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Summary. Subgroup discovery can be defined as a form of supervised inductive 
learning in which, given a population of individuals and a specific property of in-
dividuals in which we are interested, find population subgroups that have the most 
unusual distributional characteristics with respect to the property of interest. Sub-
group discovery algorithms aim at discovering individual rules, which must be 
represented in explicit symbolic form and which must be simple and understand-
able in order to be recognized as actionable by potential users. 

A fuzzy approach for a subgroup discovery process, which considers linguistic 
variables with linguistic terms in descriptive fuzzy rules, lets us obtain knowledge 
in a similar way of the human thought process. Linguistic rules are naturally in-
clined towards coping with linguistic knowledge and to produce more interpret-
able and actionable solutions. This chapter analyzes the use of linguistic rules for 
modelling this problem, and shows a genetic extraction model for learning this 
kind of rules. 

1 Introduction 

Rule learning is an important form of predictive machine learning, aimed at induc-
ing a set of rules to be used for classification and/or prediction [6], [31]. Devel-
opments in descriptive induction have recently also attracted much attention from 
researchers interested in rule learning. The objective of descriptive machine learn-
ing is to discover individual rules that define interesting patterns in data, and it in-
cludes approaches for mining association rules [2], for subgroup discovery [24], 
[35] and other non-classificatory induction approaches such as clausal discovery 
[34] or database dependency [15] among others.  

Subgroup discovery is a form of descriptive supervised inductive learning. It 
aims to discover individual rules (or local patterns of interest, very frequent –
hence typical– or very rare –hence atypical–) in relation to a specific property of 
interest, which must be represented in explicit symbolic form and which must be 
relatively simple in order to be recognized as actionable by potential users. There-
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fore, the subgroups discovered in data are of a more explanatory nature and the in-
terpretability of the extracted knowledge for the final user is a crucial aspect in 
this field. 
As it was claimed by Dubois et al. in [14], the use of fuzzy sets to describe asso-
ciations between data extends the types of relationships that may be represented, 
facilitates the interpretation of rules in linguistic terms, and avoids unnatural 
boundaries in the partitioning of the attribute domains. This is especially useful in 
medical, control or economic fields where the boundaries of a piece of informa-
tion used may not be clearly defined. In fact, the use of linguistic variables and 
linguistic terms in a machine learning process has been thoroughly explored by 
various authors in predictive induction (see for instance Ishibuchi et al.’s book 
[22] for a complete and understandable up-to-date description of the design of 
classification and modelling fuzzy systems). There are some proposals using fuzzy 
logic in descriptive induction, for the extraction of fuzzy association rules [10], 
[20], and for subgroup discovery fuzzy rules [12], [13]. 
A fuzzy approach for a subgroup discovery process, which considers linguistic 
variables with linguistic terms in descriptive fuzzy rules, allows us to obtain 
knowledge in a similar way to the human thought process. In order to understand 
this it is enough to remember that much of the logic behind human reasoning is 
not traditional two-valued or even multivalued logic, but logic with fuzzy truths, 
fuzzy connectives and fuzzy rules of inference. Fuzzy rules are naturally inclined 
towards coping with linguistic knowledge, thereby  producing more interpretable 
and actionable solutions in the field of subgroup discovery and in general in the 
analysis of data to establish relationships and identify patterns [21]. 
This chapter analyzes the use of linguistic rules in subgroup discovery. A genetic 
model for the extraction of fuzzy rules in subgroup discovery [12], [13] is de-
scribed, analyzing its possibilities and limitations. To do so, the chapter is ar-
ranged in the following way: In Section 2, the subgroup discovery task is intro-
duced. In Section 3 is described the use of linguistic rules in the subgroup 
discovery task. An evolutionary approach to obtain subgroup discovery descrip-
tive fuzzy rules is explained in Section 4. Finally, in Section 5 the conclusions and 
further research are outlined. 

2 Introduction to Subgroup Discovery 

Subgroup discovery is a form of supervised inductive learning which is defined 
as follows [24], [35]: given a set of data and a property of interest to the user (tar-
get variable), an attempt is made to locate subgroups which are statistically “most 
interesting” for the user, e.g., are as large as possible and have the most unusual 
distributional characteristics with respect to the property of interest. The concept 
was initially formulated by Klösgen in EXPLORA [24] and by Wrobel in MIDOS 
[35].  
Descriptive machine learning methods for subgroup discovery have the objective 
of discovering interesting properties of subgroups by obtaining simple rules (i.e. 
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with an understandable structure and with few variables), which are highly signifi-
cant and with high support (i.e. covering many of the instances of the target class). 
An induced subgroup description has the form of an implication,  
   Cond →  Class 
where the property of interest for subgroup discovery is class value Class that ap-
pears in the rule consequent, and the rule antecedent Cond is a conjunction of fea-
tures (attribute-value pairs) selected from the features describing the training in-
stances.  

The subgroup discovery task relies on the following main properties: 

• The description language specifying the subgroups which must be adequate to 
be applied effectively by the potential users. The subgroup description consists 
of a set of expressions. In the simplest case, each expression is one-valued; 
however negation or internal disjunctions are also possible. 

