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Abstract

The subgroup discovery, domain of application of CN2-SD, is defined as: ‘‘given a population of individuals and a property of those
individuals, we are interested in finding a population of subgroups as large as possible and have the most unusual statistical characteristic
with respect to the property of interest’’.

The subgroup discovery algorithm CN2-SD, based on a separate and conquer strategy, has to face the scaling problem which appears
in the evaluation of large size data sets. To avoid this problem, in this paper we propose the use of instance selection algorithms for
scaling down the data sets before the subgroup discovery task. The results show that CN2-SD can be executed on large data set sizes
pre-processed, maintaining and improving the quality of the subgroups discovered.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Subgroup discovery; Scaling down; Instance selection
1. Introduction

In data mining (Han & Kamber, 2000), the generation
of representative models from data is a staple process.
The models, depending on their domain of application,
can be predictive or descriptive. Predictive induction has
as objective the construction of a model or a set of rules
to be used in classification or prediction (Chang, Lai, &
Lee, 2007), while descriptive models are aimed at the dis-
covery of individual rules which define interesting patterns
in data (Yen & Lee, 2006).

Subgroup discovery (SD) is situated at the intersection
of predictive and descriptive induction. In the subgroup
discovery task, the rules or subgroups are discovered using
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heuristics which tries to find the best subgroups in terms of
rule coverage and distributional unusualness (Klöesgen,
1996; Lavrač, Kavšek, Flach, & Todorovski, 2004). Sub-
group discovery aims at discovering individual rules of
interest, which must be represented in explicit symbolic
form and which must be relatively simple in order to be
recognized as actionable by potential users.

The CN2-SD (Lavrač et al., 2004) is a recent proposal in
SD offering promising results. It is an adaptation of the
classification rule learner CN2 algorithm based on a sepa-
rate and conquer strategy (Clark & Boswell, 1989; Clark &
Niblett, 1991). The main modifications are: its covering
algorithm, search heuristic, probabilistic classification of
instances, and evaluation measures.

The issue of scalability and the effect of increasing the
size of data sets are always present in data mining (Domin-
go, Gavaldá, & Watanabe, 2002; Provost & Kolluri, 1999).
The scaling problem, due to large size data sets, produces
situations where the CN2-SD algorithm can not be
executed. The evaluation necessities to apply the heuristic
is expensive computationally and this cost is directly pro-
portional to the size of the data set.
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A possible way to face the scaling problem consist of
scaling down the initial data sets. The scaling down can
be applied by means of a pre-processing stage previous
to subgroup discovery by CN2-SD. The pre-processing
suggested in this paper consists in the application of data
reduction techniques using instance selection algorithms
(Liu & Motoda, 2002). The instance selection algorithms
select representative instance subsets following a deter-
mined strategy. Those subsets composed by representa-
tive instances are used as input to extract models from
them (Cano, Herrera, & Lozano, 2007; Grochowski &
Jankowski, 2004; Kim, 2006; Riquelme, Aguilar, &
Toro, 2003; Sebban, Nock, Chauchat, & Rakotomalala,
2000).

The aim of this paper is to propose the combination of
instance selection and CN2-SD to apply the last ones into
large size data sets. To address this study, we have carried
out a number of experiments increasing complexity and
size of data sets. We have divided the study into two
parts:

• In the first one, we study the effect of instance selection
in the subgroups discovered with CN2-SD in small data
sets. The objective is to study if the instance selection
affects the descriptive qualitative measures of the sub-
groups discovered.

• In the second one, we apply the instance selection in
large size data sets, combined with CN2-SD and test
its behaviour.

To analyze the results we provide a statistical analysis
using some statistical tests (Friedman, Iman and Daven-
port test, Holm and Wilcoxon) which have been selected
based in the considerations of Demšar in Demsar (2006).
Friedman ([Friedman, 1940; Sheskin, 2000) and Iman
and Davenport tests (Iman & Davenport, 1980) are non-
parametric tests equivalent to the repeated-measures
ANOVA (Anderson, 1984). The remaining two tests,
Holm’s and Wilcoxon tests (Holm, 1979; Wilcoxon,
1945), are post-hoc test that may be used only when Fried-
man or Iman and Davenport tests reject the null-hypothe-
sis, under the assumption of similarity between means.
Both test, Holm’s and Wilcoxon tests, are used to detect
significant differences between the behaviour of two
algorithms.

In order to do that, the paper is set out as follows. In
Section 2, we introduce the subgroup discovery task, the
CN2-SD algorithm analyzed and the quality measures con-
sidered for the subgroups discovered. Section 3 is devoted
to analyzing the scaling up problem which appears in the
CN2-SD algorithm when large data sets are used as input.
In the Section 4 we present the combination of instance
selection and the subgroup discovery algorithm to face
the scaling problem. Section 5 explains the methodology
used in the experimentation and deals with the results
and their analysis. Finally, in Section 6, we point out our
conclusions.
2. Subgroup discovery

In this section we present the subgroup discovery
approach. In Section 2.1 the subgroup discovery basic
ideas are presented. Section 2.2 describes the subgroup dis-
covery algorithm used in the study. Section 2.3 shows the
quality measures considered for the subgroups discovered.

