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Interpretation of Artificial Neural Networks by Means
of Fuzzy Rules

Juan L. Castro, Carlos J. Mantas, and José M. Benítez, Member, IEEE

Abstract—This paper presents an extension of the method pre-
sented by Benítezet al. for extracting fuzzy rules from an artificial
neural network (ANN) that express exactly its behavior. The ex-
traction process provides an interpretation of the ANN in terms
of fuzzy rules. The fuzzy rules presented in this paper are in ac-
cordance with the domain of the input variables. These rules use
a new operator in the antecedent. The properties and the intuitive
meaning of this operator are studied. Next, the role of the biases
in the fuzzy rule-based systems is analyzed. Several examples are
presented to comment on the obtained fuzzy rule-based systems.
Finally, the interpretation of ANNs with two or more hidden layers
is also studied.

Index Terms—Artificial neural networks (ANNs), extraction,
fuzzy rules, interpretation.

I. INTRODUCTION

A RTIFICIAL neural networks (ANNs) [9], [18] are well
known massively parallel computing models which have

exhibited excellent behavior in the resolution of problems in
many areas such as artificial intelligence, engineering, etc. How-
ever, they suffer from the shortcoming of being “black boxes,”
i.e., determining why an ANN makes a particular decision is a
difficult task.

The “principle of incompatibility” of Zadeh [21] established
“ the complexity of a system and the precision with which it can
be analyzed bear a roughly inverse relation to one another.”
This principle can be applied to the ANNs. The ANNs are sys-
tems with high complexity, which can achieve a good approx-
imation to the solutions of a problem. Against that, it is very
difficult to analyze their performance. According to this prin-
ciple, the methods for understanding the action carried out by
a trained ANN can be classified. We have two possibilities for
analyzing an ANN.

1) To obtain a comprehensible system that approximates the
behavior of the ANN (more comprehensionless com-
plexity less accuracy). In this case, any rule extraction
method [1], [6], [14], [15], [17] can be used. A survey of
several rule extraction methods can be found in [2].

2) To describe the exact action of the ANN as comprehen-
sibly as possible (same complexity same accuracy
same comprehension but with other words). In this case,
the methods presented in [3] and [11] can be used. The
method presented in [11] does not generate an exact di-
rect representation of the ANN, but it aims at this philos-
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ophy. This method describes the action of the ANN indi-
cating, by means of polyhedra, the locations of the input
space which generate a specific output. It has the draw-
back of lack of conciseness, because it can produce an
exponential number of subpolyhedra in each stage of the
algorithm.

On the other hand, in [3], it is proved that ANNs with
continuous activation function are fuzzy rule-based sys-
tems [7], [22]. Fuzzy rules which express exactly the
input–output mapping of the ANNs are extracted. In this
way, a more comprehensible description of the action of
the ANN is achieved.

However, the fuzzy rules presented in [3] have a problem re-
garding their use for understanding the action of an ANN. The
rules are reasonable for understanding the real line domain func-
tion which is calculated by the ANN, but sometimes they are not
in the domain where the input variables work. To illustrate this
problem, let us consider the following fuzzy rule (presented in
[3]), extracted from an ANN that solves the iris classification
problem [5].

If sepal-length is greater than ap-
proximately 22.916 i-or

sepal-width is not greater than ap-
proximately 137.500 i-or

petal-length is greater than ap-
proximately 14.013 i-or

petal-width is greater than approx-
imately 17.886
then

The input variables of the IRIS classification problem take
values on

-
-
-
-

Even though the fuzzy propositions in the previous rule are
comprehensible, they are not in accordance with the domain of
the input variables. For example, the fuzzy proposition

sepal-width is not greater than approximately 137.500
is comprehensible, but - , therefore

the degree of this proposition is always “almost one” for any
correct input value.

To solve the previous problem, an extension of the former
method is presented in this paper. This procedure renders rules
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Fig. 1. Multilayer neural network.

whose propositions are in accordance with the domain of the
input variables. The logical operator that combines fuzzy propo-
sitions changes correspondingly. This new operator has inter-
esting properties with a very intuitive interpretation.

This paper is structured as follows. Section II is a summary of
the method for extracting fuzzy rules from an ANN presented
in [3]. In Section III, the way of achieving fuzzy rules in ac-
cordance with the domains of the input variables is explained.
Section IV presents the intuitive meaning of a new operator that
appears in the fuzzy rules. Its properties are described in Ap-
pendix II. The method for extracting correct fuzzy rules from an
ANN is presented in Section V. The role of the biases in the ob-
tained fuzzy rule-based system is analyzed in Section VI. Some
examples are presented in Section VII. In Section VIII, the way
for interpreting ANNs with two or more hidden layers is ex-
posed. Finally, some conclusions are drawn.