• The quality function measuring the interest of the subgroup. A variety of qual-
ity functions have been proposed (see for instance [24], [25], [18]). The quality 
functions used is determined by the type of the target variable, the type of rules 
and the problem considered. In subsection 2.2 several quality measures used in 
subgroup discovery algorithms are described. 

• The search strategy employed by the algorithm is very important, since the di-
mension of the search space has an exponential relation with respect to the 
number of features (or variables) and values considered. 
Below related works and the quality measures used in subgroup discovery are      

shortly revised. 

2.1 Related works in subgroup discovery 

In the specialized bibliography, different methods have been developed which ob-
tain descriptions of subgroups represented in different ways and using different 
quality measures: 

• The first approach developed for subgroup discovery was EXPLORA [24]. It 
uses decision trees for the extraction of rules. The rules are specified by defin-
ing a descriptive schema and implementing a statistical verification method. 
The interest of the rules is measured using measures such as evidence, general-
ity, redundancy and simplicity. 

• MIDOS [35] applies the EXPLORA approach to multirelational databases. It 
uses optimistic estimation and minimum support pruning. The goal is to dis-
cover subgroups of the target relation which have unusual statistical distribu-
tions with respect to the complete population. The quality measure is a combi-
nation of unusualness and size.  

• SubgroupMiner [26] is an extension of EXPLORA and MIDOS. It is an ad-
vanced subgroup discovery system which uses decision rules and interactive 
search in the space of the solutions, allowing the use of large databases, mul-
tirelational hypotheses, and the discovery of structures of causal subgroups. 
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This algorithm uses as quality function the classical binomial test to verify if 
the statistical distribution of the target is significantly different in the extracted 
subgroup. 

• SD [17] is a rule induction system guided by expert knowledge: instead of de-
fining an optimal measure to search and select automatically the subgroups, the 
objective is to help the expert in performing flexible and effective searches on a 
wide range of optimal solutions.  

• CN2-SD [29] (a modified version of the CN2 algorithm [6]) induces subgroups 
in the form of rules using the relation between true positives and false positives 
as a quality measure. It uses a modified weighted relative accuracy as quality 
measure for the rule selection. 

• RSD [30], Relational Subgroup Discovery, has the objective of obtaining popu-
lation subgroups which are as large as possible, with a statistical distribution as 
unusual as possible with respect to the property of interest, and which are dif-
ferent enough to cover most of the target population. It is a recent upgrade of 
the CN2-SD algorithm which enables relational subgroup discovery. 

• APRIORI-SD [23] is developed by adapting the association rule learning algo-
rithm APRIORI [1] to subgroup discovery, including a new quality measure for 
the induced rules (the weighted relative accuracy) and using probabilistic clas-
sification of the examples. For the evaluation is used the support and signifi-
cance of each individual rule, and the size, accuracy and area under the ROC 
curve of the set of rules. 

• Intensive Knowledge [3] is a subgroup discovery approach which uses several 
types of application background knowledge to improve the quality of the results 
of the subgroup discovery task and the efficiency of the search method. 

• SDIGA [13] is an evolutionary fuzzy rule induction system which uses as qual-
ity measures for the subgroup discovery task adaptations of the measures used 
in the association rules induction algorithms. Unlike all the other proposals, 
SDIGA uses linguistic rules as description language to specify the subgroups. 
This proposal is shown in section 4. 

2.2 Quality measures in subgroup discovery 

One of the most important aspects of any subgroup discovery algorithm -and a de-
termining factor in the quality of the approach- is the quality measure to be used, 
both to select the rules and to evaluate the results of the process. Objective meas-
ures for descriptive induction evaluate each subgroup individually, but can be 
complemented by their variants to compute the mean of the induced set of descrip-
tions of subgroups, allowing comparison between different subgroup discovery al-
gorithms. 

There are different studies about objective quality measures for the descriptive 
induction process [25], [32], [17] but it is difficult to reach an agreement about 
their use. Below, the more widely used objective quality measures in the special-
ized bibliography of subgroup discovery are described.  
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• Coverage for a rule [29]: this measures the percentage of examples covered on 
average by one rule of the induced set of rules.  
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where n(Condi) is the number of examples which verifies the condition Condi 
described in the antecedent (independently of the class to which belongs), and 
ns is the number of examples.  
 The average coverage for the set of rules finally obtained is calculated by 
the following expression: 
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where nr is the number of induced rules. 
• Support for a rule: In descriptive induction processes the support for a rule is a 

standard measure which considers, by means of an expression that can vary in 
different proposals, the number of examples satisfying both the antecedent and 
the consequent parts of the rule. Lavrac et al. compute in [29] the overall sup-
port as the percentage of target examples (positive examples) covered by the 
rules. The support of a rule is so defined as the frequency of correctly classified 
examples covered.  
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where n(Classj.Condi) is the number of examples which satisfy the conditions 
for the antecedent (Condi) and also belong to the value for the target variable 
(Classj) indicated in the consequent part of the rule. In (3), the support of a rule 
is computed dividing by the total number of examples. It can also be computed 
in other ways, such as dividing by the number of examples of the class or other 
variations. 
 The support for a set of rules is computed by: 
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where nc is the number of values for the target variable considered. It must be 
noted that in this expression the examples which belong to many rules are con-
sidered only once.  

