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Abstract. Biomedical research has been revolutionized by high-throughput
techniques and the enormous amount of biological data they are able to
generate. The interest shown over network models and systems biology is
rapidly raising. Genetic networks arise as an essential task to mine these data
since they explain the function of genes in terms of how they influence other
genes. Many modeling approaches have been proposed for building genetic
networks up. However, it is not clear what the advantages and disadvantages of
each model are. There are several ways to discriminate network building
models, being one of the most important whether the data being mined presents
a static or dynamic fashion. In this work we compare static and dynamic models
over a problem related to the inflammation and the host response to injury. We
show how both models provide complementary information and cross-validate
the obtained results.

1 Introduction

Advances in molecular biology and computational techniques permit the systematical
study of molecular processes that underlie biological systems (Durbin et al., 1998).
One of the challenges of this post-genomic era is to know when, how and for how
long a gene is turned on/off. Microarray technology has revolutionized modern
biomedical research in this sense by its capacity to monitor the behavior of thousands
of genes simultaneously (Brown et al., 1999; Tamames et al., 2002). The
reconstruction of genetic networks is becoming an essential task to understand data
generated by microarray techniques (Gregory, 2005). The enormous amount of
information generated by this high-throughput technique is raising the interest in
network models to represent and understand biological systems.

Systems biology research arises at this point as the field to explore the life
regulation processes in a cohesive way making use of the new technologies. Proteins
have a main role in the regulation of genes (Rice and Stolovitzky, 2004), but
unfortunately, for the vast majority or biological datasets available, there is no
information about the level of protein activity. Therefore, we use the expression level
of the genes as an indicator of the activity of proteins they generate.

Gene networks represent these gene interactions. A gene network can be described
as a set of nodes which usually represent genes, proteins or other biochemical entities.
Node interaction is represented with edges corresponding to biologic relations.
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There is a wide range of models available to build genetic networks up. One of the
differences between such models is whether they represent static or dynamic
relations. Static modeling explains causal interactions by searching for mutual
dependencies between the gene expression profiles of different genes (van Someren et
al., 2002). Clustering techniques are widely applied for static genetic network, since
they group genes that exhibit similar expression levels.

In dynamic modeling, the expression of a node A in the network at time ¢,; can be
given as the result of the expression of the nodes in the network with edges related to
A at time ¢ (van Someren et al., 2002). The understanding of the relations helps to
describe all the relations occurring in a given organism we would be able to know the
behavior of such organism throughout time.

The question arises as which network model is the most appropriate given a set of
data. In the present work we have applied both static (K-means clustering method,
(Duda and Hart, 1973) ) and dynamic network models (a Boolean method, described
in (D’onia et al., 2003) and implemented in (Velarde, 2006) and a graphic Gaussian
method (GGM) (Schifer and Strimmer, 2005)) to a set of data derived from an
experiment on inflammation and the host response to injury (Calvano et al., 2005).
The results show how dynamic models are capable to recover temporal dependencies
that static models are not able to find. Temporal studies are becoming widely used in
biomedical research. In fact, over 30% of published expression data sets are time
series (Simon et al., 2005).

2 Problem Description

In this work we compare the behavior of static vs. dynamic modeling in a problem
derived from the inflammation and the host response to injury. On the one hand, static
modeling searches for relations between the expression levels of genes throughout
time. The relation found by static methods might not only be similar behavior
throughout time (direct correlation), but an inverse correlation (two genes having
exactly opposite profiles over time), a proximity on the expression values (distance
measures such as Euclidean Distance or City block distance) (see Fig. 1). On the other
hand, dynamic modeling retrieves temporal dependencies among genes, i.e., it detects
dependencies of a gene at time 7, ; related to some other(s) gene at time ¢ (see Fig. 1).
To compare the performance of these two models, we have applied them to a data
set derived from an experiment over inflammation and the host response to injury as
part of a Large-scale Collaborative Research Project sponsored by the National
Institute of General Medical Sciences (www.gluegrant.org) (Calvano et al., 2005).
Human volunteers have been treated with intravenous endotoxin and compared to
placebo, obtaining longitudinal blood expression profiles. Analysis of the set of gene
expression profiles obtained from this experiment is complex, given the number of
samples taken and variance due to treatment, time, and subject phenotype. The data
were acquired from blood samples collected from eight human volunteers, four
treated with intravenous endotoxin (i.e., patients 1 to 4) and four with placebo (i.e.,
patients 5 to 8). Complementary RNA was generated from circulating leukocytes at 0,
2,4, 6,9 and 24 hours after the and hybridized with GeneChips® HG-U133A v2.0
from Affymetrix Inc., which contains 22216 probe sets, analyzing the expression
level of 18400 transcripts and variants, including 14500 well-characterized genes.
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Fig. 1. The static modeling captures the relation (inverse correlation) between A; and A,
(profile A) and between B and B, (profile B). However, it does not capture the relation between
A and B describing profile A at time 7, ;. This relation is only captured by the dynamic model.

