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Abstract— In this paper, we propose two novel indices for
type-2 fuzzy rule ranking to identify the most influential fuzzy
rules in designing type-2 fuzzy logic systems, and name them as
R-values and c-values of fuzzy rules separately. The R-values of
type-2 fuzzy rules are obtained by applying QR decomposition
in which there is no need to estimate a rank as required in the
SVD-QR with column pivoting algorithm. The c-values of type-
2 fuzzy rules are suggested to rank rules based on the effects
of rule consequents. Experimental results on a signal recovery
problem have shown that by using the proposed indices the
most influential type-2 fuzzy rules can be effectively selected to
construct parsimonious type-2 fuzzy models while the system
performances are kept at a satisfied level.

I. INTRODUCTION

Type-2 fuzzy sets initially suggested by Zadeh in 1975
[1] offer an opportunity to model higher level uncertainty in
the human decision making process than the type-1 fuzzy
sets [2][3]. As one of the major research topics in fuzzy
system community, type-2 fuzzy sets and type-2 fuzzy logic
system (T2FLS) have achieved many successful applications
in various areas where uncertainties occur such as in decision
making [4][5], diagnostic medicine [6], signal processing
[7][8], traffic forecasting [9], mobile robot control [10],
pattern recognition [11][12], intelligent control [13][14].
However, one challenge in type-1 fuzzy systems remains in
T2FLSs, that is, the curse of dimensionality: the number of
fuzzy rules required increases exponentially with the input
space dimension in grid partition. Additional challenge in
T2FLS modelling is that there is a higher computational
overhead than type-1 FLS modelling [2]. Hence, complexity
reduction techniques are urgently needed for T2FLS mod-
elling. As a matter of fact, even in type-1 fuzzy logic system
(FLS) modelling, developing parsimonious fuzzy modelling
technique with as few fuzzy rules as possible is a very impor-
tant research topic [15][16][17][20]. Interestingly, Liang and
Mendel in the first place suggested to design parsimonious
interval T2FLS (IT2FLS) by using SVD-QR decomposition
method to perform rule reduction [18]. However, one issue
arising in applying the SVD-QR with column pivoting algo-
rithm to fuzzy rule reduction is the estimation of an effective
rank.

In order to avoid the estimation of the rank for the SVD-
QR with column pivoting algorithm, this paper proposes to
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apply the pivoted QR decomposition algorithm to the type-2
fuzzy rule reduction to obtain the R-values of fuzzy rules
for rule ranking. But both the pivoted QR decomposition
algorithm and the SVD-QR with column pivoting algorithm
only employ the information from the premise parts of fuzzy
rules for rule reduction, and ignore the information from
the fuzzy rule consequent parts. In type-1 fuzzy system
modelling, some researchers have proposed fuzzy rule re-
duction methods by considering the contributions of the rule
consequent parts [19] [20]. In this paper, we suggest c-values
of fuzzy rules with the consideration of effects of type-2 rule
consequents to perform the rule reduction.

The organization of this paper is as follows. In section
2, the T2FLS is reviewed with emphasis on IT2FLS whose
fuzzy sets with the secondary membership grades are unity.
In section 3, we propose some new rule ranking indices for
T2FLS in the interests of performing rule reduction. Section
4 gives the experimental results and section 5 concludes this
paper.

II. OVERVIEW OF TYPE-2 FUZZY LOGIC SYSTEMS

Similar to the type-1 Mamdani FLS, a type-2 Mamdani
FLS consists of five components including fuzzifier, rule
base, fuzzy inference process, (type-reducer and) defuzzifier
as depicted in Figure 1. Different from the type-1 FLS, in a
T2FLS at least some of the fuzzy sets used in the antecedent
and/or consequent parts and each rule inference output are
type-2 fuzzy sets. Generally speaking, the T2FLS works as
follows, the crisp input values first feed into the system
through the fuzzifier by which the fuzzification of these
inputs is carried out in singleton or non-singleton manners.
The fuzzified type-2 fuzzy sets then activate the inference
engine and rule base to yield output type-2 fuzzy sets by
performing the union and intersection operations of type-
2 fuzzy set and compositions of type-2 relations. Then a
type reduction process is applied to these output sets in the
interests of generating a type-1 set by combining these output
sets and performing a centroid calculation. Finally, the type
reduced type-1 set is defuzzified to produce crisp outputs.

