
Consistent, Complete and Compact Generation of DNF-type Fuzzy
Rules by a Pittsburgh-style Genetic Algorithm

Jorge Casillas and Pedro Martı́nez

Abstract— When a flexible fuzzy rule structure such as
those with antecedent in conjunctive normal form is used,
the interpretability of the obtained fuzzy model is significantly
improved. However, some important problems appear related
to the interaction among this set of rules. Indeed, it is relatively
easy to get inconsistencies, lack of completeness, redundancies,
etc. Mostly these properties are ignored or mildly faced. This
paper, however, focuses on the design of a multiobjective genetic
algorithm that properly considers all these properties thus
ensuring an effective search space exploration and generation
of highly legible and accurate fuzzy models.

I. INTRODUCTION

In knowledge discovery in databases we can distinguish
between two different approaches [1]: predictive induction
and descriptive induction. The difference lies in the main
objective pursued and, therefore, the learning method used
to attain that. On the one hand, predictive induction looks
for generating legible models that describe with the highest
reliability the data set that represent the analyzed system. In
that case, the goal is to use the obtained model to simulate the
system, thus getting an explanation of its complex behavior.
On the other hand, descriptive induction looks for particular
(interesting) patterns of the data set. In that case, we do not
get a global view of the relationships among variables but
we discover a set of rules (different enough among them)
statistically significant.

This paper focus on the former approach, the predictive
induction, to deal with problems where both input and
output are real-valued and where the knowledge obtained
is important to understand better the analyzed system. To
represent the knowledge, and with the aim of generating
legible enough models (which, no doubt, is one of the
fundamental premises in any knowledge extraction process),
we propose to use fuzzy rule-based systems. These systems
use IF-THEN fuzzy rules and linguistic variables to express
the knowledge about the problem.

The automatic extraction of fuzzy rule-based systems can
be done with different learning methods, either simple greedy
algorithms [2], [3] or optimization methods such as neural
networks [4], [5] and genetic algorithms (GAs) [6]. Due to
the aim of this paper on generating knowledge with good
interpretability, we propose to use GAs because it holds a
sort of useful features for our purpose. On the one hand,
they have powerful search capacity that allows us to work
with multiobjective optimization. On the other, they can

Jorge Casillas is with the Dept. Computer Science and Artificial
Intelligence, University of Granada, E-18071 Granada, Spain (URL:
http://decsai.ugr.es/∼casillas).

manage flexible representation structures mixing codification
schemes or including restrictions. From the beginning of 90s
many researchers have draw their attention on the use of GAs
to automatically design different components of a fuzzy rule-
based system [7], [8], [9]. These learning systems are usually
known as genetic fuzzy systems.

Regardless the learning tool used, a crucial problem
emerges: to obtain both an accurate and an understandable
model. Indeed, fuzzy modeling (i.e., the process of deriving
fuzzy systems) usually comes with two contradictory require-
ments to the obtained model: the interpretability, capability
to express the behavior of the real system in a comprehensi-
ble way, and the accuracy, capability to faithfully represent
the real system. Of course, the ideal thing would be to satisfy
both criteria to a high degree but, since they are contradictory
issues, it is generally not possible. The quest of a good
trade-off between interpretability and accuracy is target of
numerous research works nowadays [10], [11].

To reach this trade-off, we propose in this paper the use
of fuzzy rules with antecedent in conjunctive normal form,
usually know as DNF-type fuzzy rules. This representation
provides a high degree of compactness and knowledge
synthesis. Since we are interested on predictive induction,
the Pittsburgh-style GA (where each individual encodes a
complete set of rules) seems to be the best approach to
properly assess the interaction among the different fuzzy
rules to perform interpolative reasoning.

However, the combination of DNF-type fuzzy rules and
Pittsburgh-style GA are far from be easy since several
difficulties arise:
• Consistency: each combination of antecedent (one la-

bel per input variable) should have only one possible
consequent.

• Completeness: every training data example should fires
at least one fuzzy rule.

• Compactness: the lowest number of rules to accurately
represent input-output relationships should be obtained.
Among other issues, it involves to avoid redundant rules.

• Non-overgeneral rules: a DNF-type fuzzy rule should
be general enough as to represent in a compact way the
input-output relationship but specific enough as to avoid
covering input areas without data.