II. ANNs AS FUZZY RULE-BASED SYSTEMS(SUMMARY )

Multilayered feedforward ANNs are the most common model
of neural nets, hence they are studied in this work. Let us consider
an ANN with input, hidden, and output layers. Let us suppose
that the net has input neurons ( ), hidden neurons
( ) and output neurons ( ). Let the bias
for neuron and for neuron . Let be the weight of the
connection from neuron to neuron and the weight of the
connection from neuron to neuron . Fig. 1 shows the general
layout of these nets. The function the net calculates is

with

where and are activation functions. For example,
and .

In [3], multilayer feedforward ANNs are seen as additive
fuzzy rule-based systems [8]. In these systems, the outputs of
each rule are weighted by the activation degree of the rule and
then, are added. In the obtained fuzzy system from an ANN,
there is a rule per pair of neurons (hidden, output), ( )

if is is is

then

Fig. 2. Membership function for fuzzy setA (“greater thanapproximately
2.2”).

where we have the following.

• The system output is the vector whose components are
given by (additive fuzzy system),
where is the firing strength for rule (matching
degree between inputs and antecedents). The fuzzy rules

can be modified for obtaining a TSK fuzzy system
[16] (see Appendix I).

• are fuzzy sets obtained from the weigths , the
biases and the fuzzy set defined by the membership
function [19], [20] ( may be understood
as “greater than approximately 2.2” because

[3], see Fig. 2). So

is not

is not greater than approximately

is not greater than approximately

is not where

• is a logic connective defined as

with

where

and

is if
is not if

• There are rules “ : If True then ,” derived from
the biases .

As we have mentioned in the introduction, it may happen that
the fuzzy propositions “ is [not] ” are not in accordance
with the domains where the variablestake values. In the next
section, it will be exposed a way of achieving that the fuzzy
propositions work within the domain of the variables.
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(a) (b)

(c) (d)

Fig. 3. (a) Domains where (x w ), (x w ) and (x w ) work together with the fuzzy setsA and:A. (b) Domains of (x jw j), i = 1; 2; 3. (c) Domains
where (x jw j � � ), i = 1; 2; 3 work. (d) Domains whereT (x jw j � � ), i = 1; 2; 3 work.

III. COHERENTFUZZY PROPOSITIONS

The idea for attaining fuzzy propositions in accordance with
the domains of the input variables consists of transforming these
domains with the aim that they become to contain to the intervals
where the fuzzy propositions are coherent. To better explain the
idea, let us consider a simple example.

Let us suppose three input variables of an ANN,,
. These variables will be normalized (
). The output of the hidden neuron will be

that is equivalent to the degree to which the following proposi-
tion activates (coherent in the real line domain):

is

where ( “greater than approximately 2.2”).
Let us suppose that , , and if

then . Since , and take values in
[0,1], the domains for variables ( ), ( ) and ( )
are [ ], [ ] and [ ], respectively. Fig. 3(a) illus-
trates these domains along with the fuzzy setsand . We

can study the domains of ( ), [Fig. 3(b)] be-
cause if , the following lemma can be applied.

Lemma 1: If then , is is
not .

Let minimum . can
be used for centering the most narrow domain of

on the origin. The domains of the remaining variables
( ) are correspondingly displaced. Fig. 3(c) illustrates this
fact (domains where ( ), work).

This change can be carried out without difficulty because

is

is is is

is

is not is is
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Next, the domains are transformed by the function

minimum

Since the most interesting area of the neurons activation func-
tion (and correspondingly fuzzy set membership function) is the
interval [ 4.0,4.0], the transformation maps the most narrow
domain of ( ) into [ 4.0,4.0]. The fuzzy proposition
“ is [not] ” is reasonable in this interval.

Hence, the least domain of , is trans-
formed into the interval [ 4.0,4.0], where the fuzzy proposi-
tion “ is [not] ” is reasonable. The domains of the remaining
variables ( ) contain to the interval [ 4.0,4.0].
Fig. 3(d) illustrates this transformation. will be greater or
equal than 1.0, because if were less than 1.0 the domains
would contain into the interval [4.0,4.0] and therefore, the
transformation would not be necessary.

The last step consists of finding a logical connectiveveri-
fying

With this logical connective we can get

is is

is is

is is not

is is

These fuzzy propositions are in accordance with the domain
of the variables because of the following.