Specifically speaking, consider a type-2 Mamdani FLS
having n inputs x1 ∈ X1, · · · , xn ∈ Xn and one output
y ∈ Y , the rule base contains M type-2 fuzzy rules expressed
in the following form:

Rl : if x1 is F̃ l
1 and · · · and xn is F̃ l

n, then y is G̃l (1)

where l = 1, · · · ,M , F̃ l
i and G̃l are type-2 fuzzy sets.

These rules represents fuzzy relations between the multiple
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Fig. 1. The general structure of a type-2 Mamdani FLS

dimensional input space X
Δ= X1 × · · · ×Xn and the output

space Y . Given an input x, the singleton or non-singleton
fuzzifier [2] can be used to map x into a type-2 fuzzy set
Ãx. The inference engine combines the above rules and maps
Ãx into an output type-2 set B̃l by using the extended sup-
star composition principle [2],

μB̃l(y) = μÃx◦Rl(y) = �x∈X

[
μÃx

(x) � μRl(x, y)
]

(2)

where � and � are join and meet operators respectively, and

μRl(x, y) =
[
�n

i=1μF̃ l
i
(x)

]
�μG̃l(y) (3)

The centroid type-reducer combines all the rule output
type-2 fuzzy sets B̃l to find their union. Whereas the union
of type-2 fuzzy sets corresponds to computing the join of
their secondary membership functions

μB̃(y) = �M
l=1μB̃l(y) (4)

The centroid type-reducer carries on calculating the cen-
troid of B̃, Yc(x), which is a type-1 fuzzy set, in the
following,

Yc(x) =
∫

θ1∈Jy1

· · · ∫
θN∈JyN

fy1(θ1) ∗ · · · ∗

fyN
(θN )

/∑N

i=1
yiθi∑N

i=1
θi

(5)

where the y-domain is discretised into N points
{y1, · · · , yN}, Jyi

are the primary memberships of yi,
and fyi

(θi) = μB̃(yi, θi) representing the secondary
membership grade of yi on θi ∈ Jyi

⊆ [0, 1].
At first sight, the expressions of the above general T2FLS

are elegant and simple, however, the computing load in-
volved is huge in practice, which has become a major
factor in curtailing applications of T2FLS. For an IT2FLS
in which the fuzzy sets F̃ l

i and G̃l are the interval fuzzy
sets, the computing of T2FLS can be greatly simplified.
The membership grades of interval fuzzy sets can be fully
characterised by their lower and upper membership grades
of the footprint of uncertainty (FOU) separately [2], without

loss of generality, let μF̃ l
i
(x) =

[
μ

F̃ l
i

(x), μF̃ l
i
(x)

]
and

μG̃l(y) =
[
μ

G̃l(y), μG̃l(y)
]

for each sample (x, y). The

firing set of an IT2FLS μF̃ l(x) Δ= �n
i=1μF̃ l

i
(x) is an interval

set [2], i.e.,

μF̃ l(x) =
[
f l(x), f

l
(x)

]
(6)

where

f l(x) = μ
F̃ l

1
(x) ∗ · · · ∗ μ

F̃ l
n

(x) (7)

f
l
(x) = μF̃ l

1
(x) ∗ · · · ∗ μF̃ l

n
(x) (8)

and * is the t-norm operator like minimum or product.
In this paper, the singleton fuzzifier is used in the type-2
fuzzy inference process. The centroid of the type-2 interval
consequent set G̃i is an interval set calculated as follows,