3 Genetic Network Construction

We have applied both static and dynamic models to the set of data just described. As
said in Section 1, clustering techniques are widely applied for static genetic network, so
we have used a classic clustering algorithm based on Euclidean distance, the K-means
(Duda and Hart, 1973) which is a very popular clustering algorithm widely used with
data from microarray experiments (Guiller et al., 2006). Two dynamic methods have
been applied as well: a Boolean method, described in (D’onia ef al., 2003) and
implemented in (Velarde, 2006) and a graphic Gaussian method (GGM) (Schéfer and
Strimmer, 2005). These two methods have been chosen as representation of discrete and
continuous models respectively, the two big families in which dynamic models can be
divided (van Someren et al., 2002). We now describe each of these methods.

Classification of gene expression patterns to explore shared functions and
regulation can be accomplished using clustering methods (D’haeseleer et al., 2000).
We have applied a classic clustering algorithm based on Euclidean distance, the K-
means algorithm (Duda and Hart, 1973). The number of resulting clusters k is
estimated by application of the Davies-Bouldin validity index (Davies and Bouldin,
1979). The groupings obtained using this method, i.e., gene expression profiles, are
expected to be functionally cohesive since genes sharing the same expression profiles
are likely to be involved in the same regulatory process (D’haeseleer et al., 2000).
This can be proved applying the EMO-CC algorithm (Romero-Ziliz et al., 2006),
which validates the gene groupings obtained using external information from the
Gene Ontology database, which provides a controlled vocabulary to describe gene
and gene product attributes in any organism (Ashburner et al., 2000).

3.1 Dynamic Discrete Modeling : Boolean Networks

A Boolean network is composed by a set of nodes n which represent genes, proteins or
other biochemical entities. These nodes can take on/off values. The net is determined
by a set of at maximum n Boolean functions, each of them having the state of k
specific nodes as input, where k depends on each node. Therefore, each node has its
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own Boolean function which determines the next state based on the actual state of the
input nodes. The changes in the net are assumed to occur at discrete time intervals.

The algorithm applied to build the Boolean network with our data is the
GeneYapay (D’Onia et al., 2003). It performs an exhaustive search of Boolean
functions over the data, where a number of nodes, less or equal then k, univocally
determines the output of some other gene. All possible subsets of 1, 2, ..., k elements
are visited calculating the number of inconsistencies of the Boolean functions in
relation to the output value of each gene. The algorithm stops the search for each node
when a subset of nodes is found which defines the expression profile. The
implementation applied (Velarde, 2006) only uses the NAND function since all other
Boolean function -AND, OR, NOT- can be expressed using NAND (see Table 1).

Table 1. Boolean functions obtained only using the NAND function

NOT A=A NAND A
A AND B = (A NAND B) NAND (A NAND B)
A OR B = (A NAND A) NAND (B NAND B)

3.2 Dynamic Continuous Modeling : Graphic Gaussian Network

The graphical gaussian models were first proposed by Kishino and Waddell (2000)
for the association structure among genes. GGMs are similar to Bayesian networks in
that they allow to distinguish direct from indirect interactions (i.e. whether gene A
acts on gene B directly or through a third gene C). As any graphical model, they also
provide a notion of conditional independence of two genes. However, in contrast to
Bayesian networks, GGMs contain only undirected rather than directed edges. This
makes graphical Gaussian interaction modeling on the one hand conceptually simpler,
and on the other hand more widely applicable (e.g. there are no problems with
feedback loops as in Bayesian networks).

The GGM applied in this work has been developed by Schifer and Strimmer,
(2005) and is based on (1) improved (regularized) small-sample point estimates of
partial correlation, (2) an exact test of edge inclusion with adaptive estimation of the
degree of freedom and (3) a heuristic network search based on false discovery rate
multiple testing.

4 Results

High-throughput techniques provide great amounts of data that need to be processed
before being used to build genetic networks up. The first step is the identification of
genes relevant for the problem under study. We have applied the methodology
described in Rubio-Escudero ef al., (2005): a process based on the meta analysis of
microarray data. The proliferation of related microarray studies by independent groups,
and therefore, different methods, has lead to the natural step of combination of results
(Gosh et al., 2003). Thus, a battery of analysis methods has been applied (Student’s T-
Tests (Li and Wong, 2003), Permutation Tests (Tusher et al., 2001), Analysis of
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Variance (Park et al., 2003) and Repeated Measures ANOVA (Der and Everitt, 2001)).
A total of 2155 genes have been identified as relevant for the problem under study. For
this particular problem the number of genes retrieved is very high compared to other
microarray experiments, since the problem under study, inflammation and host
response to injury, is a process that affects the human system in a global manner, hence
altering the behavior of a large number of genes (Calvano ef al., 2005).

