out of the range of initialization).

2.3 Characteristics of the experimentation

The experiments were performed following the instructions indicated in the document
associated to the competition. The main characteristics are:

e Each algorithm is run 25 times for each test function, and the average of error of
the best individual of the population is computed.

e We will use the study with dimension D = 10 and the algorithms do 100000 eval-
uations of the fitness function.

In the mentioned competition, experiments with dimension D = 30 and D =50

have also been done.

e Each run stops either when the error obtained is less than 10~8, or when the maxi-
mal number of evaluations is achieved.

3 Study of the required conditions for the safe use of parametric tests

In this section, we will describe and analyze the conditions that must be satisfied
for the safe usage of parametric tests (Sect. 3.1). For doing it, we collect the overall
set of results obtained by the algorithms BLX-MA and BLX-GL50 in the 25 func-
tions considering dimension D = 10. With them, we will firstly analyze the indicated
conditions over the complete sample of results for each function, in a single-problem
analysis (see Sect. 3.2). Finally, we will consider the average results for each function
to composite a sample of results for each one of the two algorithms. With these two
samples we will check again the required conditions for the safe use of parametric
test in a multiple-problem scheme (see Sect. 3.3).

3.1 Conditions for the safe use of parametric tests

In Sheskin (2003), the distinction between parametric and non-parametric tests is
based on the level of measure represented by the data which will be analyzed. In this
way, a parametric test uses data composed by real values.

The latter does not imply that when we always dispose of this type of data, we
should use a parametric test. There are other initial assumptions for a safe usage
of parametric tests. The non fulfillment of these conditions might cause a statistical
analysis to lose credibility.

In order to use the parametric tests, it is necessary to check the following condi-
tions (Sheskin 2003; Zar 1999):
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e Independence: In statistics, two events are independent when the fact that one oc-
curs does not modify the probability of the other one occurring.

e Normality: An observation is normal when its behaviour follows a normal or Gauss
distribution with a certain value of average p and variance o. A normality test
applied over a sample can indicate the presence or absence of this condition in
observed data. We will use three normality tests:

— Kolmogorov-Smirnov: It compares the accumulated distribution of observed
data with the accumulated distribution expected from a Gaussian distribution,
obtaining the p-value based on both discrepancies.

— Shapiro-Wilk: It analyzes the observed data to compute the level of symmetry
and kurtosis (shape of the curve) in order to compute the difference with respect
to a Gaussian distribution afterwards, obtaining the p-value from the sum of the
squares of these discrepancies.

— D’Agostino-Pearson: It first computes the skewness and kurtosis to quantify how
far from Gaussian the distribution is in terms of asymmetry and shape. It then
calculates how far each of these values differs from the value expected with
a Gaussian distribution, and computes a single p-value from the sum of these
discrepancies.

e Heteroscedasticity: This property indicates the existence of a violation of the hy-
pothesis of equality of variances. Levene’s test is used for checking whether or
not k samples present this homogeneity of variances (homoscedasticity). When
observed data does not fulfill the normality condition, this test’s result is more
reliable than Bartlett’s test (Zar 1999), which checks the same property.

In our case, it is obvious the independence of the events given that they are inde-
pendent runs of the algorithm with randomly generated initial seeds. In the following,
we will carry out the normality analysis by using Kolmogorov-Smirnov, Shapiro-
Wilk and D’ Agostino-Pearson tests on single-problem and multiple-problem analy-
sis, and heteroscedasticity analysis by means of Levene’s test.

3.2 On the study of the required conditions over single-problem analysis

With the samples of results obtained from running 25 times the algorithms BLX-GL50
and BLX-MA for each function, we can apply statistical tests for determining whether
they check or not the normality and homoscedasticity properties. We have seen be-
fore that the independence condition is easily satisfied in this type of experiments.
The number of runs may be low for carrying out statistical analysis, but it was a
requirement in the CEC’2005 Special Session.

All the tests used in this section will obtain the p-value associated, which rep-
resents the dissimilarity of the sample of results with respect to the normal shape.
Hence, a low p-value points out a non-normal distribution. In this study, we will con-
sider a level of significance o = 0.05, so a p-value greater than « indicates that the
condition of normality is fulfilled. All the computations have been performed by the
statistical software package SPSS.

Table 1 shows the results where the symbol “*” indicates that the normality is not
satisfied and the p-value in brackets. Table 2 shows the results by applying the test
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Table 1 Test of normality of Kolmogorov-Smirnov

f1 2 3 f4 5 fo 7 8 9

BLX-GL50 (200 *(.04) *(.00) (.14)  *(00) *(.00) *(.04) (:20)  *(.00)
BLX-MA *(01)  *(00) *(O01) *(00) *(.00) (.16) (:20)  *(.00) *(.00)

f10 f11 f12 f13 f14 f15 f16 f17 f18

BLX-GL50 (.10) (:20)  * (.00) (.20) (200  *(.00) *(.00) (:20)  * (.00)
BLX-MA (:20)  *(.00) *(.00) (200 *(.02) *(.00) (.20) (:20)  *(.00)

f19 20 21 22 23 24 25

BLX-GL50 *(.00) *(.00) *(00) *(.00) *(.00) *(.00) *(.00)
BLX-MA *(.00)  *(00) *(00) *(00) *(.00) *(00) *(02)

Table 2 Test of normality of Shapiro-Wilk

fl 2 3 4 5 fo 7 8 9

BLX-GL50 *(.03)  (.06) *(.00) *(03) *(00) *(.00) *(01)  (23) *(.00)
BLX-MA  *(.00) *(.00) *(01) *(00) *(00) (.05  (27) *(03) *(.00)

f10 f11 f12 13 f14 f15 f16 f17 f18

BLX-GL50 (.07) (:25)  *(.00) (.39) (41)  *(.00) *(.00) (.12)  *(.00)
BLX-MA (31)  *(00) *(.00) (.56)  *(.01) *(.00) (.25) (72)  *(.00)

f19 20 21 22 23 24 25

BLX-GL50 * (.00) *(.00) *(.00) *(.00) *(.00) *(.00) * (.00)
BLX-MA  *(.00) *(.00) *(00) *(00) *(00) *(00) *(.02

of normality of Shapiro-Wilk and Table 3 displays the results of D’ Agostino-Pearson
test.