CG̃l

Δ= [yl, yl] =
∫

θ1∈
[
μ

G̃i (y1), μG̃i (y1)
] · · ·

∫
θN∈

[
μ

G̃i (yN ), μG̃i (yN )
] 1

/∑N

i=1
yiθi∑N

i=1
θi

(9)

for the discretised y-domain {y1, · · · , yN}. The IT2FLS
output set via type-reduction, Yc(x), is also an interval set
having the following structure [2]:

Yc(x) Δ= [yl, yr] =
∫

y1∈[y1,ȳ1]

· · · ∫
yM∈[yM ,ȳM ]

∫
f1∈[f1,f

1
]

· · ·

∫
fM∈[fM ,f

M
]

1
/∑M

i=1
yifi∑M

i=1
fi

(10)
Then the defuzzified output of the IT2FLS is

y(x) =
yl + yr

2
(11)

However, special attention should be paid to the calcula-
tions of the end points of Yc(x), yl and yr. From (10), we
see that yl and yr can be expressed separately as follows

yl =

∑M
i=1 yif i

l∑M
i=1 f i

l

=
∑M

i=1
yipi

l (12)

yr =
∑M

i=1 yif i
r∑M

i=1 f i
r

=
∑M

i=1
yipi

r (13)

where f i
l = f i or f

i
contributing to yl, f i

r = f i or f
i

contributing to yr, pi
l = f i

l /
∑M

i=1 f i
l and pi

r = f i
r/

∑M
i=1 f i

r.

Hence it is needed to determine which of
{
f i

}M

i=1
and{

f
i
}M

i=1
contribute to yl and which of

{
f i

}M

i=1
and

{
f

i
}M

i=1
contribute to yr. This is can be done by a procedure devel-
oped in [2], Table 1 shows this procedure that is to calculate
the right end point yr.
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TABLE I

PROCEDURE OF CALCULATING yr [2]

Assuming
{

yi
}M

i=1
are arranged in ascending order: y1 ≤ · · · ≤

yM .

Step 1. Compute yr in (13) by initially setting f i
r =

(
f

i
+ f i

)
/2

for i = 1, · · · , M , where f
i

and f i are pre-computed in (7) and

(8) separately. Let y′
r

Δ
= yr .

Step 2. Find K (1 ≤ K ≤ M −1) such that yK
r ≤ y′

r ≤ yK+1
r .

Step 3. Compute yr in (13) with f i
r = f i for i ≤ K and f i

r = f
i

for i > K. Let y′′
r

Δ
= yr .

Step 4. If y′′
r �= y′

r , then go to Step 5. If y′′
r = y′

r , then stop, and

set yr
Δ
= y′′

r .

Step 5. Set y′
r equal to y′′

r , and go to step 2.

Then given the data set
{
x(i), y(i)

}S

i=1
for designing an

IT2FLS, we now wish to train an IT2FLS such that the
following error is minimised:

e =
1
2

S∑
t=1

(
y(x(t)) − y(t)

)2

(14)

In this paper, the membership functions of the type-2 fuzzy
sets F̃ l

i and G̃l used are the Gaussian primary functions with
uncertain means, i.e.,

μF̃ l
i
(xi) = exp

(
−1

2

(
xi − ml

i

σl
i

)2
)

ml
i ∈

[
ml

i1,m
l
i2

]
(15)

and

μG̃l(y) = exp

(
−1

2

(
y − ml

σl

)2
)

ml ∈ [
ml

1,m
l
2

]
(16)

Then the back-propagation method can be used to tune the
antecedent and consequent parameters in (15) and (16) so as
to miminise the mean-square error (14), details of how this
training method works can be found in [2].

III. NEW RULE RANKING INDICES FOR RULE

REDUCTION

A. R-values of fuzzy rules considering rule base structure

Liang and Mendel applied the SVD-QR with column
pivoting algorithm to IT2FLS for generating a compact type-
2 rule base by reducing the redundant rules [18]. But it is
required to estimate an efficient rank in the SVD-QR with
column pivoting algorithm. In order to avoid the estimation
of rank, in the following we propose to apply pivoted QR
decomposition method to the construction of parsimonious
IT2FLS. The idea behind this method is to assign a rule
significance index to each fuzzy rule, then rank and select
the influential fuzzy rules in terms of this index. Hence the

rule order is important, but in designing T2FLS, the rule
orders have been changed for calculating yl and yr.