Indeed, although it is relatively easy to comply with these
conditions when using simple (Mamdani-style) fuzzy rules,
and some authors have already faced that [12], in the case
of DNF-type fuzzy rules, it becomes more difficult. Some
authors have worked with DNF-type fuzzy rules [13], [14],
[15], [16], [17] but they have not properly dealt with that

1-4244-1210-2/07/$25.00 ©2007 IEEE.
1745

desirable properties. Some of them use penalty fitness to
correct these deficiencies, others infer a default output when
no rules are fired, other tends to generate a high number
of rules, some others do not take care to generate incon-
sistencies or redundancies... Unlike that, we propose in this
paper an algorithm that always explores feasible solutions
(according to the mentioned consistency, completeness and
non-redundancy restrictions) and that guarantees a proper
search orientation toward compactness and non overgeneral
fuzzy rules. It considers a multiobjetive optimization process
which generates a large range of solutions with different
interpretability-accuracy balances under the mentioned re-
strictions.

The paper is organized as follows. Section II briefly
presents the difficulties that appear when using DNF-type
fuzzy rules. Section III describes the proposed algorithm.
Section IV shows the obtained results and a comparison with
other learning methods. Finally, Section V concludes and
suggests some further works.

II. DNF-TYPE FUZZY RULE

To obtain a high degree of interpretability, we opted by
a compact description based on DNF-type fuzzy rules. This
kind of fuzzy rule structure has the following form:

IF X1 is Ã1 and . . . and Xn is Ãn THEN Y is B

where each input variable Xi takes as a value a set of
linguistic terms Ãi = {Ai1 ∨ · · · ∨ Aili}, whose members
are joined by a disjunctive (T -conorm) operator, whilst the
output variable remains a usual linguistic variable with a
single label associated. The structure is a natural support
to allow the absence of some input variables in each rule
(simply making Ãi to be the whole set of linguistic terms
available).

However, when a whole set of such a kind of rules is
learnt, collisions appear easily. Basically, these collisions are
of two types.

The first kind of collision is the inconsistency. Two rules
are inconsistent between them when their antecedents overlap
themselves, i.e., their antecedents are the same, they coincide
in some labels for each input variable, or one is subsummed
by the other (i.e., an antecedent is completely contained
in a larger and more comprehensive antecedent) but the
consequent is different. For instance, the two following rules
are inconsistent:

IF X1 is A1 and X2 is A2 THEN Y is C
IF X1 is A1 and X2 is A2 THEN Y is D

and the same in this second case where the antecedents are
partially overlapped:

IF X1 is {A1 or B1} and X2 is A2 THEN Y is C
IF X1 is A1 and X2 is {A2 or B2} THEN Y is D

or in this third case where the former rule subsumes the
latter:

IF X1 is A1 and X2 is {A2 or B2} THEN Y is C
IF X1 is A1 and X2 is A2 THEN Y is D

All these cases of inconsistency causes a linguistic con-
tradiction that should be avoided.

A second, less serious problem is when the antecedent
is overlapped as in any of the above examples but the
consequent is the same. In that case, we have a redundancy.
For example:

IF X1 is A1 and X2 is {A2 or B2} THEN Y is C
IF X1 is A1 and X2 is A2 THEN Y is C

Redundancy increases the fuzzy rule set size unnecessarily
and can even provokes some undesirable interaction effects
with some inference engines. When both rules have the same
antecedent or one subsumes the other, the fuzzy rule set can
be easily fixed by removing the repeated or the most specific
rules.

The learning algorithm we propose in this paper has been
designed to avoid generating solutions with inconsistencies
or redundancies.