• Size (for a set of rules): The size of a set of rules is a complexity measure calcu-
lated as the number of induced rules (nr). Complexity can also be measured as 
the mean number of obtained rules per class, or the mean of variables per rule. 

• Significance for a rule [24]: indicates the significance of a finding, if measured 
by the likelihood ratio of a rule.  
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where p(Condi), computed as n(Condi)/ns, is used as a normalized factor.  
 It must be noted that, although each rule is for a specific class value, the sig-
nificance measures impartially the novelty in the distribution, for all the class 
values. 
 The significance for a set of rules is computed as follows: 
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• Unusualness for a rule: It is defined as the weighted relative accuracy of a rule 
[28]. 
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The weighted relative accuracy of a rule can be described as the balance be-
tween the coverage of the rule (p(Condi)) and its accuracy gain (p(Classj.Condi) 
- p(Classj)). It must be noted that the higher a rule’s unusualness, the more rele-
vant is it. 
 The unusualness for a set of rules is computed as follows:  
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It must be noted that all the measures here described are crisp because in the ma-
jority of the proposals the rules used to represent the knowledge in subgroup dis-
covery are not fuzzy. 

3 Linguistic rules in subgroup discovery 

As it has been described in the previous section many approaches have already 
been proposed for subgroup discovery task, usually based on non linguistic rules. 
Since human information processing is mainly based on linguistic information, in 
order to facilitate the human interpretability of the results, the use of linguistic 
rules must be considered.  

In this section, the use of linguistic rules in subgroup discovery will be ana-
lyzed, and a kind of linguistic rules, DNF linguistic rules, and some quality meas-
ures for them are described. 
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3.1 The use of linguistic rules in subgroup discovery 

In any Data Mining problem two main objectives are present: 
• to obtain knowledge about patterns in data which must be fitted to the nature 

and reality of the problem, e.g., knowledge must be as precise as possible, 
• to extract knowledge which must be simple, compact and understandable by the 

final user. That is to say, the obtained knowledge must be close to the form in 
which the expert represents his knowledge on the problem in order to be ac-
tionable by him. 

The second objective becomes the most important in descriptive data mining, and 
specifically in the subgroup discovery task. 

The way in which the knowledge is represented by a human expert is inherently 
qualitative and vague. In this sense the use of Fuzzy Logic in Data Mining allows 
us to model inaccurate and qualitative knowledge, as well as to handle uncertainty 
and deal naturally to a reasonable extent with human reasoning. Ever since it was 
proposed in 1965 by Zadeh [36], it has been applied to many areas of research, 
fundamentally because of its proximity to human reasoning and because it pro-
vides an effective way of capturing the approximate and inexact nature of the real 
world.  

In rule induction processes, Fuzzy Logic is included in such a way that the 
models extracted are fuzzy rules. In the most interpretable type of fuzzy rules,  
linguistic fuzzy rules, and therefore the most appropriate for Data Mining, the con-
tinuous variables are defined as linguistic variables; that is, variables which take 
as possible values linguistic labels, the semantics of which are represented by an 
associated fuzzy set [37].  

One of the fundamental aspects when working with linguistic rules is the defi-
nition of membership functions associated with the fuzzy sets used. There are sev-
eral alternatives to determine this aspect: 

• When the expert knowledge is not available, uniform partitions with triangular 
membership functions can be used, as it is shown in Fig. 1 for a variable with 5 
linguistic labels.  
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          Fig. 1. Example of fuzzy partition for a continuous variable 

• When expert knowledge about the problem is available or an analysis of the 
data can be realized, the definition for the fuzzy partition can be done in one of 
the following ways:  



Subgroup Discovery with Linguistic Rules      417 

- In order to increase the interpretability of the results obtained in some pro-
posals such as [4], [27] for the extraction of fuzzy rules the expert gives the 
algorithm the continuous variables and their corresponding membership 
functions. The quality of the results obtained depends on the suitability of 
the fuzzy sets.  

- For many applications it is very difficult to know from the outset which 
fuzzy sets will be the most appropriate and so different algorithms which 
learn the fuzzy partitions have been proposed. In [16] the fuzzy sets and the 
membership functions are generated through clustering techniques. In [19] 
the definition for the linguistic labels is established by means a genetic algo-
rithm. 

- A fuzzy partition can be defined by a heuristic approach which places the 
fuzzy sets in such a way that each of them will cover approximately the 
same number of data, if the expert wants to. But it must be considered that, 
depending on the problem, the interpretation of the resulting fuzzy rules 
could be decreased. 

- Moreover, if it is necessary, a preliminary data analysis which detects out-
liers in data can be done before the determination of the fuzzy partitions. 
This way a specific analysis of them can be realized and the fuzzy partition 
(without these outliers’ data) is not biased by them. 