2.1. Description

The subgroup discovery is a task situated between the
predictive and descriptive induction. It was defined by
Klöesgen and Wrobel in (Klöesgen, 1996 and Wrobel,
1997) as follows: ‘‘Given a population of individuals and
a property of those individuals we are interested in finding
a population of subgroups that are statistically ‘most inter-
esting’, e.g., are as large as possible and have the most unu-
sual statistical (distributional) characteristic with respect to
the property of interest’’.

In subgroup discovery we are interested in the identifica-
tion of relations between a dependent variable (target var-
iable) and usually many explaining, independent variables
(Lavrač, Cestnik, Gamberger, & Flach, 2004). Subgroup
discovery focus its interest on partial relations instead of
complete relations; (small) subgroups with interesting char-
acteristics can be sufficient. The discovered subgroup must
satisfy two conditions: They should be interpretable for the
expert, and they need to be interesting according to the cri-
teria of the user. Interestingness is typically defined by a
quality function, which can take certain statistical or other
user-defined quality criteria into account.

In the following, we shortly revise some subgroup dis-
covery approaches that can be found in the specialized
literature:

• Klöesgen presents the subgroup discovery task in its
algorithm Explora, which uses divide and conquer strat-
egy to extract the models (Klöesgen, 1996).

• Wrobel offers Midos, an extension of Explora for multi-
relational data bases (Wrobel, 1997).

• Gamberger et al. propose the SD algorithm, where they
introduce: a novel parametrized definition of rule qual-
ity used in a heuristic beam search algorithm, a rule sub-
set selection algorithm incorporating example weights,
the detection of statistically significant properties of
selected subgroups, and a novel subgroup visualization
method (Gamberger & Lavrač, 2002).

• Kavšek et al. offer the Apriori-SD algorithm, modifying
the Apriori-C (which was based originally in the well-
known Apriori algorithm for mining association rules).
In this case, the classification rule discovery algorithm
Apriori-C (Lavrač, Flach, Kavšek, & Todorovski,
2002) is adapted to subgroup discovery (Kavšek, Lav-
rač, & Bullas, 2002; Kavšek & Lavrač, 2006).

• Lavrač et al. present a subgroup discovery algorithm,
called CN2-SD, based on the modification of CN2 clas-
sification rule learner (Clark & Boswell, 1989; Clark &



Fig. 1. Pseudocode of CN2 algorithm.
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Niblett, 1991) in: its covering algorithm, search heuris-
tic, probabilistic classification of instances, and evalua-
tion measures [Lavrač et al., 2004].

• Železný et al. in [Železný and Lavrač, 2006] adapts rela-
tional rule learning to subgroup discovery (the algo-
rithm is called RSD) in individual-centred domains,
based on: propositionalization through first-order fea-
ture construction, feature filtering, incorporation of
example weights into the weighted relative accuracy
search heuristic, and implementation of the weighted
covering algorithm.

• Atzmuellet et al. propose an efficient and exhaustive
subgroup discovery algorithm called SD-Map, which
can just be applied in two-class data sets (Atzmueller
& Puppe, 2006).

Those subgroup discovery algorithms have been
applied in different domains: In Gamberger, Lavrač, and
Wettschereck (2002); Gamberger and Lavrač (2002),
Gamberger et al. applied subgroup discovery to the prob-
lem of early detection of patient groups with risk for ath-
erosclerotic coronary heart disease. Klöesgen et. analyze a
Census data set searching interesting subgroups (Klöesgen
et al., 2002). Kavšek et al. (2002) develop a case study in
mining UK traffic data by means of subgroup discovery.
Nakada et al. in Nakada and Kunifuji (2003) extract sub-
groups from personal web pages. In Gamberger and Lav-
rač (2002); Lavrač et al. (2004), Gambered et al. and
Lavrač et. al apply expert-guided subgroup discovery for
actionable knowledge generation, typically presented in
the form of rules, that allows the decision maker to recog-
nize some important relations and to perform an action,
such as targeting a direct marketing campaign, or plan-
ning a population screening campaign. Lavrač studies
the task of subgroup discovery in two domains in Lavrač
(2005): the first one is atherosclerotic coronary heart dis-
ease and the second one is functional genomics. Berlanga
et al. analyze subgroup discovery with fuzzy rules by
means of a multi-objective algorithm applied to a market
problem Berlanga, Del Jesus, Gonzalez, Herrera, and
Mesonero (2006).