In addition to this general study, we show the sample distribution in three cases,
with the objective of illustrating representative cases in which the normality tests
obtain different results.

From Fig. 1 to Fig. 3, different examples of graphical representations of his-
tograms and Q-Q graphics are shown. A histogram represents a statistical variable
by using bars, so that the area of each bar is proportional to the frequency of the
represented values. A Q-Q graphic represents a confrontation between the quartiles
from data observed and those from the normal distributions.

In Fig. 1 we can observe a general case in which the property of abnormality is
clearly presented. On the contrary, Fig. 2 is the illustration of a sample whose distri-
bution follows a normal shape, and the three normality tests employed verified this
fact. Finally, Fig. 3 shows a special case where the similarity between both distrib-
utions, the sample of results and the normal one, is not confirmed by all normality
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Table 3 Test of normality of D’ Agostino-Pearson

fl 2 3 4 5 o 7 8 9

BLX-GL50  (.10)  (.06) *(.00)  (24) *(00) *(.00)  (28)  (21) *(.00)
BLX-MA  *(.00) *(.00)  (22) *(00) *(00) *(.00) (19  (12) *(.00)

f10 fl1 f12 13 f14 f15 f16 f17 f18

BLX-GL50 (.17) (.19)  *(.00) (.79) (.47)  *(.00) *(.00) (.07)  *(.03)
BLX-MA (.89)  *(.00) *(.03) (.38) (.16)  * (.00 (.21) (54)  *(.04)

f19 20 21 22 23 24 25

BLX-GL50 (.05) (.05) (.06)  *(01) *(.00) *(.00) (.11)
BLX-MA *(.00)  *(.00) (:25)  *(.00) *(.00) *(.00) (.20)

Histogram Normal Q-Q Plot of F20
for Algorithm= BLX-MA for Algorithm= BLX-MA
204 24
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Fig. 1 Example of non-normal distribution: Function f20 and BLX-GL50 algorithm: Histogram and Q-Q
Graphic

Histogram Normal Q-Q Plot of F10
for Algorithm= BLX-MA for Algorithm= BLX-MA
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Fig. 2 Example of normal distribution: Function f10 and BLX-MA algorithm: Histogram and Q-Q
Graphic
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Histogram Normal Q-Q Plot of F21
for Algorithm= BLX-MA for Algorithm= BLX-MA
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Mean =771.273320
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N =25
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Fig. 3 Example of a special case: Function f21 and BLX-MA algorithm: Histogram and Q-Q Graphic

Table 4 Test of heteroscedasticity of Levene (based on means)

fl 2 3 4 5 fo 7 8 9

LEVENE (.07) (.07)  *(00) *(04) *(.00) *(00) *(.00) (.41)  *(.00)
f10 f11 f12 f13 f14 f15 f16 17 f18

LEVENE  (.99) *(00)  (98)  (.18)  (87) *(00) *(00)  (24) (2D

f19 20 21 22 23 24 25

LEVENE * (.01) *(.00) *(.01) (.47) (:28)  *(.00) *(.00)

tests. In this case, a normality test could work better than another, depending on types
of data, number of ties or number of results collected. Due to this fact, we have em-
ployed three well-known normality tests for studying the normality condition. The
choice of the most appropriate normality test depending on the problem is out of the
scope of this paper.

With respect to the study of homoscedasticity property, Table 4 shows the results
by applying Levene’s test, where the symbol “*” indicates that the variances of the
distributions of the different algorithms for a certain function are not homogeneities
(we reject the null hypothesis at a level of significance o = 0.05).

Clearly, in both cases, the non fulfillment of the normality and homoscedasticity
conditions is perfectible. In most functions, the normality condition is not verified in
a single-problem analysis. The homoscedasticity is also dependent of the number of
algorithms studied, because it checks the relationship among the variances of all pop-
ulation samples. Even though in this case we only analyze this condition on results
for two algorithms, the condition is also not fulfilled in many cases.

A researcher may think that the non fulfillment of these conditions is not crucial
for obtaining adequate results. By using the same samples of results, we will show
an example in which some results offered by a parametric test, the paired t-test, do
not agree with the ones obtained through a non-parametric test, Wilcoxon’s test. Ta-
ble 5 presents the difference of average error rates, in each function, between the
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Table 5 Difference of error
rates and p-values for paired
t-test and Wilcoxon test in
single-problem analysis

Function Difference t-test Wilcoxon
f1 0 - -

2 0 - -

3 —47129 0 0

f4 -1.9-1078 0.281 0

5 —0.0212 0.011 0

o —1.489618 0 0

7 —0.1853 0 0

8 0.2 0.686 0.716
9 0.716 0 0

f10 —0.668086 0 0

f11 —2.223405 0.028 0.037
f12 332.7 0.802 0.51
f13 —0.024 0.058 0.058
f14 0.142023 0.827 0.882
f15 130 0.01 0.061
f16 -85 0 0

f17 —18 0 0

f18 —383 0 0

f19 —-314 0 0.001
20 —354 0 0

21 -33 0.178 0.298
22 88 0.545 0.074
23 —288 0 0

24 —24 0.043 0.046
25 8 0.558 0.459

algorithms BLX-GL50 and BLX-MA (if it is negative, the best performed algorithm is
BLX-GL50), and the p-value obtained by the paired t-test and Wilcoxon test.