III. PITTS-DNF ALGORITHM

The proposed algorithm, called Pitts-DNF, has the follow-
ing scheme:

Initialization(P)
CH = Covering_Hypermatrix(dataset)
Evaluation(P,dataset)
While (not stop condition)

P1 = Multiobjective_Selection(P)
P2 = Crossover(P1)
P3 = Antecedent_Mutation(P2,CH)
P4 = Consequent_Mutation(P3)
P5 = Completeness_Operator(P4,dataset)
Evaluation(P5,dataset)
P = Multiobjective_Replacement(P5,P)

End-while

A. Coding scheme

Each individual of the population represents a set of fuzzy
rules (i.e., Pittsburgh style). Each chromosome consists of the
concatenation of a number of rules. The number of rules is
not fixed a priori so, the chromosome size is variable-length.
Each rule (part of the chromosome) is encoded by a binary
string for the antecedent part and an integer coding scheme
for the consequent part. The antecedent part has a size equal
to the sum of the number of linguistic terms used in each
input variable. The allele ‘1’ means that the corresponding
linguistic term is used in the corresponding variable. The
consequent part has a size equal to the number of output
variables. In that part, each gene contains the index of the
linguistic term used for the corresponding output variable.

For example, assuming we have three linguistic terms (S
[small], M [medium], and L [large]) for each input/output
variable, the fuzzy rule [IF X1 is S and X2 is {M or L}
THEN Y is M] is encoded as [100|011||2]. A chromosome
will be the concatenation of a number of these fuzzy rules,
e.g., [100|011||2 010|111||1 001|101||3] for a set of three
rules.

1746

It is allowed a variable with all the labels set to ‘1’ (which
means the variable is not considered it the corresponding
rule), but it is forbidden a variable with all the labels set to
‘0’. It is so because, although one could think on assigning
this latter combination to the fact of not using the variable
(as in the case of all the labels set to ‘1’), then we would
have solutions genotypically closer but phenotypically far,
which is not recommended.

B. Initialization

Since we are looking for optimal completeness, we need
starting with rules which cover all the examples. Because
of that, we use the well-know Wang-Mendel algorithm [2]
to generate the antecedent structure. Specifically, every chro-
mosome is generated with the minimum number of rules that
cover the examples according to this algorithm and with a
random consequent for every rule (except one chromosome
that use the consequents provided by Wang-Mendel). In
this way, all chromosomes start with the same number of
rules, being so specific as it is possible (i.e., with Mamdani
structure instead the DNF one).

C. Covering Hypermatrix Computation

The objective of this step is to generate a data structure
which will be used when generating new rules to avoid
over-generality. This structure, that we have called covering
hypermatrix, stores the label combinations of the antecedent
that cover everyone of the examples in the data set. Notice
that the hypermatrix represents the highest allowed input
covering, but it does not show whether a lower number of
rules would completely cover the training data set or not, so
it can not be used to ensure completeness.

The structure of this hypermatrix is an array which dimen-
sion is equal to the number of input variables, containing ‘1’
in a cell if the corresponding input combination cover at
least an (n-dimensional) example and containing ‘0’ in other
case. With this structure it is possible to design an efficient
mutation operator to avoid over-general rules.

The implementation of this structure must be specially
efficient, because of its high requirements of access time
to the information. In this work we decided implement the
hypermatrix using a hash table, which keys are built with
the label concatenation of the contained rules. In order to
optimize the table in space and information retrieve time,
the combinations ‘0’ are not stored. We consider that if a
particular key does not exist then its value is ‘0’.

D. Crossover Operator

The crossover operator only interchanges rules between
the two parents, but it does not modify them. Furthermore,
it guarantees the children does not present neither inconsis-
tencies nor redundancies. The pseudo-code can be seen in
Figure 1.

E. Antecedent Mutation Operator

This operator together with the consequent mutation are
the ones that create new rules. As its name suggests, it acts

Function: Crossover Operator.
Input: Two individuals (parents).
Output: Two new individuals (children).
Preconditions: The received individuals have not internal
inconsistencies.
Postconditions: The generated individuals have not neither
inconsistencies nor redundancies by submission, but it is
possible redundancies by partial overlapping. Lack of com-
pleteness can also appear.

1) Put all the rules of the parents into a set, S.
2) Analyze those inconsistent rules among them (which

always will come from two parents, due to the precon-
ditions). These rules do not have to be inconsistent in
pairs. For instance, a rule of the first parent can be
inconsistent with two rules of the second one.

3) Divide every group of inconsistent rules into two
subsets depending on the parent of which come from
and take these rules out S. Assign each subset to a
different children at random.

4) Take a random number r ∼ U [1, |S|], which will give
the number of rules that will be assigned to the first
child, being the rest (|S| − r) the number of rules
assigned to the second child.

5) Choose at random r rules from S and assign them to
the first child.