First for yr, let the original rule order be I =
[1, 2, · · · ,M ]T . After re-ordering

{
ȳi

}M

i=1
in ascending

order, the rule order is I ′ = QI , where Q is a permu-
tation matrix, then re-number the order-changed rules I ′as
1, 2, · · · ,M , which is used in the procedure of calculating
yr in Table I.

It is noted that the number K determined in Table 1 is very
important. For i ≤ K, f i

r = f i, and for i > K, f i
r = f

i
.

Thus,

yr =

∑K
i=1 yif i +

∑M
i=K+1 yif

i

∑K
i=1 f i +

∑M
i=K+1 f

i
(17)

Then, for i ≤ K,

pi
r =

⎧⎨
⎩

f i
/(∑K

i=1 f i +
∑M

i=K+1 f
i
)

i ≤ K

f̄ i
/(∑K

i=1 f i +
∑M

i=K+1 f
i
)

i > K
(18)

So a firing strength vector given an input x is obtained by
restoring the original rule order,

p(x) = Q−1
[
p1

r, · · · , pK
r , pK+1

r , · · · , pM
r

]T
(19)

Then the S training samples
{
x(i), y(i)

}S

i=1
lead to S firing

strength vectors composing a firing strength matrix Pr,

Pr = [p1, · · · , ps]T (20)

Finally, the QR with column pivoting algorithm addressed in
Table II is applied to Pr, in which each rule is assigned a R-
value as its significance index value. Because the R-values,
i.e., the absolute values of the diagonal elements of decom-
position matrix R tend to approach to the singular values, so
they can be used as rule ranking index in designing a T2FLS
with compact rule base. In term of the R-values, assume ŝ1

most influential fuzzy rules be selected for calculating yr, let
T1 denote the selected rule set, 1 ≤ ŝ1 ≤ M .

Similar procedure is applied to the corresponding firing
strength matrix Pl for yl leading to ŝ2 rules T2, 1 ≤ ŝ2 ≤ M .

Then, the finally reduced-rule IT2FLS combines the rules
in T1 and T2 as T1 ∪ T2, which is the union of the rule sets
T1 and T2.

B. c-values of fuzzy rules considering effects of rule conse-
quents

Both the SVD-QR with column pivoting method and
pivoted QR method only take into account the rule base
structure focusing on the rule antecedent parts when applied
to rule reduction of IT2FLS. Another way of ranking type-2
fuzzy rules is based on the effects of rule consequents G̃i.

As a matter of fact, it can be seen from the procedure
of designing IT2FLS described in the above section that
for each type-2 fuzzy rule, its left and right end points of
the centroid of consequent set G̃i, yi and yi, separately
determine the depths of the effects of the rule consequent
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TABLE II

PROCEDURE OF QR WITH COLUMN PIVOTING ALGORITHM BASED

FUZZY RULE RANKING

Step 1. Calculate the QR decomposition of P and get the permu-
tation matrix Π via GΠ = QR, where Q is an unitary matrix, R
is an upper triangular matrix. The absolute values of the diagonal
elements of R, denoted as |Rii|, decrease as iincreases and are
named as R-values.

Step 2. Rank fuzzy rules in terms of the R-values and the permuta-
tion matrix Π. Each column of Π has one element taking value 1 and
all the other elements taking value 0. Each column of Π corresponds
to a fuzzy rule. The numbering of the jth most important rule in the
original rule base is the same as the numbering of the row where
the “1” element of the jth column is located. For example, if the
“1” of the 1st column is in the 4th row, then the 4th rule is the
most important one and its importance is measured as |R11|. The
rule corresponding to the first column is the most important, and in
descending order the rule corresponding to the last column is the
least important.

on the output end points yl and yr. Hence yi and yi are very
useful indices for measuring the output contributions of the
type-2 fuzzy rules. These yi and yi, the left and right end
points of the centroid of consequent, are called c-values of
type-2 fuzzy rules in this paper.