As we can see, the p-values obtained by paired t-test are very similar to the ones
obtained by Wilcoxon test. However, in three cases, they are quite different. We enu-

merate them:

e In function f4, Wilcoxon test considers that both algorithms behave differently,
whereas paired t-test does not. This example perfectly fits with a non-practical
case. The difference of error rates is less than 10~7, and in practical sense, this has

no significant effect.

e In function f15, the situation is opposite to the previous one. The paired t-test
obtains a significant difference in favour of BLX-MA. Is this result reliable? As the
normality condition is not verified in the results of f15 (see Tables 1, 2, 3), the
results obtained by Wilcoxon test are theoretically more reliable.

e Finally, in function 22, although Wilcoxon test obtains a p-value greater than the

level of significance o = 0.05, both p-values are again very different.
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In 3 of the 25 functions, there are observable differences in the application of
paired t-test and Wilcoxon test. Moreover, in these 3 functions, the required condi-
tions for the safe usage of parametric statistics are not verified. In principle, we could
suggest the usage of the non-parametric test of Wilcoxon in single-problem analysis.
This is one alternative, but there exist other ways for ensuring that the results obtained
are valid for parametric statistical analysis.

e Obtaining new results is not very difficult in single-problem analysis. We only
have to run the algorithms again to get larger samples of results. The Central Limit
Theorem confirms that the sum of many identically distributed random variables
tends to a normal distribution. Nevertheless, the number of runs carried out must
not be very high, because any statistical test has a negative effect size. If the sample
of results is too large, a statistical test could detect insignificant differences as
significant.

For controlling the size effect, we can use the Cohen’s index d’
t

d=—
N
where 7 is the t-test statistics and »n is the number of results collected. If d’ is near
to 0.5, then the differences are significant. A value of d’ lower than 0.25 indicates
insignificant differences and the statistical analysis may not be taken into account.
e The application of transformations for obtaining normal distributions, such as log-
arithm, square root, reciprocal and power transformations (Patel and Read 1982).
o In some situations, skip outliers, but this technique must be used with great care.

These alternatives could solve the normality condition, but the homoscedasticity
condition may result difficult to solve. Some parametric tests, such as ANOVA, are
very influenced by the homoscedasticity condition.

3.3 On the study of the required conditions over multiple-problem analysis

When tackling a multiple-problem analysis, the data to be used is an aggregation of
results obtained from individual algorithms’ runs. In this aggregation, there must be
only a result representing a problem or function. This result could be obtained through
averaging results for all runs or something similar, but the procedure followed must
be the same for each function; i.e., in this paper we have used the average of the
25 runs of an algorithm in each function. The size of the sample of results to be
analyzed, for each algorithm, is equal to the number of problems. In this way, a
multiple-problem analysis allows us to compare two or more algorithms over a set
of problems simultaneously.

We can use the results published in the CEC’2005 Special Session to perform a
multiple-problem analysis. Indeed, we will follow the same procedure as the previous
subsection. We will analyze the required conditions for the safe usage of parametric
tests over the sample of results obtained by averaging the error rate on each function.

Table 6 shows the p-values of the normality tests over the sample results obtained
by BLX-GL50 and BLX-MA. Figures 4 and 5 represent the histograms and Q-Q plots
for such samples.
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Obviously, the normality condition is not satisfied because the sample of results is
composed by 25 average error rates computed in 25 different problems. We compare
the behaviour of the two algorithms by means of pairwise statistical tests:

e The p-value obtained with a paired t-test is p = 0.318. The paired t-test does not
consider the existence of difference in performance between the algorithms.

e The p-value obtained with Wilcoxon test is p = 0.089. The Wilcoxon t-test does
neither consider the existence of difference in performance between the algorithms,
but it considerably reduces the minimal level of significance for detecting differ-
ences. If the level of significance considered were o = 0.10, Wilcoxon’s test would
confirm that BLX-GL50 is better than BLX-MA.

Average results for these two algorithms indicate this behaviour, BLX-GL50 usu-
ally performs better than BLX-MA (see Table 13 in Appendix B), but a paired t-test

Table 6 Normality tests over multiple-problem analysis

Algorithm Kolmogorov-Smirnov Shapiro-Wilk D’ Agostino-Pearson
BLX-GL50 *(.00) *(.00) (.10)
BLX-MA *(.00) *(.00) *(.00)

Histogram Normal Q-Q Plot of BLXGL50
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Fig. 4 BLX-GL50 algorithm: Histogram and Q-Q Graphic
Histogram Normal Q-Q Plot of BLXMA
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Fig. 5 BLX-MA algorithm: Histogram and Q-Q Graphic
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cannot appreciate this fact. In multiple-problem analysis it is not possible to enlarge
the sample of results, unless new functions/problems were added. Applying transfor-
mations or skipping outliers cannot be used either, because we would be changing
results for certain problems and not for other problems.

These facts may induce us to using non-parametric statistics for analyzing the
results in multiple-problems. Non-parametric statistics do not need prior assumptions
related to the sample of data for being analyzed and, in the example shown in this
section, we have seen that they could obtain reliable results.

4 A case study: on the use of non-parametric statistics for comparing the
results of the CEC’2005 Special Session in Real Parameter Optimization

In this section, we study the results obtained in the CEC’2005 Special Session in Real
Parameter Optimization as a case study on the use of the non-parametric tests. As we
have mentioned, we will focus on the dimension D = 10.

We will divide the set of functions into two subgroups, according to the suggestion
given in Hansen (2005) about their degrees of difficulty.

e The first group is composed by the unimodal functions (from f1 to f5), in which
all participant algorithms in the CEC’2005 competition normally achieve the opti-
mum, and the multimodal functions (from f6 to f14), in which at least one run of a
participant algorithm achieves the optimum.

e The second group contains the remaining functions, from the function f15 to £25.
In these functions, no participant algorithm has achieved the optimum.

This division is carried out with the objective of showing the differences in the
statistical analysis considering distinct numbers of functions, which is an essential
factor that influences over the study. It also allows us to compare the behaviour of the
algorithms when they tackle the most complicated functions. Indeed, we could also
study the group of functions f1-f14, but we do not include it in order not to enlarge
the content of the paper. Hence, the results offered by the algorithms that take part in
the CEC’2005 Special Session are analyzed independently for all functions (from f1
to £25) and the difficult functions (from f15 to £25).