6) Assign the rest to the second child.
7) This process can generate redundancies in the chil-

dren. To avoid it, for every child, check if the an-
tecedent of every rule is subsummed by another one
and, if so, delete the more specific rules.

Fig. 1. Crossover operator

on antecedent variables. When a gene in the antecedent part
of a fuzzy rule is chosen to be mutated, the operator analyzes
among the available movements (it will be explained below)
those that ensures to keep consistency and non-overgenerality
(this later case is quickly checked with the covering hy-
permatrix). The consistency is checked by analyzing the
collision of the candidate mutate rule with the rest of them.
An option among the available ones is randomly chosen.
Therefore, the antecedent mutation operator only explores
feasible solutions, thus constraining the search space and
ensuring a better exploration.

Figure 2 shows the pseudo-code of the operator. The three
different actions are explained in the following.

1) Contraction operation: It converts the mutated rule
into a more specific one by choosing a gene of the selected
variable with a ‘1’ and flipping to ‘0’. Clearly, the contraction
operator can only be applied when there are, at least, two ‘1’,
because in other case all the genes of this variable will be
‘0’ and, as mentioned in Sect. III-A, it is not allowed.

This operator will never cause inconsistency, redundancy
or over-generality since it generates a more specific rule,
thus avoiding to go into conflict with other rules. The only
undesired property it could cause is lack of completeness,
but it will be solved by the completeness operator later.

2) Expansion operation: This operator carries out the
opposite process to contraction operator, making the rule to

1747

Function: Antecedent Mutation Operator.
Input: One individual and the covering hypermatrix.
Output: The input individual mutated in its antecedent.
Preconditions: The received individual has not internal in-
consistencies.
Postconditions: The generated individual has not neither
inconsistencies nor subsumed rules, but it is possible redun-
dancies by partial overlapping. Lack of completeness can also
appear.

1) Randomly choose an specific input variable to be
mutated.

2) Choose at random among some of the following op-
erations: contraction, expansion or shift. Sometimes,
it will not be possible to apply some of these opera-
tions. The selection of one of these mechanisms is
made randomly among the available choices. Notice
that there will be always possible to apply at least one
movement.

Fig. 2. Antecedent Mutation Operator

be more general. It chooses a gene with allele ‘0’ and flip
it to ‘1’. In this case, the restriction is that the expansion
operation can only be applied when there is, at least, a ‘0’
in the genes of the variable.

Unfortunately, this operator can cause collision problems
with other rules or generate over-general rules. Therefore,
firstly the set of expansion movements that can be applied
to the selected variable without causing inconsistencies or
over-generality (this latter case is checked using the covering
hypermatrix) are generated, and then one of them is randomly
chosen. If after performing expansion the mutated rule sub-
sumes other rules, the more specific ones are removed. With
this operation it is not possible to get lack of completeness.

3) Shift operation: In this case, the rule does not turn into
more general or more specific rule but rather it is moved to
a neighboring input subspace. The operation mode of this
operator is simple: flip to ‘0’ a gene of the variable and flip
to ‘1’ the gene immediately before or after it. If the gene is
the first or last label of the variable, only one movement is
allowed.

As in the expansion operation, it is possible to get collision
problems. The same procedure will be followed to avoid it.
Therefore, firstly it is analyzed the valid movements that do
not cause inconsistencies or over-generality (checked with
the hypermatrix) and one of them are chosen at random. If
redundancy appears, the subsumed rules are removed. As in
the contraction case, lack of completeness can appear; again
it will be solved by the completeness operator.

F. Consequent Mutation Operator

This operator creates new rules by changing the conse-
quent. It simply consists on randomly selecting an output
variable of a rule that is not partially overlapped with other
rules (it would be the only problematic case since the
consequent mutation operator receives consistent and non-
subsumed rules). Then, the consequent is randomly changed

Function: Completeness Operator.
Input: One individual and the training data set.
Output: The input individual with some fuzzy rules added,
if needed.
Preconditions: None.
Postconditions: The generated individual covers the whole
data set, i.e., at least a fuzzy rule matches each example.

1) From the data set, extract such examples that are not
covered by any fuzzy rule encoded in the analyzed
individual.

2) Apply Wang-Mendel Algorithm over this example
subset to generate the minimum number of Mamdani-
type fuzzy rules that represent them.