1) For positive weights, i.e.,

is

is greater than approximately

is greater than approximately

and see the following Lemma 2

Lemma 2: If , minimum
and then .

2) For negative weights,

is not

is not greater than approximately

is not greater than approximately

and see the next Lemma 3

Lemma 3: If , minimum
and then

.
Now, the wanted operator can be defined
Definition 1: Let , and ,

. The operator is defined as

The following lemma confirms that, actually, this is the oper-
ator we were looking for in order to state the equality between
the newly formulated rules and the network neurons.

Lemma 4: The operator verifies

where , , ,
and .

It is immediate to check the resemblance between this new
operator and thei-or operator [3]. This relationship extends
through a number of properties that both operators share. The
most interesting properties of the new operator are described in
Appendix II. One aspect of the utmost importance for its in-
tended role in the interpretation of ANNs is that the new oper-
ator also has a natural, intuitive meaning.

IV. I NTUITIVE INTERPRETATION OF THEOPERATOR

The properties of the operator (presented in Appendix II)
are used for providing it an intuitive interpretation. It can be best
exposed through an example.

Let us consider a person who wants to buy a car.
He/she is studying a particular model. Initially, he/she
does not know whether it is advisable to buy this
model (buying advisability ) or it is unsuitable
(buying advisability ), i.e., buying advisability .
With the aim of modifying thebuying advisability, he/she
asks about characteristics of the car model (motor, starter,
speeding up, comfort, etc). For example, what about the motor?
(good or bad ). With these answers ( values in
(0,1)), he/she obtains a new value for thebuying advisability
( ). This last process of aggregation may be modeled
using the operator .

Let us have a closer look at several points.

1) The final decision of buying the car model and thebuying
advisabilityare different things, although dependent.

2) The answers and thebuying advisabilityare also dif-
ferent. Hence, it is not reasonable to aggregate a value of
buying advisabilitywith an answer, i.e., it is reasonable
that the operator is not associative (Property 2 of
Appendix II).

3) If a characteristic is not good or bad (answer ),
it should not influence in the modification of thebuying
advisability (Property 3 of Appendix II). On the other
hand, if all the characteristics are neuter (answers ),
thebuying advisabilitygoes on with the initial value (

) (Property 4 of Appendix II).
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Fig. 4. ANN that solves theXOR problem.

4) If the qualities of two characteristics are opposed
but of equal strength, they do not influence in the
modification of thebuying advisability(Property 5 of
Appendix II).

5) If all the characteristics are positive (answers ), the
buying advisabilityincreases from 1/2 to 1.0 (Property 6
of Appendix II). On the other hand, if all the characteris-
tics are negative (answers ), thebuying advisability
decreases from 1/2 to 0.0 (Property 7 of Appendix II).

6) If positiveanswers is greater than
negativeanswers, the buying advisability increases
from 1/2 (Property 8 of Appendix II). On the other
hand, if positiveanswers is less than
negativeanswers, the buying advisability decreases
from 1/2 (Property 9 of Appendix II).

7) If a characteristic of the car model is totally perfect,
the buying advisabilitywill be 1.0 (Property 10 of Ap-
pendix II). On the other hand, if a characteristic is totally
dreadful, thebuying advisabilitywill be 0.0 (Property 11
of Appendix II).

8) A buying advisabilityof a car model will be less than the
buying advisabilityof other car model with better charac-
teristics (Property 12 of Appendix II).

9) The credibility of the answers about the characteristics
is determined in terms of the parameter. The greater
is , the lesser is the importance of the answers (influ-
ence on the result) and vice versa (Property 13–16 of Ap-
pendix II).

We can find applicability in many other situations. For ex-
ample, an editor can use to determine whether it is advisable
to publish a scientific paper or not, starting from the features of
the paper included in the reviewers’ reports.

The operator determines the advisability of carrying out
an action through the aggregation of several evaluations or opin-
ions about independent facts.

V. ANNS AS FUZZY RULE-BASED SYSTEMS

At this point, we have all the tools necessary to express a
given ANN (of the kind under study) in terms of fuzzy rules
coherent with their input domains. In this section, we present a
procedure to produce such transformation.

Let us consider the multilayer ANN with one hidden layer
illustrated in Fig. 1. Let us suppose that some weights are
positive and others are negative. Without loss of generality, let
us consider that for and for

. The procedure for transforming this ANN into a
fuzzy rule-based system is composed of the following steps.