For calculating yr, the c-values yi are used as rule ranking
index to select the most influential fuzzy rules. Assume ŝ1

most influential fuzzy rules be selected for yr, let T1 denote
the selected rule set, 1 ≤ ŝ1 ≤ M .

For calculating yl, the c-values yi are used as rule ranking
index to select the most influential fuzzy rules. Assume ŝ2

most influential fuzzy rules be selected for yl, and let T2

denote the selected rule set, 1 ≤ ŝ2 ≤ M .
Then, the final reduced-rule IT2FLS combines the rules in

T1 and T2 as T1 ∪T2, which is the union of the rule sets T1

and T2.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed rule reduction
methods for constructing parsimonious IT2FLSs to recover
an original signal from data highly contaminated by noise.
In the experiments, the noisy signal is generated by

v(t) = ṽ(t) + θ̃(t) (21)

ṽ(t) = sin (40/(x(t) + 0.03)) + x(t − 1)/10 (22)

where ṽ is the original signal, θ̃ is an interference signal
generated from another Gaussian noise source ñ with zero
mean and standard deviation one via a certain unknown
nonlinear process:

θ̃(t) = 4 sin (ñ(t)) ñ(t − 1)/
(
1 + ñ(t − 1)2

)
(23)

The measured signal v is the sum of the original information
signal ṽ and the interference θ̃, however, we do not know

the interference signal θ̃. The only signals available to
us are the noise ñ and the measured signal v. Our task
is to recover the original information signal ṽ from the
measured signal v. T2FLS is suitable for signal processing
[8] due to its strong capability of characterising higher
uncertainty exhibiting within noisy data. In the following,
an initial IT2FLS model with two inputs x(t), x(t − 1)
and one output y(t) is constructed in which the antecedent
and consequent parameters in (15) and (16) are optimised
by back-propagation algorithm [2]. In order to train the
interval type-2 fuzzy model to grasp the nonlinearity and
higher uncertainty of the system, the data generation process
(21), (22) and (23) run 10 times, in each run 100 samples{

x(i), y
(i)
k

}S

i=1
(S=100, k = 1, · · · , 10) are generated with

x(i) ∈ [2, 5] and y
(i)
k obtained by (21). Then the data set{

x(i),min
k

y
(i)
k

}100

i=1

are used to generate the antecedent and

consequent means {mi1}and {m1} in (15) and (16) by
the fuzzy c-means (FCM) unsupervised clustering algorithm

[21], whist the data set

{
x(i),max

k
y
(i)
k

}100

i=1

are used to

generate the means {mi2}and {m2}. The width parameters
in (15) and (16) are determined using the nearest neighbor
heuristic suggested by Moody and Daken [22] based on the
corresponding data sets. Hence all the initial antecedent and
consequent parameters are determined from given date sets,
rather than manually set up.

Then four initial type-2 fuzzy sets are generated for each
input variable, which leads to 16 rules in the initial interval
type-2 fuzzy model. After training process, this interval type-
2 fuzzy model shows its ability of recovering the original
signal well with root-mean-square error (RMSE) 0.27395 as
shown in Figure 2.

Fig. 2. Signal recovering by IT2FLS model: solid line (SL) represents the
original signal ṽand dotted line (DL) represents the recovered signal.

Now we apply the proposed rule reduction methods to
the trained interval type-2 fuzzy model. First, the QR with
column pivoting algorithm is applied to the firing strength
matrices Pr and Pl, in which the R-values of fuzzy rules
are generated for selecting influential rules in calculating
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yr and yl separately. Figure 3 and Figure 4 depict the
corresponding R-values and singular values of fuzzy rules
based on the firing strength matrices Pr and Pl individually,
which indicates that the R-values track the singular values
well, so the R-values of Pr and Pl can be used to rank the
fuzzy rules. These R-values in the original rule order are
illustrated in Figure 5 and Figure 6, then the rule ranking
results in terms of R-values of fuzzy rules are obtained as
shown in Table III.
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Fig. 3. R-values and singular values of firing strength matrix Pr
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Fig. 4. R-values and singular values of firing strength matrix Pl