As we have done before, we have considered using, as performance measure, the
error rate obtained for each algorithm. This case corresponds to a multiple-problem
analysis, so the employment of non-parametric statistical tests is preferable to a para-
metric one, as we have seen in the previous section. Table 13 in Appendix B sum-
marizes the official results obtained in the competition organized by functions and
algorithms.

Values included in Table 13 allow us to carry out a rigorous statistical study in
order to check whether the results of the algorithms are rather significant for consid-
ering them different in terms of quality on approximation of continuous functions.
Our study will be focused on the algorithm that had the lowest average error rate in
the comparison, G-CMA-ES (Hansen 2005). We will study the behaviour of this algo-
rithm with respect to the remaining ones, and we will determine if the results it offers
are better than the ones offered by the rest of algorithms, computing the p-values on
each comparison.
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Table 7 Results of the Friedman and Iman-Davenport tests (o = 0.05)

Friedman Value p-value Iman-Davenport Value p-value
value in x2 value in Fp
f15-f25 26.942 18.307 0.0027 3.244 1.930 0.0011
All 41.985 18.307 <0.0001 4.844 1.875 <0.0001

Table 8 Rankings obtained

through Friedman’s test and Algorithm Ranking (f15-125) Ranking (f1-£25)

critical difference of

Bonferroni-Dunn’s procedure BLX-GL50 5.227 5.3
BLX-MA 7.681 7.14
CoEVO 9.000 6.44
DE 4.955 5.66
DMS-L-PSO 5.409 5.02
EDA 6.318 6.74
G-CMA-ES 3.045 3.34
K-PCX 7.545 6.8
L-CMA-ES 6.545 6.22
L-SaDE 4.956 4.92
SPC-PNX 5.318 6.42
Crit. Diff. « = 0.05 3.970 2.633
Crit. Diff. « =0.10 3.643 2417

Table 7 shows the result of applying Friedman’s and Iman-Davenport’s tests in
order to see whether there are global differences in the results. Given that the p-values
of Friedman and Iman-Davenport are lower than the level of significance considered
o = 0.05, there are significant differences among the observed results in the functions
of the first and second group. Attending to these results, a post-hoc statistical analysis
could help us to detect concrete differences among algorithms.

First of all, we will employ Bonferroni-Dunn’s test to detect significant differences
for the control algorithm G-CMA-ES. Table 8 summarizes the ranking obtained by
Friedman’s test and the critical difference of Bonferroni-Dunn’s procedure. Figures
6 and 7 display graphical representations (including the rankings obtained for each
algorithm) for the two groups of functions. In a Bonferroni-Dunn’s graphic the dif-
ference among rankings obtained for each algorithm is illustrated. In them, we can
draw a horizontal cut line which represents the threshold for the best performing al-
gorithm, that one with the lowest ranking bar, in order to consider it better than other
algorithm. A cut line is drawn for each level of significance considered in the study at
height equal to the sum of the ranking of the control algorithm and the corresponding
Critical Difference computed by the Bonferroni-Dunn method (see Appendix A.3).
Those bars which exceed this line are the associated to an algorithm with worse per-
formance than the control algorithm.
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The application of Bonferroni-Dunn’s test informs us of the following significant
differences with G-CMA-ES as control algorithm:

o f15-£25: G-CMA-ES is better than CoEVO and BLX-MA and K-PCX with o = 0.05
and o = 0.10 (3/10 algorithms).

o f1-125: It outperforms CoEVO, BLX-MA, K-PCX, EDA, SPC-PNX and L-CMA-ES
with @ = 0.05 and o = 0.10 (6/10 algorithms). Although G-CMA-ES obtains the
lowest error and ranking rates, Bonferroni-Dunn’s test is not able to distinguish it
as better than all the remaining algorithms.

Bonferroni-Dunn's Test ., .4, c-005---
CD=3.643 0=0.10 "=

g - —
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« r B efesibmbonihen o I R B R R i ettt
g 61
S 5
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5 .68} 9 9 i 31 : 1546  §54 ¢ 31
BLX- BLX-MA COEVO DE DMS-L- EDA G-CMA- K-PCX L-CMA- L-SADE SPC-PNX
GLS0 PSO ES ES

Control Algorithm: G-CMA-ES

Fig. 6 Bonferroni-Dunn’s graphic corresponding to the results for f15-£25

z 1
Bonferroni-Dunn's Test 5 433 0-005--~-
CD=2.417 a=0.10 ===
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Control Algorithm: G-CMA-ES

Fig. 7 Bonferroni-Dunn’s graphic corresponding to the results for f1-£25
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Table 9 p-values on functions f15-f25 (G-CMA-ES is the control algorithm)

G-CMA-ESvs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p
CoEVO 421050 2.54807-107>  2.54807-10%4 2.54807-10~%  2.54807-10*
BLX-MA 3.27840  0.00104 0.0104 0.00936 0.00936
k-PCX 3.18198  0.00146 0.0146 0.01168 0.01168
L-CMA-ES 247487 0.01333 0.1333 0.09331 0.09331
EDA 231417  0.02066 0.2066 0.12396 0.12396
DMS-L-PSO 1.67134  0.09465 0.9465 0.47325 0.17704
SPC-NPX 1.60706  0.10804 1.0 0.47325 0.17704
BLX-GL50 1.54278  0.12288 1.0 0.47325 0.17704
DE 1.34993  0.17704 1.0 0.47325 0.17704
L-SaDE 134993  0.17704 1.0 0.47325 0.17704

Table 10 p-values on functions f1-f25 (G-CMA-ES is the control algorithm)

G-CMA-ESvs. z Unadjusted p Bonferroni-Dunn p Holm p Hochberg p
CoEVO 543662 5.43013-10%  5.43013-1077 5.43013-1077  5.43013-10~7
BLX-MA 4.05081 5.10399-107>  5.10399 104 4.59359-10~%  4.59359.10~4
K-PCX 3.68837  2.25693-10"%  0.002257 0.001806 0.001806
EDA 3.62441  2.89619-10"%  0.0028961 0.002027 0.002027
SPC-PNX 3.28329  0.00103 0.0103 0.00618 0.00618
L-CMA-ES 3.07009  0.00214 0.0214 0.0107 0.0107