3) Add these fuzzy rules to the rule base encoded in
the individual. Since these rules come from data
that were not covered by any previous rule, neither
consistency nor redundancy problems arise.

Fig. 3. Completeness Operator

to the immediately higher or lower linguistic term. The oper-
ation does not cause over-generality or lack of completeness.

G. Completeness Operator

The crossover operator and the antecedent mutation by
contraction or shift can produce fuzzy rule bases that do
not cover some specific data set examples. It is fixed with
this operator by adding rules to patch the uncovered input
subspaces. In can be considered a reparation operator with a
low incidence since it does not change the generated rules,
it only add new ones. Figure 3 shows its operation mode.

H. Inference Mechanism

When using DNF-type fuzzy rules, special care must be
taken on the inference engine. Indeed, for a proper behavior
of the algorithm, it is mandatory to ensure that given two
linguistically equivalent rule bases, they are also numerically
equivalent. In order to do so, we consider FATI (first aggre-
gate, then inference) approach, the Max-Min scheme (i.e., T-
conorm of maximum as aggregation and T-norm of minimum
as implication operator), and the T-conorm of maximum as
disjunction. Apart from that, T-norm of minimum as conjunc-
tion and center-of-gravity as defuzzification are used. These
two latter operators could be changed without incurring in a
linguistic-numeric discrepancy.

I. Selection and Objective Functions

A generational approach with the multiobjective NSGA-II
replacement strategy [18] is considered. Binary tournament
selection based on the crowding distance in the objective
function space is used.

We consider two objective functions to assess the quality
of the generated fuzzy systems, the former (approximation
error) to improve the accuracy and the latter (complexity) to
improve the interpretability.

1748

• Aproximation error: The mean square error (MSE) is
used. It is computed as follows:

F1(S) =
1
N

N∑

i=1

(S(xi)− yi)2, (1)

with S being the fuzzy system to be evaluated, N the
data set size and (xi, yi) the ith input-output pair of the
data set. The objective is to minimize this function.

• Complexity: As complexity measure, we simply use the
number of DNF-type fuzzy rules:

F2(S) = |S|. (2)

The objective is to minimize this function.
Since the algorithm is designed to ensure optimal
covering, i.e., without lack of completeness or over-
generalization, we do not care on the linguistic complex-
ity (i.e., generalization) of each fuzzy rule. In a natural
way, the most general (i.e., with more labels considered
in each rule) the fuzzy rules, the fewer the number of
rules. It is an advantage of our approach that simplify
the design of this second objective function.

IV. EXPERIMENTAL RESULTS

This section includes the obtained results of the proposed
algorithm in two real-world modeling problems with both
input and output taking real values:
• The former problem (ELE1) relates to estimation of

the low voltage electrical line length in rural towns.
It consists of 2 input and one output variables, with
a total of 495 examples. Seven uniformly distributed
triangular membership functions are used for each input
and output variable.

• The latter problem (ELE2) concerns the estimation of
electrical network maintenance costs. It consists of 4
input and one output variables and a total of 1056 exam-
ples. Five uniformly distributed triangular membership
functions are used for each input and output variable.

The experiments shown in this paper have been performed
with a 5-fold cross validation. Thus, the data set is divided
into five subsets of (approximately) equal size. The algorithm
is then applied five times to each problem, each time leaving
out one of the subsets from training, but using only the
omitted subset to compute the test error. The training and test
data partitions used in these two problems are freely available
at http://decsai.ugr.es/˜casillas/FMLib/.

We have considered several learning methods for compar-
ision:
• Wang and Mendel [2]: It is a simple algorithm that, in

spite of do not obtaining accurate results, is a traditional
reference in the research community.

• Thrift [7]: It is a classic Pittsburgh-style GA-based fuzzy
rule learning method.

• COR-BWAS [19]: It is an ant colony optimization based
learning algorithm with a great performance between
interpretability and accuracy. We have avoided fuzzy
rule selection since the algorithm does not guarantee

total completeness and the results could not be directly
compared with our proposal.