3.2 DNF linguistic rules 

The objective in subgroup discovery is to extract knowledge about a variable of 
interest for the user, in an easily interpretable way. In order to increase the inter-
pretability of the extracted knowledge, the Disjunctive normal form (DNF) fuzzy 
rules can be used. A DNF fuzzy rule represents the knowledge in a flexible and 
compact way, allowing each variable to take more than one value, and facilitating 
the extraction of more general rules. Linguistic rules allow us to establish flexible 
limits between the different levels of meaning without ignoring or overemphasiz-
ing the elements closest to the edges in the same way as human perception does. 
In addition, linguistic DNF fuzzy rules allow us to make changes in the initial 
granularity in each rule in a descriptive way. The following is an example of lin-
guistic DNF fuzzy rule: 

IF Number of times pregnant High or Medium AND Body mass index is Low  
THEN Diabetes is Tested negative 

Below, the notation used to describe the DNF fuzzy rules is formally described. 
We consider a problem with:   

• a set of features, discrete or continuous 
{ }vm nmX ,..,1/ =  

used to describe the subgroups, where nv is the number of features;  
• a set of values for the target variable  
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{ }cj njClass ,,1/ K=  
where nc is the number of values for the target variable considered; 

• a set of examples 
{ }s
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n
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where classj is the target variable value for the sample Ek (i.e., the class for this 
example) and ns is the number of examples for the descriptive induction proc-
ess; 

• a set of linguistic labels for the continuous variables. The number of linguistic 
labels and the definition for the corresponding fuzzy sets depend on each vari-
able 

{ }ml
mmmm LLLLLLX ,,,: 21 K . 

In this expression, variable Xm, has lm different linguistic labels to describe its 
domain in an understandable way. 

A fuzzy rule iR  can be described as: 

j
ii ClassCondR →:  

where the antecedent describes the subgroup. 

Below is an example of a DNF fuzzy rule: 

jClassLLXLLLLXR then)is(and)oris(If: 1
77

3
1
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It must be noted that, in the DNF rule, any subset of the complete set of vari-
ables (with any combination of linguistic labels related with the operator OR) can 
take part in the rule antecedent. In this way a subgroup is a compact and interpret-
able description of patterns of interest in data.  

For these rules, we consider that   

• an example kE  verifies the antecedent part of a rule iR  if  
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where: 
• APC (Antecedent Part Compatibility) is the degree of compatibility between 

an example and the antecedent part of a fuzzy rule, i.e., the degree of mem-
bership for the example to the fuzzy subspace delimited by the antecedent 
part of the rule, 

• 1
1
lLL  is the linguistic label number 1l  of the variable 1, 

• )( 11
1

k
LL elµ  is the degree of membership for the value of the feature 1 for the 

example kE  to the fuzzy set corresponding to the linguistic label 1l  for this 
feature, 

• T is the t-norm selected to represent the meaning of the AND operator –the 
fuzzy intersection–, in our case the minimum t-norm, and  
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• TC is the t-conorm selected to represent the meaning of the OR operator –
the fuzzy union–, in our case the maximum t-conorm. 

• an example kE  is covered by a rule iR  if  

j
kik ClassEANDREAPC ∈> 0),(  (11) 

This means that an example is covered by a rule if the example has a degree of 
membership higher than 0 to the fuzzy subspace delimited by the antecedent 
part of the fuzzy rule, and the value indicated in the consequent part of the rule 
agrees with the value of the target feature for the example. For the categorical 
variables, the degrees of membership are just 0 or 1. 

3.3 Quality measures for DNF linguistic rules 

When using linguistic rules, it is necessary to define quality measures to manage 
this type of rules. Some of the quality measures used in the bibliography for the 
induction of fuzzy rules are next detailed: 

• Confidence of a fuzzy rule [13]: The confidence of a rule determines the relative 
frequency of examples satisfying the complete rule among those satisfying only 
the antecedent. In our proposal the expression used for confidence reflects the 
degree to which the examples within the zone of the space marked by the ante-
cedent verify the information indicated in the consequent part of the rule. To 
calculate this factor an adaptation of Quinlan’s accuracy expression [33] is used 
in order to generate fuzzy classification rules [8]: the sum of the degree of 
membership of the examples of this class and the fuzzy input subspace deter-
mined by the antecedent, divided by the sum of the degree of membership of all 
the examples that verifies the antecedent part of this rule (irrespective of their 
class) to the same zone: 
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• Support of a fuzzy rule, defined in [13] as the degree of coverage that the rule 
offers to examples of that class: 
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where )( jClassn  is the number of examples of the class j. A variation of this 
measure will be detailed in next section.  
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4 A genetic algorithm for the induction of linguistic rules in 
subgroup discovery 

In this section an evolutionary model for the extraction of linguistic rules for the 
subgroup discovery task, SDIGA (Subgroup Discovery Iterative Genetic Algo-
rithm), which uses DNF rules is described [13]. The model follows the IRL ap-
proach –later explained– and works as follows: 

• The core of the model is a genetic algorithm (GA) which uses a post-processing 
step based on a simple local search, a hill-climbing procedure. The hybrid GA 
extracts one simple and interpretable fuzzy rule with an adequate level of sup-
port and confidence. The post-processing step consists of a local search process 
increasing the generality of the rule. 