DE 247313 0.01339 0.1339 0.05356 0.05356
BLX-GL50 2.08947  0.03667 0.3667 0.11 0.09213
DMS-L-PSO 1.79089  0.07331 0.7331 0.14662 0.09213
L-SaDE 1.68429  0.09213 0.9213 0.14662 0.09213

In the same way as the previous section, we will apply more powerful procedures,
such as Holm’s and Hochberg’s (they are described in Appendix A.3), for comparing
the control algorithm with the rest of the algorithms. The results are shown by com-
puting p-values for each comparison. Tables 9 and 10 show the p-value obtained for
Bonferroni-Dunn’s, Holm’s and Hochberg’s procedures considering both groups of
functions. The procedure used to compute the p-values is explained in Appendix A.3.

Holm’s and Hochberg’s procedures allow us to point out the following differences,
considering G-CMA-ES as control algorithm:

o f15-125: G-CMA-ES is better than CoEVO, BLX-MA and K-PCX with a = 0.05
(3/10 algorithms) and is better than L-CMA-ES with o = 0.10 (4/10 algorithms).
Here, Holm’s and Hochberg’s procedures coincide and they reject an extra hypoth-
esis considering o = 0.10, with regards to Bonferroni-Dunn’s.

e f1-f25: Based on Holm’s procedure, it outperforms CoEVO, BLX-MA, K-PCX,
EDA, SPC-PNX and L-CMA-ES with « = 0.05 (6/10 algorithms) and it also outper-
forms DE with o = 0.10 (7/10 algorithms). It rejects equal number of hypotheses
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as Bonferroni-Dunn does by considering o = 0.05. It also rejects an extra hypoth-
esis than Bonferroni-Dunn when o = 0.10.

e Hochberg’s procedure behaves the same as Holm’s when we establish o = 0.05.
However, with a o = 0.10, it obtains a different result. All the p-values in the
comparison are lower than 0.10, so all the hypotheses associated with them are
rejected (10/10 algorithms). In fact, Hochberg’s procedure confirms that G-CMA-
ES is the best algorithm in the competition considering all functions on the whole.

In the following, we present a study in which the G-CMA-ES algorithm will be
compared with the rest of them by means of pairwise comparisons. In this study we
will use the Wilcoxon test (see Appendix A.2).

Until now, we have used procedures for performing multiple comparisons in order
to check the behaviour of the algorithms. Attending to Hochberg’s procedure results,
this process could not be necessary, but we include it for stressing the differences
between using multiple comparisons procedures instead of pairwise comparisons.
Tables 11 and 12 summarize the results of applying Wilcoxon test. They display the
sum of rankings obtained in each comparison and the p-value associated.

Table 11 Wilcoxon test

considering functions f15-25 G-CMA-ES vs. R* R p-value
BLX-GL50 62.5 3.5 0.009
BLX-MA 60.0 6.0 0.016
CoEVO 60.0 6.0 0.016
DE 56.5 9.5 0.028
DMS-L-PSO 47.0 19.0 0.213
EDA 60.5 5.5 0.013
K-PCX 60.0 6.0 0.016
L-CMA-ES 58.0 8.0 0.026
L-SaDE 475 18.5 0.203
SPC-PNX 63.5 2.5 0.007

Table 12 Wilcoxon test

considering functions f1-25 G-CMA-ES vs. R* R™ p-value
BLX-GL50 289.5 35.5 0.001
BLX-MA 295.5 29.5 0.001
CoEVO 301.0 24.0 0.000
DE 262.5 62.5 0.009
DMS-L-PSO 199.0 126.0 0.357
EDA 284.5 40.5 0.001
K-PCX 269.0 56.0 0.004
L-CMA-ES 273.0 52.0 0.003
L-SaDE 209.0 116.0 0.259
SPC-PNX 305.5 19.5 0.000

@ Springer



634 S. Garcia et al.

Wilcoxon’s test performs individual comparisons between two algorithms (pair-
wise comparisons). The p-value in a pairwise comparison is independent from an-
other one. If we try to extract a conclusion involving more than one pairwise compar-
ison in a Wilcoxon’s analysis, we will obtain an accumulated error coming from the
combination of pairwise comparisons. In statistical terms, we are losing the control
on the Family Wise Error Rate (FWER), defined as the probability of making one or
more false discoveries among all the hypotheses when performing multiple pairwise
tests. The true statistical significance for combining pairwise comparisons is given
by:

p = P(Reject Hy|Hy true)
=1— P(Accept Ho|Hy true)
=1— P(Accept Ay = A;,i=1,...,k— 1|Hp true)

k—1
=1— 1_[ P(Accept_Ay = A;|Hy true)
i=1
k-1
=1— H[1 — P(Reject Ay = A;|Hy true)]
i=1

k—1
=1-[]a-pm) ()
i=1

Observing Table 11, the statement: “The G-CMA-ES algorithm outperforms the
BLX-GL50, BLX-MA, CoEVO, DE, EDA, K-PCX, L-CMA-ES and SPC-PNX algo-
rithms with a level of significance o = 0.05” could not be correct until we cannot
check controlling the FWER. The G-CMA-ES algorithm really outperforms these
eight algorithms considering independent pairwise comparisons due to the fact that
the p-values are below o = 0.05. On the other hand, note that two algorithms were
not included. If we include them within the multiple comparison, the p-value ob-
tained is p = 0.4505 in f15-f25 group and p = 0.5325 considering all functions. In
such cases, it is not possible to declare that “G-CMA-ES algorithm obtains a signif-
icantly better performance than the remaining algorithms”, due to the fact that the
p-values achieved are too high.