2.2. Subgroup discovery algorithm used: CN2-SD

CN2 algorithm is described at Fig. 1 (Clark & Boswell,
1989; Clark & Niblett, 1991). CN2-SD is based on the
modification of CN2 classification rule learner in the fol-
lowing aspects:

• Covering task: The covering algorithm in this case is a
weighted one, where the covered positive examples are
not deleted from the current training set. Instead, in
each run of the covering loop, the algorithm associates
to each example a count which indicates how often
(with how many rules) the example has been covered
so far. These weights appear in the computation of
WRAcc.
• Search heuristic: The heuristic applied is the weighted
relative accuracy (WRAcc). The WRAcc computation
considered all probabilities computed by relative
frequencies. An example of weight measures how
important it is to cover this example in the next itera-
tion. The following expression shows the way it is
obtained:

WRAccðCond! ClassÞ

¼ n0ðCondÞ
N 0

� n0ðClass;CondÞ
n0ðCondÞ � n0ðClassÞ

N 0

� �
ð1Þ

where, N
0

is the sum of the weight of all examples,
n
0
(Cond) is the sum of the weights of all covered exam-

ples, and n
0
(Class,Cond) is the sum of the weights of all

correctly covered examples.
• Probabilistic classification of instances: Each CN2-SD

rule returns a probability distribution, instead of class
distribution in terms of the number of examples covered.
Using this voting scheme the subgroups covering a small
number of examples are not so heavily penalized when
classifying a new example.

As the authors indicate in Kavšek and Lavrač (2006),
the results offered by CN2-SD and Apriori-SD are very
similar, but Apriori-SD is more sensitive when minority
classes appear. CN2-SD does not present that debility.
2.3. Descriptive measures of rule interestingness

The measures of rule interestingness consider the quality
of individual rules. These measures are the most appropriate
for subgroup discovery, as the task of subgroup discovery is
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to induce individual patterns of interest. The descriptive
measures considered to identify interesting rules are: cover-

age, support, significance, unusualness, completeness, and size

(number of subgroups discovered) of the model as they are
suggested by Lavrač et al. in Lavrač et al. (2004).

We have added to these one the antecedents per rule, that
is useful for analyzing the rules. As addition we have
included the confidence of each one of the rules to analyze
their predictive behaviour. These measures evaluate each
subgroup individually, but can be complemented by their
variants to compute the mean of the induced set of descrip-
tions of subgroups, allowing comparison between different
subgroup discovery algorithms.

In the following, the description of each one of the mea-
sures is shown:

• Coverage:
It is defined as the percentage of the global examples
covered by one rule. Considering the rule Ri on the form
Cond! Class, the expression associated to it is the
following:

CovðRiÞ ¼ pðCondÞ ¼ nðCondÞ
N

ð2Þ

where, n(Cond) is the number of instances where the
antecedents Cond are true, and N the number of in-
stances in the data set. The mean coverage of the rules
is obtained as the expression (3) indicates:

COV ¼ 1

nR

XnR

i¼1

CovðRiÞ ð3Þ

where nR is the number of rules of the model.
• Support:

The support measure computes the frequency of cor-
rectly classified covered examples of a rule Ri

(Cond! Class):

SupðRiÞ ¼ pðClass;CondÞ ¼ nðClass;CondÞ
N

ð4Þ

where n(Class,Cond) is the number of instances of Class
where the antecedents Cond are true. The average rule
support is computed as the average Sup of all the rules
which compose the model, and is defined as follows:

SUP ¼ 1

nR

XnR

i¼1

SupðRiÞ ð5Þ

• Confidence:
To analyze the predictive capabilities of the subgroups
discovered, the confidence of each rule is obtained. This
measure represents the number of positive instances cov-
ered among all the instances covered by the rule:

ConfðRiÞ ¼
pðClassjCondÞ

pðCondÞ ¼ nðClass;CondÞ
nðCondÞ ð6Þ

The mean confidence of the rules is obtained as the
expression (7) indicates:
CONF ¼ 1

nR

XnR

i¼1

ConfðRiÞ ð7Þ

• Significance:
It represents how significant is a rule measured by a sta-
tistical criterion. The statistical criterion considered is
the likelihood ratio of a rule, normalized with the likeli-
hood ratio of the significance threshold (99%). Consider-
ing the rule Ri on the form Cond! Class, for each class
Classj, the expression of significance is:

SigðRiÞ ¼ 2 �
X

j

nðClassj;CondÞ � log
nðClassj;CondÞ

nðClassjÞ

ð8Þ

where n(Classj,Cond) is the number of instances of
Classj where the antecedents Cond are true, and
n(Classj) is the number of instances in the data set which
belongs to Classj. The number of different classes is j.
We consider the average significance of the set of rules
(see (9)):

SIG ¼ 1

nR

XnR

i¼1

SigðRiÞ ð9Þ

• Unusualness:
The unusualness of the rules is defined as the weighted rel-
ative accuracy (WRAcc). This measure is a variant of rule
accuracy that can be applied in the descriptive and predic-
tive induction framework. It trades off generality of the
rule (p(Cond), i.e., rule coverage) and relative accuracy
(p(ClassjCond) � p(Class)). It is defined as follows:

WRAccðRiÞ ¼ pðCondÞ � ðpðClassjCondÞ � pðClassÞÞ

¼ nðCondÞ
N

� nðClass;CondÞ
nðCondÞ � nðClassÞ

N

� �
ð10Þ

where p(Cond) is the probability of the Condition of the
rule satisfied (rule coverage), p(Class—Cond) is the
probability of the Condition and the Class satisfied and
finally, p(Class) is the probability that one instance be-
longs to that Class.
The average rule unusualness is computed as the average
WRAcc considering all the rules, is defined as:

WRACC ¼ 1

nR

XnR

i¼1

WRAccðRiÞ ð11Þ

• Completeness:
For subgroup discovery it is interesting to compute the
whole number of examples which are covered by the
set of rule obtained (subgroups discovered). It is called
the completeness, defined as the percentage of target
examples (positives) covered by the rules, and computed
as the true positive rate for the union of subgroups:

COMP ¼ 1

N

X
Classj

n Classj

_
Cond!Classj

Cond

 !
ð12Þ



Table 1
Discretization and CN2-SD execution times in seconds increasing the size
of a Pen Based subset

Data set
size (%)

Number of
instances

ID3-
Discr.
time

CN2-SD
exec. time

Exec. time (ID3
Disc. + CN2-SD)

1 109 0.06 23.55 23.62
2.5 274 0.54 51.60 52.14
5 549 7.32 210.88 218.20
7.5 824 32.83 1312.49 1345.30
10 1105 78.14 1664.40 1792.54
20 1648 121.01 4632.19 4753.20
30 3297 519.96 29525.63 30045.59
40 4396 911.43 72605.73 73517.16
50 5496 1554.63 121435.09 122989.72
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The examples covered by several rules are counted only
once. This measure is called in Lavrač et al. (2004) as
overall support of a rule set.

• Size:
The size is a measure that considers the number of rules
which compose the model (see expression (13)). Reduc-
ing the size of the model increases the interpretability by
the user.

SIZE ¼ nR ð13Þ
• Number of antecedents:

To analyze the interpretability of the model we study the
size of the model considering the number of rules which
composed the model (SIZE), and the number of ante-
cedents which compose each rule.
Being a rule Ri in the form Cond! Class, and Cond com-
posed by (Antecedent1 ^ Antecedent2 ^ . . . ^ Anteced-
entk), this measure is defined as the following expression:

AntðRiÞ ¼ k ð14Þ
The average number of antecedents in the rule set is de-
scribed in the expression:

ANT ¼ 1

nR

XnR

i¼1

AntðRiÞ: ð15Þ
Fig. 2. Scaling evolution of the ID3 discretization method using subsets of
Pen Based as input.

Fig. 3. Scaling evolution of the CN2-SD algorithtm using subsets of Pen
Based as input.

Fig. 4. Scaling evolution of the discretization and CN2-SD algorithtm
using subsets of Pen Based as input.
3. Analysis of the scaling problem for CN2-SD

The CN2-SD subgroup discovery algorithm is based on
separate and conquer strategies. It considers a beam of
rules which are generated using a determined heuristic
(see Section 2.2).

The drawback it presents is that the evaluation needed
to apply the heuristic is expensive computationally, and
this cost is directly proportional to the size of the data set.

We study this problem using Pen Based data set. It has
been obtained from the UCI Repository Newman, Hettich,
Blake, and Merz, 1998, and its characteristics are shown in
Table 2. It has been chosen due to the fact it is big enough
to present problems for the execution of CN2-SD using the
whole data set as input. We are going to split the data set
and create subsets of different sizes (the percentages of
instances per class are maintained), executing CN2-SD
over them and studying the CN2-SD behaviour and the
previous discretization process needed for its execution
(the parameters fixed for CN2-SD appear in Section 5.1).

Table 1 and Figs. 2–4 show the results. Considering the
Table 1, the first column is the percentage of instances kept,
the number of them appears in the second column and in
order of ocurrence, the time consumed by the discretization
method, the CN2-SD algorithm and the combination of
both (the three execution times in seconds). The figures
show the evolution of the execution time of the discretiza-
tion method (Fig. 2), the CN2-SD algorithm (Fig. 3) and
their combined execution (Fig. 4), when the size of the
input data set increases. The algorithm has been run in a
Pentium 4, 3.6 Ghz, 1 Gb RAM, 320 Gb HD.
The results which appear in Table 1 and Figs. 2–4 show
that the execution time needed by CN2-SD when the size of
data set increases (due to its own execution time and its



Table 2
Discretization + CN2-SD executions with different size data sets

Data sets #
Instances

#
Attributes

#
Classes

Execution time
(s)

Iris 150 4 3 1.30
Lymphography 148 18 4 16.53
Wine 178 13 3 31.42
Led24Digit 200 24 10 47.55
Pima 768 8 2 49.56
Glass 294 9 7 60.38
Contraceptive 1473 10 3 1106.72
Pen Based 10,992 16 10 Not runnable
Adult 45,221 14 2 Not runnable

Fig. 5. Pseudocode of CNN algorithm.
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discretization method associated) makes it difficult to be
used for large size data sets.

As second study we execute CN2-SD using different size
data sets. These data sets are extracted from the UCI Repos-
itory Newman et al., 1998. Table 2 presents the characteris-
tics of the data sets and the mean execution time for a ten
fold cross validation for CN2-SD on them. It contains by
columns the name of the problem, its number of instances,
number of features and number of classes and finally, the
average execution time of CN2-SD and its discretization
method (in seconds). Like in the previous study, the com-
puter used is a Pentium 4, 3.6 Ghz, 1 Gb RAM, 320 Gb HD.

Table 2 shows that when the size of the input data set
increases, the execution time and resources needs for the
execution increase too, so for large data sets the CN2-SD
cannot be executed. Pen Based and Adult data sets intro-
duce in CN2-SD problems due to memory consumption
and elevated execution time.