TABLE III

RULE RANKING RESULTS IN TERMS OF R-VALUES

Firing strength matrix Rule ranking order
Pr 16 11 15 1 7 10 6 12 5 9 2 14 3 13 8 4
Pl 11 16 15 1 6 10 2 12 7 5 3 14 9 8 13 4

By applying the proposed procedure as addressed in sub-
section III-A for selecting significant rules in terms of the R-
values, the rule selection results are delineated in Table IV.
The RMSE threshold is set to be 0.3, then a parsimonious
interval type-2 fuzzy model can be constructed by 12 fuzzy
rules identified in terms of the R-values of fuzzy rules.
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Fig. 5. R-values of fuzzy rules based on firing strength matrix Pr
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Fig. 6. R-values of fuzzy rules based on firing strength matrix Pl

With the consideration of the consequent effects of trained
fuzzy rules on overall system output, the c-values yi and yi

of fuzzy rules depicted in Figure 7 and Figure 8 separately
are used to identify the important fuzzy rules, which leads
to a parsimonious interval fuzzy model with 11 rules as
delineated in Table V given the model RMSE threshold 0.3.

V. CONCLUSIONS

In this paper, the named R-values and c-values of type-
2 fuzzy rules are suggested to identify the most influential
fuzzy rules and reduce the redundant ones. The R-values
of type-2 fuzzy rules obtained by QR decomposition with
column pivoting algorithm pay attention to the rule base
structure, the definition of the c-values of fuzzy rules fo-
cus on contributions of rule consequents. The experimental
results have shown that parsimonious type-2 fuzzy system
models can be effectively constructed by the fuzzy rules
selected in terms of the proposed indices.
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TABLE IV

RULE REDUCTION RESULTS BY QR WITH COLUMN PIVOTING METHOD

Rule No. Rules Selected Model RMSE
8 11 16 15 1 7 10 6 2 1.50692
9 11 16 15 1 7 10 6 2 12 1.50628
10 11 16 15 1 7 10 6 2 12 5 1. 20580
11 11 16 15 1 7 10 6 2 12 5 9 0.53817
12 11 16 15 1 7 10 6 2 12 5 9 3 0.27472
13 11 16 15 1 7 10 6 2 12 5 9 3 14 0.27398
14 11 16 15 1 7 10 6 2 12 5 9 3 14 13 0. 27398
15 11 16 15 1 7 10 6 2 12 5 9 3 14 13 8 0. 27394
16 11 16 15 1 7 10 6 2 12 5 9 3 14 13 8 4 0.27395
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Fig. 7. c-values of fuzzy rules:yi
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Fig. 8. c-values of fuzzy rules:yi

TABLE V

RULE REDUCTION RESULTS BY c-VALUES

Rule No. Rules Selected Model RMSE
9 9 16 1 7 11 12 3 10 6 1. 14829
10 9 16 1 7 11 12 3 10 6 2 1. 14404
11 9 16 1 7 11 12 3 10 6 2 15 0.28751
12 9 16 1 7 11 12 3 10 6 2 15 8 0. 28699
13 9 16 1 7 11 12 3 10 6 2 15 8 5 0. 27438
14 9 16 1 7 11 12 3 10 6 2 15 8 5 14 0. 27394
15 9 16 1 7 11 12 3 10 6 2 15 8 5 14 13 0. 27394
16 9 16 1 7 11 12 3 10 6 2 15 8 5 14 13 4 0.27395

REFERENCES

[1] L. A. Zadeh, “The concept of a linguistic variable and its application
to approximate reasoning-1,” Information Science, vol. 8, pp. 199-249,
1975.

[2] J. M. Mendel, Uncertainty Rule-based Fuzzy Logic Systems: Introduc-
tion and New Directions, Prentice Hall, Inc., 2001.