• This hybrid GA is included in an iterative process for the extraction of a set of 
fuzzy rules for the description of subgroups supported by different areas (not 
necessarily disjuncts) of the instance space. In this way is obtained a set of dif-
ferent solutions generated in successive runs of the GA corresponding to the 
same value of the target feature. The method to guide the GA evolution over 
different –although may be overlapped– fuzzy rules is explained in detail in the 
next subsection. 

The objective is to obtain a set of rules which describe subgroups for all the values 
of the target feature, and so the iterative process must be carried out as many times 
as different values the target feature has. 

Once the basis of the proposal is outlined, the GA and the iterative rule extrac-
tion model are described in detail. The results of a comparison of the proposal 
with other subgroup discovery algorithms are also detailed. 

4.1 Hybrid genetic algorithm for the induction of a fuzzy rule 

The hybrid GA extracts a single fuzzy rule in an attempt to optimize the confi-
dence and support. In the following subsections the elements of the hybrid GA are 
described. 

4.1.1 Chromosome representation  

The genetic representation of the solutions is the most determining aspect of the 
characteristics of any genetic learning proposal. The “Chromosome = Rule” ap-
proach (in which each individual codifies a single rule) is more suited in subgroup 
discovery because the objective is to find a reduced set of rules in which the qual-
ity of each rule is evaluated independently of the rest. This is the encoding ap-
proach used in the evolutionary proposal next described.  

The GA discovers a single fuzzy rule whose consequent is prefixed to one of 
the possible values of the target feature. Only the antecedent is represented in the 
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chromosome and all the individuals in the population are associated with the same 
value of the target feature. 

All the information relating to a rule is contained in a fixed-length chromosome 
with a binary representation in which, for each feature a bit for each one of the 
possible values of the feature is stored; in this way, if the corresponding bit con-
tains the value 0 it indicates that the value is not used in the rule, and if the bit 
contains the value 1 it indicates that the corresponding value is included. If a rule 
contains all the bits corresponding to a feature with the value 1, or all of them con-
tain the value 0, the feature is ignored and does not take part in the rule. In Fig. 2, 
V0 and V1 have 3 possible values, and V2 and Vk have 2 possible values. In this ex-
ample, neither V2 nor Vk take part in the rule (V2 does not take any of its values, 
and Vk takes all, and so both variables are irrelevant for the rule).  

 
V0 V1 V2  Vk 

0 1 1 0 0 1 0 0 … 1 1 

         Fig. 2. Encoding model of a DNF rule 

4.1.2 Fitness function  

The objective of the rule discovery process is to obtain rules with high confidence, 
and which are understandable and general. It means that the problem has at least 
two objectives to maximize: the support and the confidence of the rule. To achieve 
this, the weighted sum method that weights a set of objectives into a single objec-
tive is the simplest approach, and lets us introduce the expert criteria related to the 
importance of the objectives for a specific problem in the rule generation process. 
So, this proposal uses a weighted lineal combination in the following way:  

21

23)(
ωω +

×+×
=

Conf(c)ω(c)Supωcfitness 1  
(14) 

where confidence (Conf) and support  (Sup3) of the rule are defined as: 

• Confidence. This determines the accuracy of the rule, in that it reflects the de-
gree to which the examples within the zone of the space determined by the an-
tecedent verify the information specified in the consequent of the rule, and it is 
computed as in (12). 

• Support. This measures the degree of coverage that the rule offers to examples 
belonging to the class specified in the rule consequent. It is calculated in a dif-
ferent way than in (5) to promote different fuzzy rules being obtained in differ-
ent runs of the hybrid GA. To do so, for the computation of the support it is 
only considered the examples not marked (i.e. the examples not covered by 
other fuzzy rules previously obtained by means of the past runs of the hybrid 
GA). Thus, the support is defined as the quotient between the examples of this 
partial set covered by the rule represented in the chromosome and the total 
number of examples of this partial set:  
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where NeNC is the number of examples of the class specified in the consequent 
left uncovered by the previous rules, and  Ne+(Ri) is the number of examples 
covered by the rule which are left uncovered by the previous rules, using (11) 
to determine when an example is covered by a rule. 
 This way of measuring support is sensible, when using the GA within an it-
erative process, in order to obtain different rules each time the GA is run. From 
the second iteration, rules which cover examples belonging to zones delimited 
by previously obtained rules are penalized, because the support factor only con-
siders examples which have not been described by rules already obtained. No 
distance function is used as differences are penalized on a phenotypical level. 
This penalization does not eliminate the examples covered by previously ob-
tained fuzzy and they take part in the computation of the confidence measure. 