1) Transform the domains of the input variables. This can be
carried out for each hidden neuron independently, so the
obtained system will have fuzzy rules with different op-
erators . To obtain fuzzy rules with the same operator

, a common value must be used for all the transfor-
mations. Hence, this step consists of calculating

minimum
and

Now, the function and the operator
are common for all the fuzzy rules.

2) For each output neuron, a fuzzy rule “ : If True then
” is added to the rule base.

3) For each pair of neurons (hidden, output) ( ), the fol-
lowing rule is added:

: If is not
greater than approximately 2.2

………
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is not greater
than approximately 2.2

is greater
than approximately 2.2

………
is greater than

approximately 2.2

then ,

where

a) is not greater than approxi-
mately is not greater than approximately

and is not greater than approximately
.

b) is greater than approximately
is greater than approximately

and
is not greater than approximately

.
c)

Therefore

: If is not greater
than approximately

………
is not greater than

approximately
is greater than

approximately
………
is greater than ap-

proximately

then .

This procedure is an extension of the one presented in the
proof for the theorem of equality [3]. It shares its main charac-
teristics specially its constructive nature and its efficiency, run-
ning in a time proportional to the size of the net. Moreover,
even though it produces propositions coherent with the input
domains, this task does not increase its algorithmic complexity.

VI. I NTERPRETATION OF THEBIASES

So far we have analyzed the role of the network weights. Now
we turn our attention the other free parameters of the ANN,
namely, the biases.

Two kinds of biases appear in the multilayer ANN of Fig. 1:
biases of the output neurons and biases

of the hidden neurons. Each kind of bias has
a different role in the fuzzy rule-based system.

1) The biases generate the rules “ : If True then
” in the fuzzy rule-based system. These rules provide a

default value for each output . If the remaining rules are
fired, they only modify this default output value. This is
in straight connection with the human reasoning process

where a default value is modified as new information is
considered [10].

2) The biases generate the constants
that appear in the antecedents of the

fuzzy rules . In order to understand the interpretation
of the constants , the following lemma explains the role
of the parameters.

Lemma 5: Let , and
. Then we have the following.

1) If
2) If
According to the previous lemma, the constantsprovide

a default value, , for the firing strength of the an-
tecedents. The remaining fuzzy propositions in the antecedents
only modify this default value. This is a kind of rule more
flexible than usual ones where unmatched rules always activate
at zero level, so this rule representation power is greater.

VII. EXAMPLES

In this section, two problems are used to illustrate the
interpretation of ANNs as fuzzy rule-based systems: theXOR

problem [12] and the breast cancer problem [4]. These binary
classification problems are solved by means of multilayer
feedforward ANNs with one hidden layer composed of two
neurons. An output value of the ANN greater than 0.5 cor-
responds to a classification value equal to 1.0 and an output
value less than 0.5 corresponds with a classification value equal
to 0.0. These networks are trained with the Backpropagation
algorithm [13]. Then, the procedure presented in Section V is
applied to extract fuzzy rules from the ANNs.

A. XORProblem

This problem has two binary inputs. Fig. 4 displays an ANN
which solves this problem. Now, we detail the steps for the ex-
traction of fuzzy rules.

Step 1)

minimum

Step 2) From the bias , the following rule is ob-
tained.

Rule 1. If True then .

Step 3) For the pair of neurons ( )
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Therefore, the following rule is added.

Rule 2. If is greater than ap-
proximately 0.76

is not greater than approxi-
mately 0.77

0.012 (where )
then .

For the pair of neurons ( )

So, the following rule is added.

Rule 3. If is greater than ap-
proximately 0.456

is not greater than approxi-
mately 0.464

0.999 (where )
then .

Please note the following remarks.

• The fuzzy rule 1 establishes the default output value (
). Rules 2 and 3 modify this value in terms of their

output values and the firing strength of their antecedents.
• The values and provide the de-

fault firing strength of the antecedents of the fuzzy rules 2
and 3.

• The value determines the influence of the inputs
on the modification of the default firing strength in the
antecedents of the rules 2 and 3.

• All the fuzzy propositions of the antecedents are in accor-
dance with the domains of the input variables ( ,

). This property is not fulfilled by the fuzzy rules
extracted with the method presented in [3]. These rules are
as follows.

1) If True then .
2) If is greater than approxi-
mately 1.46

is not greater than approxi-
mately 1.48

then .
3) If is greater than approx-
imately 0.39

is not greater than approxi-
mately 0.40

then .