4. Instance selection pre-processing for CN2-SD subgroup

discovery in large size data sets

When the input data set size affects the execution of the
algorithms, we can face this situation following two differ-
ent strategies:

• Scaling up the algorithm. Proposing faster and lower
consumption algorithms that can face large size data
sets.

• Scaling down the data set. In this case, the attention is
directed toward the data set. The idea consists of mod-
ifying the data set by mean of reductions to make it ade-
quate for the original algorithm.

In this paper we pay attention to the second strategy.
We are interested in the application of a pre-processing
stage to reduce the initial data set previously to the model
extraction. The reduction of the initial data set can be
developed following different paths: instance selection Liu
and Motoda, 2002, 2003; Wilson and Martinez, 2000, fea-
ture selection (Polat and Gunes, 2007; Shang et al., 2006;
Huang and Wang, 2006, or data generation (Sánchez,
2004). In this study we are interested in the reduction using
instance selection algorithms.
In instance selection we want to isolate the smallest set
of instances which enable us to predict the class of a query
instance with the same quality as the initial data set (Liu &
Motoda, 2001; Liu & Motoda, 2002). By reducing the ‘use-
ful’ data set size we can reduce the space complexity and
decrease computational cost of the data mining algorithms
that will be applied later, improving their generalization
capabilities due to the elimination of noise.

As instance selection algorithms we have selected for
this study those which show the best behaviour in Cano,
Herrera, and Lozano (2003), with low resources consump-
tion and high reduction rates:

• CNN (Hart, 1968) – It tries to find a consistent subset,
which correctly classifies all of the remaining points in
the sample set. The CNN algorithm finds a subset S of
the training set TR such that every member of TR is clo-
ser to a member of S of the same class than to a member
of S of a different class. The subset S can be used to clas-
sify all the instances in TR correctly. A description of
the algorithm is given at Fig. 5.

• IB2 (Kibbler & Aha, 1987) – It is similar to CNN but
using a different selection strategy. The difference with
CNN is that IB2 does not seed S with one instance of
each class, and does not repeat the process after the first
pass through the training set. This means that IB2 will
not necessarily classify all instances in TR correctly.
The algorithm retains border points in S while eliminat-
ing internal points that are surrounded by members of
the same class. The pseudo code of the algorithm is
offered in Fig. 6.

• IB3 (Kibbler & Aha, 1987) – Instance x from the train-
ing set TR is added to the new set S if the nearest accept-

able instance in S (if there are not acceptable instances a
random one is used) has different class than x. The
acceptable concept is defined as the confidence interval:
p þ z2

2n� z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðp�1Þ

n þ z2

2n2

q
1þ z2

n

ð16Þ



Fig. 6. Pseudocode of IB2 algorithm.

Fig. 8. Pseudocode of DROP3 algorithm.
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z is the confidence factor (0.9 is used to accept, 0.7 to re-
ject). p is the classification accuracy of a x instance
(while x is added to S). n is the number of classifica-
tion-trials for given instance (while added to S). The
algorithm proceeds as shown in Fig. 7.

• Drop3 (Wilson & Martinez, 1997) – It uses a noise filter-
ing pass before sorting the instances in TR. This is done
using the rule: Any instance not classified by its k-near-
est neighbours is removed. After removing noisy
instances from S in this manner, the instances are sorted
by distance to their nearest enemy remaining in S, and
thus points far from the real decision boundary are
removed first. This allows points internal to clusters to
be removed early in the process, even if there were noisy
points nearby. After the noise removal, the steps of the
algorithms are similar to DROP2 (Wilson & Martinez,
1997), and are described in Fig. 8.

• ICF (Brightom & Mellish, 2002) – ICF defines Reach-
ability(x) and Coverage(x) sets. In the first stage, ICF
employs ENN algorithm [Wilson, 1972] to remove noisy
sample from T. Then, in second stage, it removes each
instance x for which the Reachability(x) is bigger than
the Coverage(x). It recalculates reachability and cover-
age properties and restarts the second stage all many
times as possible. The algorithm proceeds as shown in
Fig. 9.

• Evolutionary instance selection based on CHC algo-
rithm (EIS-CHC) (Cano et al., 2003; Eshelman, 1991)
– Evolutionary algorithms (Back, Fogel, & Michalewicz,
1997) are general-purpose search algorithms that use
principles inspired by natural genetic populations to
Fig. 7. Pseudocode of IB3 algorithm.

Fig. 9. Pseudocode of ICF algorithm.
evolve solutions to problems, and they have been used
to solve the instance selection problem, with promising
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results (Kuncheva, 1995; Kim, 2006). The election of
CHC as instance selection algorithm is based in its
behaviour showed on (Cano et al., 2003; Cano, Herrera,
& Lozano, 2005).
During each generation the EIS-CHC develops the fol-
lowing steps:
Test Set (TSi)

Subgroups
Discovered

Training Set (TRi)

ISA: Instance Selection Algorithm

Stratified Training Subset Selected (STSSi)

Subgroup Discovery 

Algorithm (CN2SD)

Fig. 10. Instance selection strategy in stratified ten fold cross validation
for subgroup discovery.
(1) It uses a parent population of size pop to generate
an intermediate population of pop individuals,
which are randomly paired and used to generate
pop potential offspring.