The overall objective of the evaluation function is to direct the search towards 
rules which maximize accuracy, minimizing the number of negative and examples 
not-covered. Whereas covered examples are used in the calculation of the confi-
dence, they are not used in the calculation of the support, to prevent the obtaining 
of rules inconsistent with the examples previously penalized. 

4.1.3 Reproduction model and genetic operators 

The GA includes a steady-state reproduction model [5], in which the original 
population is only modified through the substitution of the worst individuals by 
individuals resulting from crossover and mutation. The recombination is carried 
out by means of a two-point crossover operator and a biased random mutation op-
erator.  

The crossover is applied over the two best individuals of the population, obtain-
ing two new individuals, which will substitute the two worst individuals in the 
population. This strategy leads to a high selective pressure with the aim of getting 
a quick convergence of the algorithm. 

Mutation is carried out as follows. First, according to the mutation probability, 
the chromosome and the gene of the chromosome to be muted are determined. 
Then, the biased random mutation operator is applied in two different ways, with 
probability 0.5 in each case. In the first way, the mutation causes the elimination 
of the variable to which the gene corresponds, setting to 0 all the values of this 
variable, as is shown in Fig. 3.a). The second type of mutation randomly assigns 0 
or 1 to all the values of the variable, as can be seen in Fig 3.b). So, half the muta-
tions have the effect of eliminating the corresponding variable, and the rest ran-
domly set the values for the variable to be muted.  
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Original chromosome 

  V0 V1 V2  Vk 
0 1 1 0 0 1 0 0 … 1 1  

 
 

a) Elimination of the variable 

  
  V0 V1 V2  Vk 

0 0 0 0 0 1 0 0 … 1 1  
 

 
b) Random setting for the variable 

 
  V0 V1 V2  Vk 

1 0 1 0 0 1 0 0 … 1 1  
 Fig. 3. Types of mutation for a variable in a DNF rule 

The mutation is applied according to the mutation probability not only on the 
two best individuals in the population but on all the population. In order to obtain 
diversity by means of the application of this operator, a greater population size 
than the habitual in steady-state evolutionary models must be selected. 

 

4.1.4 Hybrid GA post-processing phase: local search algorithm 

The post-processing phase, which improves the obtained rule by a hill-climbing 
process, modifies the rule in order to increase the degree of support. To accom-
plish this, in each iteration a variable is selected such that when it is eliminated, 
the support of the resulting rule is increased; in this way more general rules are 
obtained. Finally, the optimized rule will substitute the original only if it over-
comes minimum confidence.  

The diagram of the post-processing phase is as shown in Fig. 4. 
 
 
 
 
START 
Best_Rule  R 
Best_support  support(R) 
Better  True 
REPEAT WHILE Better 
Better  False 
FOR (m=1 to nv) 
R’m  Best_Rule without considering variable m 
IF (support(R’m)>=support(R) AND 
 confidence(R’m)>=confidence(R)) 
Better  True 
IF (support (R’m) > Best_support) 
Best_support  support (R’m) 
Best_Rule  R’m  

END FOR 
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END WHILE  
IF (confidence(Best_Rule)>=min_conf) 
 Return Best_Rule 
ELSE  
 Return R 

END 
 

Fig. 4. The post-processing phase of the hybrid GA 

4.2 Iterative rule extraction model 

The fuzzy descriptive rule extraction model follows the Iterative Rule Learning 
(IRL) approach[9], in which each chromosome represents a rule, but the GA solu-
tion is the best individual obtained and the global solution is formed by the best 
individuals obtained when the algorithm is run multiple times. The objective of 
the model is to obtain a set of rules giving information on the majority of available 
examples for each value of the target feature. 

The data mining process is carried out by means of an iterative algorithm al-
lowing the generation of several rules (one for each GA run) whereas the gener-
ated rules reach a minimum level of confidence (previously specified) and give in-
formation on areas of search space in which examples which are not described by 
the rules generated by the previous iterations, remain. The repetition mechanism 
promotes the generating of different rules (in the sense that they give information 
on different groups of examples). This is achieved by penalizing –once a rule is 
obtained– the set of examples represented by the same one in order to generate fu-
ture rules. It is important to point out that this penalization does not prevent the 
extraction of overlapped rules because the examples covered by previously ob-
tained fuzzy rules are not eliminated and they take part in the computation of the 
confidence measure. In subgroup discovery algorithms, the possibility of extract-
ing information on described examples is not eliminated since redundant descrip-
tions of subgroups can show the properties of groups from a different perspective.  

The confidence of the obtained rule in each iteration must be higher than a pre-
viously specified minimum value. In descriptive induction algorithms, one of the 
fundamental problems, and partially significant to the quality of the obtained re-
sults, is the specification of the minimum confidence required for the rules to be 
extracted. This value depends greatly on the problem to be solved and its solution 
is a problem which is still not completely resolved. In [38] a method based on 
fuzzy logic for the setting of the minimum confidence level is described. 
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4.3 Comparison between the proposal and other subgroup discovery 
algorithms 

To verify the applicability of the proposal, we have compared the results of the 
model (and of the model with canonical rules, a particular case of DNF rules) with 
the results of other subgroup discovery algorithms. 