From expression (1), and Tables 11 and 12, we can deduce that G-CMA-ES is
better than the eight algorithms enumerated before with a p-value of

p=1—(1-0.009)-(1—-0.016)- (1 —0.016) - (1 — 0.028) - (1 —0.013)
-(1-0.016) - (1 —0.026) - (1 —0.007)) = 0.123906
for the group of functions f15-f25 and
p=1—-(1-0.001)-(1—-0.001)-(1—0.000)-(1—0.009)-(1—0.001)
- (1 —=0.004) - (1 —0.003) - (1 —0.000)) =0.018874
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considering all functions. Hence, the previous statement has been definitively con-
firmed only when considering all functions in the comparison.

The procedures designed for performing multiple comparisons control the FWER
in their definition. By using the example considered in this section, in which we
have used the G-CMA-ES algorithm as control, we can easily reflect the relationship
among the power of all the testing procedures used. In increasing order of power and
considering all functions in the study, the procedures can be order in the following
way: Bonferroni-Dunn (p = 0.9213), Wilcoxon’s test (when it is used in multiple
comparisons) (p = 0.5325), Holm (p = 0.1466) and Hochberg (p = 0.0921).

Finally, we must point out that the statistical procedures used here indicate that
the best algorithm is G-CMA-ES. Although in Hansen (2005), the categorization of
the functions depending on their degree of difficulty is different than the used in this
paper (we have joined the unimodal and soluble multimodal functions in one group),
the G-CMA-ES algorithm has been stressed as the algorithm with best behaviour
considering error rate. Therefore and to sum up, in this paper the conclusions drawn
in Hansen (2005) have been statistically supported.

5 Some considerations on the use of non-parametric tests

Taking into consideration all the results, tables and figures on the application of the
non-parametric tests shown in this paper, we can suggest some aspects and details
about the use of non-parametric statistical techniques:

e A multiple comparison of various algorithms must be carried out first by using a
statistical method for testing the differences among the related samples means, that
is, the results obtained by each algorithm. Once this test rejects the hypothesis of
equivalence of means, the detection of the concrete differences among the algo-
rithms can be done with the application of post-hoc statistical procedures, which
are methods used for comparing a control algorithm with two or more algorithms.

e Holm’s procedure can always be considered better than Bonferroni-Dunn’s one,
because it appropriately controls the FWER and it is more powerful than the
Bonferroni-Dunn’s. We strongly recommend the use of Holm’s method in a rig-
orous comparison. Nevertheless, the results offered by the Bonferroni-Dunn’s test
are suitable to be visualized in graphical representations.

e Hochberg’s procedure is more powerful than Holm’s. The differences reported
between it and Holm’s procedure are in practice rather small, but in this paper,
we have shown a case in which Hochberg’s method obtains lower p-values than
Holm’s (see Table 10). We recommend the use of this test together with Holm’s
method.

e Although Wilcoxon’s test and the remaining post-hoc tests for multiple compar-
isons belong to the non-parametric statistical tests, they operate in a different way.
The main difference lies in the computation of the ranking. Wilcoxon’s test com-
putes a ranking based on differences between functions independently, whereas
Friedman and derivative procedures compute the ranking between algorithms.

e In relation to the sample size (number of functions when performing Wilcoxon’s
or Friedman’s tests in multiple-problem analysis), there are two main aspects to be
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determined. Firstly, the minimum sample considered acceptable for each test needs
to be stipulated. There is no established agreement about this specification. Statisti-
cians have studied the minimum sample size when a certain power of the statistical
test is expected (Noether 1987; Morse 1999). In our case, the employment of a,
as large as possible, sample size is preferable, because the power of the statistical
tests (defined as the probability that the test will reject a false null hypothesis) will
increase. Moreover, in a multiple-problem analysis, the increasing of the sample
size depends on the availability of new functions (which should be well-known in
real-parameter optimization field). Secondly, we have to study how the results are
expected to vary if there was a larger sample size available. In all statistical tests
used for comparing two or more samples, the increasing of the sample size benefits
the power of the test. In the following items, we will state that Wilcoxon’s test is
less influenced by this factor than Friedman’s test. Finally, as a rule of thumb, the
number of functions (N) in a study should be N =a - k, where k is the number of
algorithms to be compared and a > 2.

e Taking into account the previous observation and knowing the operations per-
formed by the non-parametric tests, we can deduce that Wilcoxon’s test is influ-
enced by the number of functions used. On the other hand, both the number of
algorithms and functions are crucial when we refer to the multiple comparisons
tests (such as Friedman’s test), given that all the critical values depend on the value
of N (see expressions in Appendix A.3). However, the increasing/decreasing of
the number of functions rarely affects in the computation of the ranking. In these
procedures, the number of functions used is an important factor to be considered
when we want to control the FWER.

e An appropriate number of algorithms in contrast with an appropriate number of
functions are needed to be used in order to employ each type of test. The num-
ber of algorithms used in multiple comparisons procedures must be lower than
the number of functions. In the study of the CEC’2005 Special Session, we can
appreciate the effect of the number of functions used whereas the number of al-
gorithms stays constant. See, for instance, the p-value obtained when considering
the f15—£25 group and all functions. In the latter case, p-values obtained are al-
ways lower than in the first one, for each testing procedure. In general, p-values
are lower agreeing with the increasing of the number of functions used in multiple
comparison procedures; therefore, the differences among the algorithms are more
detectable.

e The previous statement may not be true in Wilcoxon’s test. The influence of the
number of functions used is more noticeable in multiple comparisons procedures
than in Wilcoxon’s test. For example, the final p-value computed for Wilcoxon’s
test in group f15—£25 is lower than in the group f1-{25 (see previous section).

6 Conclusions
In this paper we have studied the use of statistical techniques in the analysis of the
behaviour of evolutionary algorithms in optimization problems, analyzing the use of

the parametric and non-parametric statistical tests.
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We have distinguished two types of analysis. The first one, called single-problem
analysis, is that in which the results are analyzed for each function/problem indepen-
dently. The second one, called multiple-problem analysis, is that in which the results
are analyzed by considering all the problems studied simultaneously.