(2) Then, a survival competition is held where the best
pop chromosomes from the parent and offspring
populations are selected to form the next generation.

Other important characteristics of this algorithm are:
– CHC also implements a form of heterogeneous

recombination using HUX, a special recombin-
ation operator. HUX exchanges half of the bits
that differ between parents, where the bit position
to be exchanged is randomly determined. CHC also
employs a method of incest prevention. Before apply-
ing HUX to two parents, the Hamming distance
between them is measured. Only those parents who
differ from each other by some number of bits (mat-
ing threshold) are mated. The initial threshold is set
at L/4, where L is the length of the chromosomes.
If no offspring are inserted into the new population
then the threshold is reduced by 1.

– No mutation is applied during the recombination
phase. Instead, when the population converges or
the search stops making progress (i.e., the difference
threshold has dropped to zero and no new offspring
are being generated which are better than any mem-
bers of the parent population) the population is reini-
tialized to introduce new diversity to the search. The
chromosome representing the best solution found
over the course of the search is used as a template
to re-seed the population. Re-seeding of the popula-
tion is accomplished by randomly changing 35% of
the bits in the template chromosome to form each
of the other n-1 new chromosomes in the population.
The search is then resumed.
The instance selection algorithms are also affected by the
size of the input data set (Cano et al., 2005). The effect it
produces on them are:

• Efficiency, due to the fact that instance selection algo-
rithms present execution orders greater than O(n2).

• Resources, in the sense that most of the instance selec-
tion algorithms need the complete data set stored in
memory to carry out their execution.

• Representation, in the case of evolutionary instance
selection, the large size of chromosome used to represent
the solution produces convergence difficulties for the
algorithm.
To avoid the drawbacks associated to large size data sets
we apply the instance selection combined with stratified
strategy as it was suggested in Cano et al. (2005) with
promising results.

Following the stratified strategy, initial data set D is
divided into t disjoint sets Dj, strata of equal size, D1,
D2, . . . , and Dt.

The test set (TS) will be the complementary one in D to
the training set (TR). The subsets TR and TS will be
obtained as (17) and (18) show:

TR ¼
[
j2J

Dj; J � f1; 2; . . . ; tg ð17Þ

TS ¼ D n TR ð18Þ

Instance selection algorithms are applied in each Dj

obtaining a subset selected DSj. The instance selected set
(TSS) in stratified strategy is obtained using the DSj (see
Eq. (19)) and it is called Stratified Training Subset Selected
(STSS).

STSS ¼
[
j2J

DSj; J � f1; 2; . . . ; tg ð19Þ

The complete process is presented in Fig. 10.
5. Experimental study

As we have mentioned, we divide our study into two
parts:

• The first one studies if the instance selection affects the
descriptive quality measures of the subgroups discovered.

• In the second part, we apply the CN2-SD subgroup dis-
covery algorithm in large size data sets, combined with
instance selection algorithms.

In order to develop that, this section is organized as fol-
lows. In the Subsection 5.1 we present the algorithms,
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parameters and data sets considered. The Subsection 5.2
describes the non-parametric statistical procedures used
for analyzing the results obtained. The Subsection 5.3 is
dedicated to the first study. In the Subsection 5.4 the sec-
ond study is offered. An illustrative example of extraction
of rules is shown in Section 5.5.

5.1. Algorithms, parameters and data sets

The experimental methodology is defined in three
aspects: Data sets, algorithms and parameters. They are
as follows:

• Data sets: In the first study we consider the small size
data sets (Lymphography, Iris, Wine, Led24Digit,
Glass, Pima and Contraceptive) and in the second one
the large size ones (Pen-Based and Adult). Pen-Based
is divided in 10 strata and Adult in 100 to execute the
instance selection algorithms. The characteristics of the
data sets appear in the Table 2.

• Algorithms: CN2-SD, CNN + CN2-SD, IB2 + CN2-
SD, IB3 + CN2-SD, DROP3 + CN2 � SD, ICF +
CN2-SD and EIS � CHC + CN2 � SD, described in
Section 2.2 for the first one and Section 4 for the rest.

• Parameters: The parameters are chosen considering the
authors suggestions in the literature. For each one of
the algorithms are:
– CN2-SD: beam-size = 5, significance-threshold =

99% and multiplicative weights with c = 0.9. The
selection of the cut points for the numeric antecedents
of the rules have been done using a discretization
method, concretely the ID3 discretization method
(Liu, Hussain, Tan, & Dash, 2002) based on entropy
(Janssens, Brijs, Vanhoof, & Wets, 2006).

– CNN: It has not parameters to be fixed.
– IB2: It has not parameters to be fixed.
– IB3: Acceptance level = 0.9 and drop level = 0.7.
– DROP3: It has not parameters to be fixed.
– ICF: It has not parameters to be fixed.
– EIS-CHC: Evaluations = 10,000, population = 50

and a = 0.5.
The deterministic algorithms have been executed one
time for each partition in the ten fold cross validation
and three times the non-deterministic ones. The results
obtained for the size and number of antecedents indexes
consider the subgroups (rules) extracted from the training
set. The rest of the measures are evaluated over the test
data set. The table of results for each one of the data sets
appears in the Appendix A.