B. Breast Cancer Problem

This problem is composed of nine continuous variables (
, normalized to , ) and one binary

output ( benign, malignant). The input
variables are

Clump thickness

Uniformity of cell size

Uniformity of cell shape.

Marginal adhesion.

Single epithelial cell size.

Bare nuclei.

Bland chromatin.

Normal nucleoli.

Mitoses.

Next, the fuzzy rules extracted from an ANN that achieves
98.468% of successes on 457 training examples without missing
values, are presented.

1) If True then .
2) If is not greater than approx-

imately 0.03
is not greater than approxi-

mately 0.24
is greater than approximately

0.09
is not greater than approxi-

mately 0.07
is not greater than approxi-

mately 0.27
is not greater than approxi-

mately 0.07
is not greater than approxi-

mately 0.03
is greater than approximately

0.26
is not greater than approxi-

mately 0.03
(where

)
then .

3) If is not greater than approxi-
mately 0.34

is not greater than approxi-
mately 0.72

is greater than approximately
0.20

is not greater than approxi-
mately 0.21

is not greater than approxi-
mately 0.76

is not greater than approxi-
mately 0.27
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is not greater than approxi-
mately 0.14

is greater than approximately
0.07

is not greater than approxi-
mately 0.21

(where
)

then .

It can be noted that the default firing strength of the an-
tecedent of the fuzzy rule 2 is almost 1.0 and the one of the
fuzzy rule 3 is almost 0.0. This fact is reasonable thanks to the
output value of each rule

Therefore, the classification of the ANN will be benign ex-
cept that either the input values fire very little the antecedent
of the rule 2, or the input values fire very much the antecedent
of the rule 3. This last analysis would have to do it a specialist
doctor.

VIII. I NTERPRETATION OFANNS WITH TWO OR MORE

HIDDEN LAYERS

Previously, the interpretation of ANNs with a single hidden
layer has been explained. However, the presented method can
not be used for interpreting ANNs with two or more hidden
layers, because it is hard to understand the obtained rules. For
example, fuzzy rules with the following format can be attained.

If ( is is
is ) is

( is is
is ) is

…………
( is is

is ) is

then .

The idea for solving this problem consists of transforming the
ANN with hidden layers into chained ANNs with
a single hidden layer each. Next, every one of these ANNs is in-
terpreted as a comprehensible fuzzy system. This way, chained
fuzzy rule-based systems are obtained that express the action of
the ANN with hidden layers.

In order to explain this procedure, let us consider the ANN
with two hidden layers illustrated in Fig. 5. This ANN calculates

Fig. 5. ANN with two hidden layers.

We can insert a new hidden layer between the original hidden
layers (Fig. 6). This new layer hasneurons, ,
with linear activation function. The output weights of these neu-
rons are the same than the ones of the neuronsin the
original ANN, that is, if , ;

and . The input weights of the neu-
rons are

if
otherwise

and

Besides, the neurons do not have biases, i.e.,
.

This new layer does not modify the output of the original
ANN with two hidden layers (Fig. 5) because

therefore

The action of the new ANN with three hidden layers (Fig. 6)
is equivalent to the chained action of two ANNs with a single
hidden layer (Fig. 7).

According to previous sections, an additive fuzzy rule-based
system can be extracted from each ANN with a single hidden
layer of Fig. 7. Therefore, starting from an ANN with two
hidden layers, we can extract two chained fuzzy rule-based
systems. Similar reasoning can be used for extracting
chained fuzzy systems from an ANN with hidden layers.

In this manner, starting from an ANN with two or more
hidden layers, we can obtain chained fuzzy systems that are
more comprehensible than a single fuzzy system obtained from
the ANN.
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Fig. 6. ANN of Fig. 5 with a new hidden layer.

Fig. 7. Two chained ANNs with a single hidden layer that have the same behavior than the ANN of Fig. 6.

IX. CONCLUSION

In this paper, we have presented a procedure to represent the
action of an ANN in terms of fuzzy rules. This method ex-
tends another one which we had proposed previously. The main
achievement of the new method is that the fuzzy rules obtained
are in agreement with the domain of the input variables.

In order to keep the equality relationship between the ANN
and a corresponding fuzzy rule-based system, a new logical op-
erator has been presented. This operator has a higher representa-
tional power than thei-or operator. Nevertheless, both operators
are very similar, they share many properties. In particular, both
of them have a natural interpretation.

These new fuzzy rules along with the new operator render
a more coherent and understandable interpretation of multilay-
ered ANNs.