[3] J. M. Mendel, and R. I. John, “Type-2 fuzzy sets made simple,” IEEE
Trans. on Fuzzy Systems, vol.10, no.2, pp.117-127, 2002.

[4] J. L. Chaneau, M. Gunaratne, and A. G. Altschaeffl, “An application
of type-2 sets to decision making in engineering,” in J. C. Bezdek,
Ed., Analysis of Fuzzy Information-Vol. II: Artificial Intelligence and
Decision Systems, Boca Raton, FL: CRC, 1987.

[5] R. R. Yager, “Fuzzy subsets of type II in decisions,” Journal of
Cybernetics, vol.10, pp. 137-159, 1980.

[6] R. I. John, and P. R. Innocent, “Modeling uncertainty in clinical diagno-
sis using fuzzy logic,” IEEE Trans. on Systems, Man and Cybernetics-
part B, vol.35, no.6, pp.1340-1350, 2005.

[7] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic
systems,” IEEE Trans. on Fuzzy Systems, vol.7, no.6, pp.643-658, 1999.

[8] J. M. Mendel, “Uncertainty, fuzzy logic, and signal processing,” Signal
Processing, vol.80, no.6, pp. 913-933, 2000.

[9] L. Li, W.-H. Lin and H. Liu, “Type-2 fuzzy logic approach for short-
term traffic forecasting,” IEE Proc. Intelligent Transportation System,
vol.153, no.1, pp.33-40, 2006.

[10] H. A. Hagras, “A hierarchical type-2 fuzzy logic control architecture
for autonomous mobile robots,” IEEE Trans. on Fuzzy Systems, vol.12,
no.4, pp.524-539, 2004.

[11] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Infor-
mation Sciences, vol.170, pp.409-418, 2005.

[12] J. Zeng and Z. Q. Liu, “Type-2 fuzzy sets for handling uncertainty
in pattern recognition,” Proc. FUZZ-IEEE, July, Vancouver, Canada,
pp.6597-6602, 2006.

[13] R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz and O.
Montiel, “Handling uncertainty in controllers using type-2 fuzzy logic,”
Proc. FUZZ-IEEE, May, Reno, NV, pp.248-253, 2005.

[14] R. Sepulveda, O. Castillo, P. Melin, A. Rodriguez-Diaz and O.
Montiel, “Integrated development platform for intelligent control based
on type-2 fuzzy logic,” Proc. North American Fuzzy Info. Processing
Society (NAFIPS), pp.607-610, 2005.

[15] K. M. Bossley, D. J. Mills, M. Brown, and C. J. Harris, “Construction
and design of parsimonious neurofuzzy systems,” in K. J. Hunt, G.
R. Irwin, and K. Warwick (eds), Proceedings of Neural Network
Engineering in Control Systems, pp.153-177, Springer-Verlag, 1995.

[16] M. J. Er, and S. Wu, “A fast learning algorithm for parsimonious fuzzy
neural systems,” Fuzzy Sets and Systems, vol.126, no.3, pp.337-351,
2002.

[17] H. Roubos nd M. Setnes, “Compact fuzzy models through complexity
reduction and evolutionary optimization,” Proc. of FUZZ-IEEE, San
Antonio, USA, May, pp.762-767, 2000.

[18] Q. Liang, and J. M. Mendel, “Designing interval type-2 fuzzy logic
systems using an SVD-QR method: rule reduction,” International
Journal of Intelligent Systems, vol.15, pp.939-957, 2000.

[19] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal
approximation, and orthogonal least squares learning,” IEEE Trans. on
Neural Networks, vol.3, no.5, pp.807–814, 1992.

[20] S.-M. Zhou, and J. Q. Gan, “Constructing parsimonious fuzzy lassifiers
based on L2-SVM in high-dimensional space with automatic mdel
selection and fuzzy rule ranking,” IEEE Trans. on Fuzzy Systems (in
press), 2007.

[21] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, 1981.

[22] M. J. Moody and C. J. Darken, “Fast learning in networks of locally-
tuned processing units,” Neural Computation, vol.1, no.2, pp.281-294,
1989.

858