At the view of these, we decide to use the expression profiles of the genes as the
input for the genetic network building algorithms, since the number of genes involved
in the problem is unfeasible for both building and analyzing the genetic networks. The
set of profiles used is the one obtained from the static model applied, the K-means
algorithm.

4.1 Static Modeling: K-Means Clustering

We apply a clustering method, the K-means algorithm, as described in section 3.1. We
have identified 24 expression profiles (Rubio-Escudero et al., 2005) (see Fig. 2).
These profiles have been proved as functionally cohesive by application of the EMO-
CC algorithm (Romero-Ziliz et al., 2006). For instance, the majority of the genes
exhibiting profile #22 are related to the inflammatory response (GO:0006954) and are
annotated as intracellular (GO:0005622). Another sample is profile #16, with genes
sharing the apoptosis (GO:0006915) and integral to plasma membrane (GO:0005887)
annotations.

The functional identification of the 24 profiles resulting from the clustering method
represents a further analysis of the data behind the identification of the genes relevant
for the problem.

4.2 Dynamic Discrete Modeling: Boolean Network

Boolean building network algorithms use discrete data which take two possible values:
on or off, i.e., 1 or 0. Therefore, the set of 24 differential profiles obtained in the
inflammation and host response to injury problem (Calvano et al., 2005) needs to be
transformed to fit the binary scheme. First of all, each of the profiles will be scaled in
the [0, 1] interval according to the maximum value scored in the expression level of
such profile throughout the six time points stored. The individual scaling has been used
instead of a global one (scaling the 24 profiles according to the global maximum) since
the profiles fluctuate in different levels of expression. For instance, profile #1 takes
values between 1224.2 and 1724.4, while profile #24 changes between 13632 and
16436. If we scaled all values together, the variations between the expression values in
profile #1 would result to small to be traceable, although they could be significative. In
Table 2 (A) the expression levels before scaling are shown.

Once the values are scaled in the [0, 1] interval we have assign them [0-1] values.
The simplest approach is to establish a threshold value, for instance 0.5, and to set
each time point value depending whether they are over/under the threshold. The
obvious problem with this approach is the “border value”, such as 0.45 or 0.55. These
will be set 0 and 1 respectively, while they are so close to each other that they should
take the same value. Our approach consists in setting the value based on the
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Fig. 2. Set of 24 expression profiles obtained from the inflammation and host response to injury
problem

proximity to the expression level in the previous time point, which solves the
previously described problem and captures the behavior of the profile over time. The
scheme used to set the values is:

if (|t—t, |<0) thent =t

if (|t—t,|<0)thent =0
if (|t—t, |>0) then
if (|t—t,|>0)thent =1

where ¢, is the gene value to be set and ¢ is the gene value in the previous time point.
Table 2 (B) shows the obtained Boolean values for the 24 profiles in our problem.

The resulting Boolean network is shown in Fig. 3. This net is the result of an
exhaustive search of Boolean functions over the data which univocally determines the
output of the other genes. We see that some nodes represent more than one expression
profile. This is due to the processing the data has to undergo. The scaling of the data
to the [0, 1] interval, makes profiles at different levels of expression end up sharing a
common Boolean profile. A sample of this in our particular problem is the one
represented by profiles #9, #13 and #19. These three expression profiles share similar
behaviour throughout time at different levels of expression (see Fig. 4). The net shows
valuable information about relation between profiles. For instance, the relation
established between profiles #7 and #17 with profiles #3 and #14 is confirmed when
searching in the KEGG database (Kanechisa et al, 2004), a metabolic pathway
database. Genes exhibiting profiles #7 and #17 are in the same pathway and regulate
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Table 2. Continuous and Boolean values obtained for each of the 24 profiles in the data set

PROFILES CONTINUOUS VALUES (A) BOOLEAN VALUES (B)