5.2. On the use of non-parametric statistical procedures for

analyzing the results

We are interested in the study of the effect of instance
selection algorithms in the discovered subgroups. For this
reason we apply instance selection in small size data sets
and analyse the quality indexes of the subgroups discov-
ered by CN2-SD. In this case, due to the size of the data
sets, we do not need the stratification, using the whole
training set.

The results for each one of the small data sets, consid-
ering the mean of the measures, are showed in the appen-
dix. To compare the results provided by CN2-SD over the
different training set selection algorithm outputs we
develop a statistical analysis using the executions per algo-
rithm for each measure. Statistical analysis have carried
out in order to find significant differences among the
results obtained by the studied methods. When a paramet-
ric test is used, results must assume normal distribution
and homogeneity of variance. If these assumptions are sat-
isfied, a parametric statistical analysis of results will be
right and safe.

In our situation, we consider the use of non-parametric
tests, according to the recommendations made in Demsar
(2006).

As such, these non-parametric tests can be applied to
classification accuracies, error ratios or any other measure
for evaluation of techniques, including even model sizes
and computation times. Empirical results suggest that they
are also stronger than the parametric test. Demšar recom-
mends a set of simple, safe and robust non-parametric tests
for statistical comparisons of classifiers. We will present the
main tests with different purposes.

• The first one is the Friedman test Friedman (1940); She-
skin (2000), which is a non-parametric test equivalent of
the repeated-measures ANOVA. Under the null-hypoth-
esis, it states that all the algorithms are equivalent, so a
rejection of this hypothesis implies the existence of dif-
ferences among the performance of all the algorithms
studied. After this, a post-hoc test could be used in order
to find whether the control or proposed algorithm pre-
sents statistical differences with regards to the remaining
methods in the comparison. The simplest of them is the
Bonferroni–Dunn test, but we can use more powerful
test that controls the family-wise error and rejects more
hypothesis than Bonferroni–Dunn test; for example,
Holm’s test.
Friedman test way of working is described as follows: It
ranks the algorithms for each data set separately, the
best performing algorithm getting the rank of 1, the sec-
ond best rank 2, and so on. In case of ties average ranks
are assigned.
Let rj

i be the rank of the jth of k algorithms on the ith of
Nds data sets. The Friedman test compares the average
ranks of algorithms, Rj ¼ 1

Nds

P
ir

j
i . Under the null-

hypothesis, which states that all the algorithms are
equivalent and so their ranks Rj should be equal, the
Friedman statistic:
v2
F ¼

12N ds

kðk þ 1Þ
X

jR2
j �

kðk þ 1Þ2

4

" #
ð20Þ
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is distributed according to v2
F with k � 1 degrees of free-

dom, when Nds and k are big enough (as a rule of a
thumb, Nds > 10 and k > 5).

• The second one of them is the Iman and Davenport test
(Iman & Davenport, 1980), which is a non-parametric
test, derived from the Friedman test, less conservative
than the Friedman statistic:

F F ¼
ðNds � 1Þv2

F

N dsðK � 1Þ � v2
F

ð21Þ

which is distributed according to the F-distribution with
k � 1 and (k � 1)(Nds � 1) degrees of freedom. Statisti-
cal tables for critical values can be found at (Sheskin,
2000; Zar, 1999).

• As post-hoc test of Friedman statistic, we will use the
Holm test (Holm, 1979), which is a multiple comparison
procedure that works with a control algorithm (nor-
mally, the best of them is chosen) and compares it with
the remain of methods. The test statistics for comparing
the ith and jth method using this procedure is:

z ¼ ðRi � RjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6Nds

s,
ð22Þ

The z value is used to find the corresponding probability
from the table of normal distribution, which is then
compared with an appropriate a. In Bonferroni–Dunn
comparison, this a value is always a/(k � 1), but Holm’s
test adjust the value for a in order to compensate for
multiple comparison and control the family-wise error.
Holm’s test is a step-up procedure that sequentially tests
the hypothesis ordered by their significance. We will
denote the ordered p values by p1,p2, . . . , so that
p1 6 p2 6 � � � 6 pk�1. Holm’s test compares each pi with
a/(k � i), starting from the most significant p value. If p1

is below a/(k � 1), the corresponding hypothesis is
rejected and we allow to compare p2 with a/(k � 2). If
the second hypothesis is rejected, the test proceeds with
the third, and so on. As soon as a certain null hypothesis
cannot be rejected, all the remaining hypothesis are
retained as well.