• Pittsburgh [20]: It is a Pittsburgh-style GA that also
learns DNF-type fuzzy rules. A generational approach
and direct replacement are performed, with elitism of
the best solution. The fitness is the MSE (eq. 1). The
pool is randomly initialized and binary tournament se-
lection is done. The same length-variable coding scheme
used in this paper is considered.

Our algorithm has been run with the following parameter
values: 300 iterations, 60 population size, 0.7 as crossover
probability, and 0.2 as antecedent and consequent mutation
probability per chromosome.

Table I and II collects the obtained results, where #R
stands for the number of fuzzy rules and MSEtra and
MSEtst the approximation error (eq. 1) values over the
training and test data set, respectively, rounded to the closer
integer value. In our multiobjective algorithm, these values
corresponds to the most accurate solution of the final Pareto-
optimal set. x̄ represents the arithmetic mean of each value
over the five partitions and σ the corresponding standard
deviation. The best mean results for each problem are shown
in boldface.

TABLE I
RESULTS OBTAINED IN ELE1 PROBLEM

#R MSEtra MSEtst

Method x̄ σ x̄ σ x̄ σ
Wang-Mendel 22.0 1.4 423 466 8 069 455 262 19 943

Thrift 48.3 0.8 333 062 2 804 419 408 34 806
COR-BWAS 22.0 1.4 354 304 7 065 417 142 9 823

Pittsburgh 15.4 3.4 374 595 22 114 460 404 67 597
Pitts-DNF 13.8 1.8 336 625 2 270 414 026 40 448

TABLE II
RESULTS OBTAINED IN ELE2 PROBLEM

#R MSEtra MSEtst

Method x̄ σ x̄ σ x̄ σ
Wang-Mendel 65.0 0.0 112 270 1 498 112 718 4 685

Thrift 565.3 1.8 62 456 1 108 75 158 7 279
COR-BWAS 65.0 0.0 102 664 1 080 102 740 4 321

Pittsburgh 270.0 29.9 174 399 22 237 238 413 47 063
Pitts-DNF 52.6 3.1 62 156 3 875 69 268 9 429

From the obtained results we can observe that the proposed
method obtain fuzzy models with a good degree of accuracy
and interpretability. It obtains, moreover, the most accurate
results with the exception of the training error in the ELE1
problem, where it is only 1% worst than Thrift. Nevertheless,
a significantly lower number of rules (71%) are generated in
our method. In the ELE2 problem, our method obtains 90%
of less rules than the second most accurate solution.

Compared with the other Pittsburgh approach with DNF-
type fuzzy rules, the results obtained in ELE2 shows how
the constraints of the search space imposed by Pitts-DNF
dramatically improve the search process, being significantly
more accurate and interpretable than the other algorithm.

1749

This leads us to think the algorithm properly deals the curse
of dimensionality.

Furthermore, Figures 4 and 5 show the joint Pareto front
obtained by the proposed Pitts-DNF algorithm in both prob-
lems. As it can be appreciated, the algorithm generates a large
range of solutions with different interpretability-accuracy
balances.

 0

 2e+006

 4e+006

 6e+006

 8e+006

 1e+007

 1.2e+007

 1.4e+007

 1.6e+007

 1.8e+007

 0 2 4 6 8 10 12 14 16 18

F
1
 (

E
rr

o
r)

F2 (Complexity - #R DNF)

Fig. 4. Pareto front obtained in the ELE1 problem

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 0 5 10 15 20 25 30 35 40 45 50

F
1
 (

E
rr

o
r)

F2 (Complexity - #R DNF)

Fig. 5. Pareto front obtained in the ELE2 problem

V. CONCLUSIONS

The paper has proposed a genetic fuzzy system for pre-
dictive induction in modeling that reaches a high degree of
interpretability and accuracy. To do that, the membership
functions are keep invariable (thus avoiding losing inter-
pretability). The use of fuzzy rules with conjunctive normal
form as antecedent is proposed for a compact knowledge
representation capability. This kind of fuzzy rules presents
a several problems, such as lack of completeness, inconsis-
tency, redundancy, or over-generality, when the whole rule
set is learn at the same time. In this paper, specific genetic
operators are proposed to deal with that and its behavior

is tested on two real-world modeling problems. As further
work, we intend to adapt the algorithm to classification
problems (where the output is a class instead a real value)
and perform a deeper analysis of its performance.