In single-problem analysis, we have seen that the required conditions for a safe us-
age of parametric statistics are usually not satisfied. Nevertheless, the results obtained
are quite similar between a parametric and non-parametric analysis. Also, there are
procedures for transforming or adapting sample results for being used by parametric
statistical tests.

We encourage the use of non-parametric tests when we want to analyze results ob-
tained by evolutionary algorithms for continuous optimization problems in multiple-
problem analysis, due to the fact that the initial conditions that guarantee the reli-
ability of the parametric tests are not satisfied. In this case, the results come from
different problems and it is not possible to analyze the results by means of parametric
statistics.

With respect to the use of non-parametric tests, we have shown how to use Fried-
man, Iman-Davenport, Bonferroni-Dunn, Holm, Hochberg, and Wilcoxon’s tests;
which on the whole, are a good tool for the analysis of the algorithms. We have
employed these procedures to carry out a comparison on the CEC’2005 Special Ses-
sion on Real Parameter Optimization by using the results published for each algo-
rithm.

Acknowledgements The authors are very grateful to the anonymous reviewers for their valuable sug-
gestions and comments to improve the quality of this paper.

Appendix A: introduction to inferential statistical tests

This section is dedicated to introduce the necessary issues to understand the statistical
terms used in this paper. Moreover, a description of the non-parametric tests is given
in order to use them in further research. In order to distinguish a non-parametric
test from a parametric one, we must check the type of data used by the test. A non-
parametric test is that which uses nominal or ordinal data. This fact does not force
it to be used only for these types of data. It is possible to transform the data from
real values to ranking based data. In such way, a non-parametric test can be applied
over classical data of parametric test when they do not verify the required conditions
imposed by the test. As a general rule, a non-parametric test is less restrictive than
a parametric one, although it is less robust than a parametric when data are well
conditioned.

A.1 Hypothesis testing and p-values

In inferential statistics, sample data are primarily employed in two ways to draw

inferences about one or more populations. One of them is the hypothesis testing.
The most basic concept in hypothesis testing is a hypothesis. It can be defined as

a prediction about a single population or about the relationship between two or more
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populations. Hypothesis testing is a procedure in which sample data are employed
to evaluate a hypothesis. There is a distinction between research hypothesis and sta-
tistical hypothesis. The first is a general statement of what a researcher predicts. In
order to evaluate a research hypothesis, it is restated within the framework of two
statistical hypotheses. They are the null hypothesis, represented by the notation Hy,
and the alternative hypothesis, represented by the notation Hj.

The null hypothesis is a statement of no effect or no difference. Since the state-
ment of the research hypothesis generally predicts the presence of a difference with
respect to whatever is being studied, the null hypothesis will generally be a hypothe-
sis that the researcher expects to be rejected. The alternative hypothesis represents a
statistical statement indicating the presence of an effect or a difference. In this case,
the researcher generally expects the alternative hypothesis to be supported.

An alternative hypothesis can be nondirectional (two-tailed hypothesis) and direc-
tional (one-tailed hypothesis). The first type does not make a prediction in a specific
direction; i.e. H; : u # 100. The latter implies a choice of one of the following direc-
tional alternative hypothesis; i.e. H; : ¢ > 100 or H; : i < 100.

Upon collecting the data for a study, the next step in the hypothesis testing proce-
dure is to evaluate the data through use of the appropriate inferential statistical test.
An inferential statistical test yields a test statistic. The latter value is interpreted by
employing special tables that contain information with regard to the expected dis-
tribution of the test statistic. Such tables contain extreme values of the test statistic
(referred to as critical values) that are highly unlikely to occur if the null hypothesis
is true. Such tables allow a researcher to determine whether or not the results of a
study is statistically significant.

The conventional hypothesis testing model employed in inferential statistics as-
sumes that prior to conducting a study, a researcher stipulates whether a directional
or nondirectional alternative hypothesis is employed, as well as at what level of sig-
nificance is represented the null hypothesis to be evaluated. The probability value
which identifies the level of significance is represented by «.

When one employs the term significance in the context of scientific research, it
is instructive to make a distinction between statistical significance and practical sig-
nificance. Statistical significance only implies that the outcome of a study is highly
unlikely to have occurred as a result of chance, but it does no necessarily suggest
that any difference or effect detected in a set of data is of any practical value. For
example, no-one would normally care if algorithm A solves the sphere function to
within 10710 of error of the global optimum and algorithm B solves it within 10713,
Between them, statistical significance could be found, but in practical sense, this dif-
ference is not significant.

Instead of stipulating a priori a level of significance «, one could calculate the
smallest level of significance that results in the rejection of the null hypothesis. This
is the definition of p-value, which is an useful and interesting datum for many con-
sumers of statistical analysis. A p-value provides information about whether a statis-
tical hypothesis test is significant or not, and it also indicates something about “how
significant” the result is: The smaller the p-value, the stronger the evidence against
the null hypothesis. Most important, it does this without committing to a particular
level of significance.
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The most common way for obtaining the p-value associated to a hypothesis is
by means of normal approximations, that is, once computed the statistic associ-
ated to a statistical test or procedure, we can use a specific expression or algo-
rithm for obtaining a z value, which corresponds to a normal distribution statistics.
Then, by using normal distribution tables, we could obtain the p-value associated
with z.

A.2 The Wilcoxon matched-pairs signed-ranks test

Wilcoxon’s test is used for answering this question: do two samples represent two dif-
ferent populations? It is a non-parametric procedure employed in a hypothesis testing
situation involving a design with two samples. It is the analogous of the paired t-test
in non-parametrical statistical procedures; therefore, it is a pairwise test that aims to
detect significant differences between the behavior of two algorithms.

The null hypothesis for Wilcoxon’s test is Hp : 6p = 0; in the underlying pop-
ulations represented by the two samples of results, the median of the difference
scores equals zero. The alternative hypothesis is Hj : Op # 0, but also can be used
Hy:0p > 0or Hy :0p <0 as directional hypothesis.