For the experimental evaluation and comparison of the approach proposed, the 
datasets breast-w and diabetes, both of them containing medical data, and avail-
able in the UCI repository have been used. The diabetes dataset contains continu-
ous variables, and is used to show the results of the fuzzy rules extracted by the 
proposal in comparison with other subgroup discovery algorithms. On the other 
hand, our proposal can also manage categorical variables, and the breast-w dataset 
is used to show the behaviour of this proposal with this kind of problems.  

The experiments have been carried out in the same way as in [29] to allow the 
comparison: 10-fold cross validation for the error estimation.  

Due to the proposal is a non-deterministic approach, we have carried out 5 runs 
of each training/test set. The results are the averages of the values obtained by the 
test partitions. After obtaining the rules with algorithm SDIGA, the measures of 
Coverage (Cov), Support (Sup1), Size, Significance (Sig) and Unusualness 
(WRAcc), which are not used in other knowledge extraction processes, were calcu-
lated with the expressions indicated in Section 2 in order to make the comparison. 
The parameters used are: 
• Population size: 100 
• Maximum number of evaluations of individuals in each GA run: 10000 
• Mutation probability: 0.01 
• Number of linguistic labels for the continuous variables: 3 
• Quality measure weights for the fitness function: w1 = 0.4 and w2= 0.3 

The specification of the weights for the fitness function depends on the expert 
knowledge of the characteristics and/or complexity of the problem to be solved. In 
this chapter, we use these values considering a slight promotion of the extraction 
of general rules. 

Tables 1 and 2 show the results obtained. The tables include the results ob-
tained with the two versions of the SDIGA algorithm (SDIGA, using canonical 
rules [12], and SDIGA-DNF using DNF rules) for 4 minimum confidence values 
(named “SDIGA CfMin 0.6” for the SDIGA algorithm with a minimum confi-
dence value of 0.6, and so on), the results for the CN2 algorithm modifying the 
unusualness measure (CN2-WRAcc), and the results of the CN2-SD using differ-
ent parameters for the weights (CN2-SD (γ=x) is the CN2-SD algorithm using 
multiplicative weights with γ=x, and CN2-SD (add.) is the CN2-SD algorithm us-
ing additive weights).  

For each measure, the average value and the standard deviation (sd) are de-
tailed. “COV” is the average coverage of the set of rules as measured in (2) 
“SUP” is the overall support of a set of rules as computed in (4), “Siz” is the 
number of rules in the induced set of rules, “SIG” is the average significance of a 
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set of rules as measured in (6), and “WRACC” is the average rule unusualness as 
computed in (8).  

Table 1. Comparison of subgroup discovery algorithms for Breast-W dataset 

Algorithm COV (sd) SUP (sd) Siz (sd) SIG (sd) WRACC (sd)
CN2 WRAcc 0.150 0.04 0.900 0.02 8.8 0.95 13.300 1.69 0.063 0.04
CN2-SD (γ=0.5) 0.208 0.05 0.890 0.09 7.9 0.50 27.100 3.37 0.095 0.02
CN2-SD (γ=0.7) 0.174 0.04 0.840 0.04 8.5 1.75 2.100 0.02 0.079 0.01
CN2-SD (γ=0.9) 0.218 0.05 0.930 0.02 9.0 0.24 20.500 2.45 0.093 0.07
CN2-SD (add.) 0.260 0.04 0.860 0.05 9.2 1.24 26.600 3.43 0.111 0.04
SDIGA CfMin 0.6 0.199 0.13 0.497 0.34 5.9 3.03 6.459 2.46 0.002 0.03
SDIGA CfMin 0.7 0.213 0.13 0.481 0.32 5.7 2.80 7.627 2.84 0.010 0.03
SDIGA CfMin 0.8 0.238 0.19 0.439 0.30 4.0 2.06 5.782 3.08 0.006 0.03
SDIGA CfMin 0.9 0.211 0.20 0.423 0.33 3.0 1.08 6.470 3.80 0.022 0.03
SDIGA-DNF CfMin 0.6 0.398 0.07 0.983 0.03 5.4 0.88 16.910 3.81 0.113 0.03
SDIGA-DNF CfMin 0.7 0.414 0.07 0.981 0.02 5.2 0.74 17.399 4.05 0.116 0.03
SDIGA-DNF CfMin 0.8 0.435 0.09 0.969 0.03 4.5 1.36 18.523 5.81 0.124 0.03
SDIGA-DNF CfMin 0.9 0.478 0.07 0.923 0.07 2.4 0.81 24.434 6.63 0.156 0.03