TO | T2 | T4 | T6 | T9 T24 | TO | T2 | T4 | T6 | T9 | T24

#1 17244 1316.4 | 1224.2 [ 1236.9 1327.5 | 1666 1 0 0 0 0 1
#2 2546.2 | 734.44 | 700.28 | 737.5 | 867.44 | 2107.8 1 0 0 0 0 1
#3 1108.8 [ 1027.9 [2403.2 [ 2376 | 18433 | 1069.6 0 0 1 1 0 0
#4 1323.6 [2001.9 [ 1089.4 [ 1139.8 | 1192.7 | 2230.8 0 1 0 0 0 1
#5 1933.1 [ 1829.8 [ 1970.5 [ 1983.6 | 1966.4 | 1907.5 1 0 1 1 1 1
#6 3146 |1694.2|1669.1|1746.3 | 1889.8 | 2872.3 1 0 0 0 0 1
#7 1265.8 [3551.7 [ 3079 [2008.1| 1656.4 | 1160.3 0 1 1 0 0 0
#8 2396.3 | 2577.6 [2721.5 | 2726.6 | 2712 | 24129 0 1 1 1 1 0
#9 1614.2 | 1619 [3756.4 [3972.6 | 3116.5 | 1676.8 0 0 1 1 1 0
#10 4844.2 (12783 [ 1248.4 [ 1316.9 | 1468.1 | 4240.1 1 0 0 0 0 1
#11 2730.3|3351.4 | 1921.3 | 2114.9 | 2146.3 | 4459.3 0 1 0 0 0 1
#12 4176 [2984.1 [ 2974 [3068.7 [ 3265.5 | 4021.8 1 0 0 0 0 1
#13 3022.8 | 2898.1 | 4262.2 | 4666.1 | 4329.1 | 3150.8 0 0 1 1 1 0
#14 2117.6 | 3289.7 | 7298.8 | 5871.3 | 4036.8 | 2229.4 0 0 1 1 0 0
#15 7849.5 [ 2328 [2297.4 | 2450 | 2738.6 | 7171.7 1 0 0 0 0 1
#16 4836.6 [ 4220.5 [ 5085.4 [ 5398.3 | 5356.3 | 4829.7 1 0 1 1 1 0
#17 1950.7 [ 9001.6 | 7946 |4268.8| 2804 | 1787.1 0 1 1 0 0 0
#18 5238.2 | 5734.5 | 4445.8 | 4654.6 | 4665.7 | 7584.4 1 0 0 0 0 1
#19 4935.7 [5335.4 [9034.5 [ 9171 | 7858 | 5285.3 0 0 1 1 1 0
#20 11615 | 4161.2|3578.6 | 3760.8 | 4149.9 | 11344 1 0 0 0 0 1
#21 8358.3 | 7308.8 [ 7244.2 | 7652.2 | 8139.2 | 8913.8 1 0 0 0 0 1
#22 15442 | 7021.5|5798.9 | 5918.8 | 6632.3 | 15605 1 0 0 0 0 1
#23 10473 | 10132 | 11396 | 11871 | 11531 | 10980 0 0 1 1 1 1
#24 16095 | 13749 | 13632 | 14364 | 13741 | 16436 1 0 0 1 0 1
P#7,17 ——» P#314 ————>» oNpgzgrs —— > P#20,21,22

NOT NOT NoT
P# 4,11

P#9,13,19 \ NAND)

operators
P# 16
P#5
AR > P#8
operators
NAND P#23

—» P#24
operators

Fig. 3. Genetic network obtained using the Boolean model. The round nodes represent the gene
expression profiles (groups of genes with a common behavior) and the diamond shape nodes
represent the Boolean function based on the NAND operator. Note that some nodes represent
more than one expression profile.
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Fig. 4. Profiles at different levels of expression but sharing a common behavior throughout
time share the same Boolean profile

genes exhibiting profile #14 (See Fig. 5). That is the case of gene IL1RN (prof. #17,
Interleukin-1 receptor antagonist protein precursor), related to the immune response
(GO:0006955) and gene IL1R2 (prof. #14, Interleukin-1 receptor type II), also related
to the immune response. We can see in Fig. 5(A) more examples of gene relations
found in KEGG and present in the Boolean network obtained.