We have also studied the role of biases and therefore, gained
further knowledge in the understanding of ANNs behavior.

Finally, the range of neural models to which the proposed
interpretation may be applied has been extended by considering
ANNs with two or more hidden layers. These networks can be
expressed as chained fuzzy rule-based systems.

APPENDIX I
ADDITIVE FUZZY SYSTEM AS TSK FUZZY SYSTEM

Let us consider the following fuzzy rules extracted from a
trained ANN:

If is is is

then

If True then (a)

Without loss of generality, we can make the assumption .
In this case, the rules are

If is is is

then

If True then (b)

For a particular input ( ), the output provided
by the additive fuzzy rule-based system [8] is equal to

(a.1)

Our goal is to modify the fuzzy rules for obtaining the output
using a weighted average (TSK fuzzy rule-based system [16]).

If we consider the previous rules as component of a TSK-type
fuzzy rule-based system,would be computed as shown in (a.2)
at the bottom of the next page.

In order to achieve this, we can modify the expression (a.1)
so we have (a.3) shown at the bottom of the next page, where

Expression (a.3) allow us to rewrite the rules of a fuzzy addi-
tive system in (b) as the following rules for a TSK system:

If is is is

then
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If is is is

then

If True then

In addition, the following lemma give us a way to rewrite the
previous rule.

A. Lemma

is is is

is not is not is not

Proof (Lemma): See (1) shown at the bottom of the page.
Now the rule can be expressed as

If is not is not is

then

The expressions and results presented in this section provide
a straightforward procedure to transform an additive fuzzy rule-
based system into a TSK fuzzy rule-based system. In particular,

ANNs of the kind considered in this paper can be translated into
TSK systems.

APPENDIX II
PROPERTIES OF THEOPERATOR

Let . The operator verifies the fol-
lowing properties:

1) is commutative.
2) is not associative.
3) .
4) .
5)

6) If ,
.

7) In particular, if
.

8) If ,
.

9) In particular, if
.

10) If .

(a.2)

(a.3)

is is is

is is is

is is is

is is is

is not is not is not (1)
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11) If .
12) .
13) .
14)

.
15) .
16) If and

.
17) If and

.
18) .

A. Proof of Properties

1) It is trivial because the product and the addition are com-
mutative.

2) Let , , , and .
Then

and

Therefore, is not associative.
3) See (2) shown at the bottom of the page.
4) See (3) shown at the bottom of the page. On

the other hand, applying Property 3, we have
.

Therefore, .
5) See (4) shown at the bottom of the page.
6)

(2)

(3)

(4)
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As , , we have
.

Therefore

7)

As , , we have
, .

Therefore

8) We proceed by induction.
Let .
As , we have

.
Therefore

Let us suppose that Property 8 is true for , is
Property 8 true for ?:

Let us consider two cases.

a) If then
a.1) If , we have

, . Therefore

a.2) If with then we can
choose the least and we can do and

. Next, case b) can be applied.
b) If then, as

we have

therefore

On the other hand

By induction, we have

Hence, together with ,
we have

Therefore

9) Once again, a proof can be obtained by induction.
Let .
As , we have

.
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Therefore

Let us suppose that Property 9 is true for , is
Property 9 true for ( )?:

Let us consider two cases.

a) If then
a.1) If , we have

, . Therefore

a.2) If with then we can
choose the least and we can do and

. Next, case b) can be applied.
b) If then, as

we have

therefore

On the other hand

By induction, we have

Hence, together with ,
we have

Therefore

10) See (5) shown at the bottom of the page.
11) See (6) shown at the bottom of the page.
12) If then . There-

fore we have (7) shown at the bottom of the next page.

(5)

(6)

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on January 21, 2010 at 06:37 from IEEE Xplore.  Restrictions apply. 



114 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

13)

14) As then
and .

So

and

and

Hence and as , we have

Therefore

15) As then
and .

So

and

and

Hence and as , we have

Therefore

(7)
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16)

APPENDIX III
PROOF OFRESULTS

A. Proof (Lemma 1)

From [3], we have . Therefore

is

is

is not

B. Proof (Lemma 2)

From , we have

from minimum , we have

minimum

finally, from we have

minimum

C. Proof (Lemma 3)

From , we have

from minimum , we have

minimum

finally, from we have

minimum

minimum

therefore

minimum

D. Proof (Lemma 4)

By Definition 1, we have (8) shown at the bottom of the
page.

(8)
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E. Proof (Lemma 5)

1)

Hence and as
because

, we have

2) As because
and as
because , we have
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