Table 2. Comparison of subgroup discovery algorithms for Diabetes dataset 

Algorithm COV (sd) SUP (sd) Siz (sd) SIG (sd) WRACC (sd)
CN2 WRAcc 0.275 0.04 0.820 0.03 5.2 0.79 15.800 1.07 0.065 0.06
CN2-SD (γ=0.5) 0.296 0.06 0.920 0.06 6.0 0.68 14.900 1.95 0.085 0.07
CN2-SD (γ=0.7) 0.344 0.05 0.850 0.01 5.6 1.35 11.000 1.43 0.099 0.04
CN2-SD (γ=0.9) 0.299 0.05 0.950 0.01 5.4 0.30 15.200 1.85 0.086 0.07
CN2-SD (add.) 0.381 0.04 0.870 0.05 4.6 0.86 2.100 0.01 0.092 0.03
SDIGA CfMin 0.6 0.462 0.06 0.939 0.04 4.3 0.68 3.286 2.25 0.028 0.02
SDIGA CfMin 0.7 0.431 0.07 0.882 0.07 3.9 0.33 3.515 2.13 0.030 0.01
SDIGA CfMin 0.8 0.707 0.09 0.875 0.07 2.0 0.00 3.967 3.23 0.042 0.02
SDIGA CfMin 0.9 0.707 0.09 0.875 0.07 2.0 0.00 3.967 3.23 0.042 0.02
SDIGA-DNF CfMin 0.6 0.849 0.09 0.992 0.01 2.8 0.38 0.788 1.01 0.024 0.01
SDIGA-DNF CfMin 0.7 0.854 0.09 0.992 0.01 2.9 0.35 0.633 0.54 0.023 0.01
SDIGA-DNF CfMin 0.8 0.931 0.04 0.978 0.02 2.0 0.00 0.437 0.34 0.024 0.01
SDIGA-DNF CfMin 0.9 0.935 0.03 0.976 0.02 2.0 0.00 0.418 0.29 0.023 0.01

  
Both models of SDIGA (using canonical and DNF linguistic rules) perform bet-

ter than the other non fuzzy algorithms for the measures coverage (COV), support 
(SUP) and size (Siz). This means that our proposal obtains a reduced set of rules 
with a high percentage of examples covered on average, a high number of exam-
ples satisfying both the antecedent and the consequent parts of the rules (i.e., a 
higher percentage of target positive examples leaving a smaller number of exam-
ples unclassified is covered), and with a low number of rules. On the other hand, 
the results for interest measures show different behaviour in the two problems: 
significance (SIG) and unusualness (WRACC) of SDIGA are similar to the other 
algorithms for the breast-w problem, but are worse for the diabetes one.  

Analyzing the results it is observed that the use of different measures in the rule 
extraction process of CN2-SD with respect to SDIGA implies:  
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• the increase of the number of rules, 
• the decrease of coverage and support,  but 
• the increase of the interest measurement values 

The inclusion of these measures (or adaptation of them to the fuzzy rules) can be 
considered in the improvement of SDIGA by means of a multiobjective version of 
it.  

The comparison between the results of the two models of linguistic rules ex-
tracted by SDIGA shows that the model which uses DNF linguistic rules obtains 
better results than the model which uses canonical linguistic rules. As main con-
clusions of this short comparison study we can conclude that SDIGA allows us to 
obtain subgroup discovering linguistic rules: 

• with very high values of the measures of coverage and support, and so the lin-
guistic rules can be considered very general and significantly representing the 
knowledge of the examples of the different values of the target variable; 

• highly compact, because both the sizes of the set of rules and also the number 
of variables involved are small; 

• highly descriptive, due to the use of DNF linguistic rules, allowing a represen-
tation of the knowledge near to human reasoning, and making the extracted 
knowledge very actionable, a main objective in any subgroup discovery algo-
rithm; 

• with a variable interest measure behaviour. 

The use of DNF linguistic rules allows us to describe the extracted knowledge in a 
more flexible way and moreover, to make changes in the initial granularity in each 
rule in a descriptive way. In this kind of fuzzy rule, as defined in (9), fuzzy logic 
contributes to the interpretability of the extracted rules due to the use of a knowl-
edge representation close to the expert, also allowing the use of continuous fea-
tures without a previous discretization. 

5. Conclusions  

This chapter gives a survey about the use of linguistic rules in the data mining task 
of subgroup discovery. The subgroup discovery task has been defined, different 
proposals have been described, and the use of linguistic rules has been analyzed. 
Then an example of model using linguistic rules for the subgroup discovery task 
and its advantages has been described.  

In summary, for the subgroup discovery task, that searches for unknown and in-
teresting knowledge which can be used for the user, the use of linguistic rules al-
lows the extraction of knowledge in a more natural way and improves it interpret-
ability: Since words play a central role in human information processing, linguistic 
rules can be used for describe knowledge about subgroups in data which can be 
actionable by the user.  
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Finally, we point out some open problems in the development of a fuzzy ap-
proach for subgroup discovery: 

• To consider the support measure based on /fuzzy set concepts. 
• The definition of quality measures for subgroup discovery adapted to the use 

with linguistic rules. 
• The use of multiobjective genetic algorithms [11] [7], analyzing the meaning of 

pareto-optimal solutions from the subgroup discovery point of view, can pro-
vide an interesting tool to get (for getting) set of rules with a trade-off among 
all the objectives used in the evolutionary model. 
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