4.3 Dynamic Continuous Modeling: Graphical Gaussian Model

We have applied a Graphic Gaussian algorithm (Schéfer and Strimmer, 2005), which
takes as input continuous data that can be in longitudinal format (Opgen-Rhein and
Strimmer, 2006), very convenient for microarray time course experiments since it
deals with repeated measurements, irregular sampling, and unequal temporal spacing
of the time points. To select the edges, and thus the nodes, we have used the local
false discovery rate (fdr) (expected proportion of false positives among the proposed
edges), an empirical Bayes estimator of the false discovery rate (Efron, 2005). An
edge is considered present or significant if its local fdr is smaller than 0.2 (Efron,
2005). Three independent networks are found (see Fig. 6). Network (B) confirms the
information provided by the Boolean network about profiles #7, #14 and #17. In
network (A) there is a relation established between profiles #11, #23 and #16 that is
confirmed when searching in the KEGG database (see Fig. 5(B)). That is the case of
gene RACK (Reversion-inducing cysteine-rich protein with Kazal motifs), which
exhibits profile #11 and is related to gene MMP9 (Matrix metalloproteinase-9), which
exhibits profile #23. Both genes are related to the inflammation problem. Another
relation is found between a gene exhibiting profile #23, CEBPB (CCAAT/enhancer-
binding protein beta), related to the immune response (GO:0006955) and to the;
inflammatory response (GO:0006954) and a gene exhibiting profile #16, CASPI
(Caspase-1) related to apoptosis (GO:0006915).
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Fig. 5. Gene relations detected by the network building algorithms and confirmed in the KEGG

database. (A) has been found by both the Boolean algorithms and GGM while (B) has only
been found by GGM. The genes regulate other genes with the same color.

Fig. 6. Three independent networks found by the GGM algorithm
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5 Discussion

We have applied both static and dynamic methods for the analysis of a data set
derived from the inflammation and the host response to injury (Calvano et al., 2005).
The static method has been the K-means clustering algorithm, and the dynamic
methods have been a discrete one, Boolean model described in (D’Onia et al., 2003)
and implemented by (Velarde, 2006) , and a continuous one, Graphic Gaussian Model
developed by (Schifer and Strimmer, 2005). We have already described some of the
findings these methods have made on the dataset: the static method is capable of
grouping the genes based on their behaviour throughout time and these groupings are
cohesive in biological functionality. The dynamic models provide temporal relations
between the genes, or in this case, between the profiles they exhibit, organizing them
in regulatory networks that are validated using the KEGG database. These temporal
relations would not have been found only applying static models.

When comparing the two dynamic models, we see that they cross-validate in
general their results i.e., the profiles involved and the relations between those profiles
are concordant with one another. The Boolean algorithm and GGM show different
and complementary information about the problem under study. In a GGM network
the relation between nodes is based on the levels of correlation but the time
dependency is not so clearly pointed out as in Boolean networks. For instance, in our
GGM net we see that profiles #5, #8 and #23 are related since they are in the same
subnet, but the Boolean network specifically describes the behavior of those profiles:
#8 determines the behavior of both #5 and #23 (see Fig. 7), since the behavior shown
by profile #8 is shifted over time in profiles #5 and #23. This kind of information is
only available in network models which strongly stress the temporal dependencies, as
it is the case with Boolean networks.

However, Boolean algorithms lack the capacity to distinguish among expression
profiles with similar behaviour throughout time at different levels of expression (see
Fig. 4). For instance, the Boolean algorithm considers profiles #9, #13 and #19 as
only one node. GGM uses continuous values solving this problem and taking
advantage of the diversity or the data, but it misses some information. The network
(C) provided by GGM covers profiles #20 and #22. In the Boolean network they are
considered as one single profile along with #21, since their Boolean representation is
the same. GGM has not been able to capture the similarity between these three
profiles, only between two of them, #20 and #22. However, the Boolean model
considers them as the same node, so any temporal relation between them is
impossible to capture. In fact, when searching in KEGG (Kanehisa et al., 2004), we
see that one of the genes that exhibit profile #20 is NFKB2 (nuclear factor of kappa
light polypeptide gene enhancer in B-cells 2) and one of the genes exhibiting profile
#22 is TNIP1 (TNFAIP3-interacting protein 1). When searching for information about
these two genes, which are related in their behavior, we see they are also functionally
related since TNIP1 interacts with zinc finger protein A20/TNFAIP3 and inhibits
TNF-induced NF-kappa-B-dependent gene expression (NFKB2). This valuable
information is only prone to be found with network models such as GGM which
permit the representation of temporal dependencies among strongly correlated
profiles.
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Fig. 7. Time relations found by the Boolean algorithm. Profile #8 determines the behavior of
profiles #6 and #23.

The evaluation of static and dynamic models over the inflarmmation and host
response to injury problem allows us to conclude that static models provide very
valuable information but a step further is needed to get a deeper knowledge of the
problem under study. Dynamic models provide information of the temporal
dependencies in the data what is very valuable especially for time-course
experiments, which are becoming very popular used in biomedical research. Dynamic
discrete models miss valuable information when discretizing the data, while the
continuous models do not suffer this problem. However, dynamic continuous models
are not capable to find some of the dependencies that discrete model discover and
vice versa. Therefore, they are complementary methods and it is a recommendable
practice to apply both models to extract the maximum information possible from
experiments.
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