ACKNOWLEDGMENT

This work was supported in part by the Spanish Ministry
of Education and Science under grant no. TIN2005-08386-
C05-01.

REFERENCES

[1] N. Lavrac, B. Cestnik, D. Gamberger, and P. Flach, “Decision
support through subgroup discovery: three case studies and the lessons
learned,” Machine Learning, vol. 57, no. 1-2, pp. 115–143, 2004.

[2] L.-X. Wang and J.M. Mendel, “Generating fuzzy rules by learning
from examples,” IEEE Trans. Systems, Man, and Cybernetics, vol.
22, no. 6, pp. 1414–1427, 1992.

[3] K. Nozaki, H. Ishibuchi, and H. Tanaka, “A simple but powerful
heuristic method for generating fuzzy rules from numerical data,”
Fuzzy Sets and Systems, vol. 86, no. 3, pp. 251–270, 1997.

[4] D. Nauck, F. Klawonn, and R. Kruse, Foundations of neuro-fuzzy
systems, John Wiley & Sons, New York, NY, USA, 1997.

[5] R. Fullér, Introduction to neuro-fuzzy systems, Physica-Verlag,
Heidelberg, Germany, 2000.

[6] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic fuzzy
systems: evolutionary tuning and learning of fuzzy knowledge bases,
World Scientific, Singapore, 2001.

[7] P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” in Proc.
4th Int. Conf. on Genetic Algorithms, R.K. Belew and L.B. Booker,
Eds., San Mateo, CA, USA, 1991, pp. 509–513, Morgan Kaufmann
Publishers.

[8] C.L. Karr, “Genetic algorithms for fuzzy controllers,” AI Expert, vol.
6, no. 2, pp. 26–33, 1991.

[9] M. Valenzuela-Rendón, “The fuzzy classifier system: a classifier
system for continuously varying variables,” in Proc. 4th Int. Conf.
on Genetic Algorithms, San Mateo, CA, USA, 1991, pp. 346–353,
Morgan Kaufmann Publishers.

[10] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, Eds., Inter-
pretability issues in fuzzy modeling, Springer, Heidelberg, Germany,
2003.

[11] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena, Eds., Accuracy
improvements in linguistic fuzzy modeling, Springer, Heidelberg,
Germany, 2003.

[12] Y. Jin, W. von Seelen, and B. Sendhoff, “On generating FC3 fuzzy rule
systems from data using evolution strategies,” IEEE Trans. Systems,
Man, and Cybernetics—Part B: Cybernetics, vol. 29, no. 4, pp. 829–
845, 1999.

[13] J.L. Castro, J.J. Castro-Schez, and J.M. Zurita, “Learning maximal
structure rules in fuzzy logic for knowledge acquisition in expert
systems,” Fuzzy Sets and Systems, vol. 101, no. 3, pp. 331–342, 1999.

[14] A. González and R. Pérez, “Completeness and consistency conditions
for learning fuzzy rules,” Fuzzy Sets and Systems, vol. 96, no. 1, pp.
37–51, 1998.

[15] A. González and R. Pérez, “SLAVE: a genetic learning system based
on an iterative approach,” IEEE Trans. Fuzzy Systems, vol. 7, no. 2,
pp. 176–191, 1999.

[16] L. Magdalena, “Adapting the gain of an FLC with genetic algorithms,”
Int. J. Approximate Reasoning, vol. 17, no. 4, pp. 327–349, 1997.

[17] N. Xiong and L. Litz, “Fuzzy modeling based on premise optimiza-
tion,” in Proc. 9th IEEE Int. Conf. on Fuzzy Systems, San Antonio,
TX, USA, 2000, pp. 859–864.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarevian, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[19] J. Casillas, O. Cordón, I. Fernández de Viana, and F. Herrera, “Learn-
ing cooperative linguistic fuzzy rules using the best-worst ant system
algorithm,” Int. J. Intelligent Systems, vol. 20, pp. 433–452, 2005.

[20] J. Casillas, O. Delgado, and F.J. Martı́nez-López, “Predictive knowl-
edge discovery by multiobjective genetic fuzzy systems for estimating
consumer behavior models,” in Proc. 4th Int. Conf. in Fuzzy Logic
and Technology, Barcelona, Spain, 2005, pp. 272–278.

1750