In the following, we describe the tests computations. Let d; be the difference be-
tween the performance scores of the two algorithms on i-th out of N functions. The
differences are ranked according to their absolute values; average ranks are assigned
in case of ties. Let R be the sum of ranks for the functions on which the second
algorithm outperformed the first, and R~ the sum of ranks for the opposite. Ranks
of d; = 0 are split evenly among the sums; if there is an odd number of them, one is
ignored:

Rt = Z rank(d;) + % Z rank(d;)

di>0 di=0

R = Z rank(d;) + % Z rank(d;)

d; <0 d;=0

Let T be the smallest of the sums, T = min(R™, R™). If T is less than or equal
to the value of the distribution of Wilcoxon for N degrees of freedom (Table B.12 in
Zar 1999), the null hypothesis of equality of means is rejected.

The obtaining of the p-value associated to a comparison is performed by means
of the normal approximation for the Wilcoxon T statistic (Section VI, Test 18 in
Sheskin 2003). Furthermore, the computation of the p-value for this test is usually
included in well-known statistical software packages (SPSS, SAS, R, etc.).

A.3 The Friedman two-way analysis of variance by ranks

Friedman’s test is used for answering this question: In a set of k samples (where
k > 2), do at least two of the samples represent populations with different median
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values? It is a non-parametric procedure employed in a hypothesis testing situation
involving a design with two or more samples. It is the analogous of the repeated-
measures ANOVA in non-parametrical statistical procedures; therefore, it is a multi-
ple comparison test that aims to detect significant differences between the behavior
of two or more algorithms.

The null hypothesis for Friedman’s test is Hy : 61 = 0, = - - - = 6; the median
of the population i represents the median of the population j, i # j, 1 <i <k,
1 < j < k. The alternative hypothesis is H; : Not Hy, so it is non-directional.

In the following, we describe the tests computations. It computes the ranking of
the observed results for algorithm (r; for the algorithm j with k algorithms) for each
function, assigning to the best of them the ranking 1, and to the worst the ranking k.
Under the null hypothesis, formed from supposing that the results of the algorithms
are equivalent and, therefore, their rankings are also similar, the Friedman’s statis-

tic
12N k(k + 1)2
2 2
= —_— R* —

is distributed according to X% with k — 1 degrees of freedom, being R; =
% Zi rl.j , and N the number of functions. The critical values for the Friedman’s
statistic coincide with the established in the y? distribution when N > 10 and
k > 5. In a contrary case, the exact values can be seen in Sheskin (2003); Zar
(1999).

Iman and Davenport (1980) proposed a derivation from the Friedman’s statistic
given that this last metric produces a conservative undesirably effect. The proposed
statistic is

(N —Dx2

F:4
Nk —1)— x2

and it is distributed according to a F distribution with k — 1 and (k — 1)(N — 1)
degrees of freedom.

Computation of the p-values given a x2 or F statistic can be done by using the
algorithms in Abramowitz (1974). Also, most of the statistical software packages
include it.

The rejection of the null hypothesis in both tests described above does not involve
the detection of the existing differences among the algorithms compared. They only
inform us about the presence of differences among all samples of results compared.
In order to conducting pairwise comparisons within the framework of multiple com-
parisons, we can proceed with a post-hoc procedure. In this case, a control algorithm
(maybe a proposal to be compared) is usually chosen. Then, the post-hoc procedures
proceed to compare the control algorithm with the remain k — 1 algorithms. In the
following, we describe three post-hoc procedures:

e Bonferroni-Dunn’s procedure (Zar 1999): it is similar to Dunnet’s test for ANOVA
designs. The performance of two algorithms is significantly different if the corre-
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sponding average of rankings is at least as great as its critical difference (CD).

k(k+1)

CD=day| —cn

The value of ¢, is the critical value of Q' for a multiple non-parametric com-
parison with a control (Table B.16 in Zar 1999).

e Holm (1979) procedure: for contrasting the procedure of Bonferroni-Dunn, we
dispose of a procedure that sequentially checks the hypotheses ordered accord-
ing to their significance. We will denote the p-values ordered by pi, p2, ...,
in the way that p; < py <--- < px—1. Holm’s method compares each p; with
o/ (k — i) starting from the most significant p-value. If p; is below than «/(k — 1),
the corresponding hypothesis is rejected and it leaves us to compare p, with
o/ (k — 2). If the second hypothesis is rejected, we continue with the process. As
soon as a certain hypothesis can not be rejected, all the remaining hypotheses are
maintained as supported. The statistic for comparing the i algorithm with the j

algorithm is:
[k(k + 1)

The value of z is used for finding the corresponding probability from the table of
the normal distribution ( p-value), which is compared with the corresponding value
of a.

Holm’s method is more powerful than Bonferroni-Dunn’s and it does no addi-
tional assumptions about the hypotheses checked.

e Hochberg (1988) procedure: It is a step-up procedure that works in the opposite
direction to Holm’s method, comparing the largest p-value with «, the next largest
with /2 and so forth until it encounters a hypothesis it can reject. All hypothe-
ses with smaller p values are then rejected as well. Hochberg’s method is more
powerful than Holm’s (Shaffer 1995).

When a p-value is within a multiple comparison it reflects the probability error
of a certain comparison, but it does not take into account the remaining comparisons
belonging to the family. One way to solve this problem is to report Adjusted P-Values
(APVs) which take into account that multiple tests are conducted. An APV can be
directly taken as the p-value of a hypothesis belonging to a comparison of multiple
algorithms.

In the following, we will explain how to compute the APVs for the three post-hoc
procedures described above, following the indications given in Wright (1992).

e Bonferroni APV;: min{v; 1}, where v = (k — 1) p;.
e Holm APV;: min{v; 1}, where v =max{(k — j)p; : 1 < j <i}.
e Hochberg APV;: max{(k — j)p;: (k—1) > j>i}.

Appendix B: published average results of the CEC’2005 Special Session
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