• Finally, we will describe the Wilcoxon Signed-Ranks
Test (Wilcoxon, 1945; Sheskin, 2000): This is the analo-
gous of the paired t-test in non-parametrical statistical
procedures; therefore, it is a pair wise test that aims to
detect significant differences between the behaviour of
two algorithms. In our study, we always consider a level
of significance of p < 0.05.
Let di be the difference between the performance scores
of the two classifiers on ith out of Nds data sets. The dif-
ferences are ranked according to their absolute values;
average ranks are assigned in case of ties. Let R+ be
the sum of ranks for the data sets on which the second
algorithm outperformed the first, and R� the sum of
ranks for the opposite. Ranks of di = 0 are split evenly
among the sums; if there is an odd number of them,
one is ignored:
Rþ ¼
X
di>0

rankðdiÞ þ
1

2

X
di¼0

rankðdiÞ ð23Þ

R� ¼
X
di<0

rankðdiÞ þ
1

2

X
di¼0

rankðdiÞ ð24Þ

Let T be the smallest of the sums, T = min(R+, R�).
In this work, we have used seven data sets to carry out
the study. The critical value associated with Nds = 7 can
be found in the T Wilcoxon distribution (see table B.12
in Zar (1999)) considering 7 degrees of freedom. The
request critical value for this work is equal to 2.
The Wilcoxon signed ranks test is more sensitive than the
t-test. It assumes commensurability of differences, but
only qualitatively: greater differences still count more,
which is probably desired, but the absolute magnitudes
are ignored. From the statistical point of view, the test
is safer since it does not assume normal distributions.
Also, the outliers (exceptionally good/bad performances
on a few data sets) have less effect on the Wilcoxon than
on the t-test. The Wilcoxon test assumes continuous dif-
ferences di, therefore they should not be rounded to, say,
one or two decimals since this would decrease the power
of the test due to a high number of ties.
When the assumptions of the paired t-test are met, the
Wilcoxon signed-ranks test is less powerful than the
paired t-test. On the other hand, when the assumptions
are violated, the Wilcoxon test can be even more power-
ful than the t-test.
5.3. Instance selection combined with CN2-SD in small size

data sets

Considering the description of the statistical procedures
in the previous section, we present in Table 3 the ranking of
the algorithms evaluated using the seven small size data
sets for each one of the quality indexes.

With these ranks, the Friedman and Iman–Davenport
tests are applied for every index considering the null-
hypothesis, whose acceptation means the non-existence of
differences among the indexes obtained for the algorithms.
The rejection means that differences appear. Table 4 shows
the response of both tests.

In both tests the response is the same. They do not find
any difference in COB, COMP, SIG, SUP and WRACC.
This means that instance selection maintains the quality
of those indexes. The differences appear in ANT, CONF
and SIZE.

To analyze these differences we have to apply a post-hoc
test. As post-hoc tests of Friedman statistic we have intro-
duced the Holm’s test to find whether control algorithm
presents statistical differences with the rest of the algo-
rithms. The control algorithm considered for each index
is the one with the highest rank for that index in the Table
3. Indeed, Tables from 5–7 contain the computation of
data performed through the Holm procedure for detecting



Table 3
Average rank for the algorithms considering all measures

Measure CN2-SD CNN + CN2-SD DROP3 + CN2-SD IB2 + CN2-SD IB3 + CN2-SD ICF + CN2-SD CHC + CN2-SD

ANT 4.714 4.429 4.286 3.857 5.571 4.143 1.000
COB 2.714 4.000 5.286 4.000 3.429 4.571 4.000
COMP 3.214 4.000 3.786 4.214 3.643 3.571 5.571
CONF 4.571 5.286 2.571 5.000 4.714 2.286 3.571
SIG 4.143 3.857 3.571 5.143 4.714 3.714 2.857
SUP 2.429 5.143 4.714 5.143 3.714 3.571 3.286
WRACC 5.143 3.714 4.000 3.000 4.143 4.429 3.571
SIZE 6.429 4.571 3.786 4.500 4.714 3.000 1.000

Table 4
Multiple comparison tests results (p = 0.05)

Measure Friedman statistic v2 critical value Hyp. Iman–Davenport statistic F critical value Hyp.

ANT 18.429 12.592 Reject 4.691 2.360 Reject
COB 5.939 12.592 Accept 0.998 2.360 Accept
COMP 5.235 12.592 Accept 0.854 2.360 Accept
CONF 12.980 12.592 Reject 2.684 2.360 Reject
SIG 5.143 12.592 Accept 0.837 2.360 Accept
SUP 9.551 12.592 Accept 1.766 2.360 Accept
WRACC 4.163 12.592 Accept 0.660 2.360 Accept
SIZE 25.546 12.592 Reject 9.315 2.360 Reject

Table 5
Holm table for ANT

i Algorithm z = (R0 � Ri)/SE p a/i Hyp.

6 Ib3 + CN2-SD 3.958973274443149 7.527265841736313E�5 0.0083 Reject
5 CN2 + SD 3.216665785485058 0.0012968957989590842 0.0100 Reject
4 CNN + CN2-SD 2.9692299558323616 0.00298547089126885 0.01250 Reject
3 Drop3 + CN2-SD 2.845512041006012 0.004434008303100685 0.0167 Reject
2 ICF + CN2-SD 2.721794126179664 0.0064928577450838855 0.0250 Reject
1 Ib2 + CN2-SD 2.4743582965269675 0.013347575926843118 0.0500 Reject

Control algorithm: EIS-CHC + CN2-SD.

Table 6
Holm table for CONF

i Algorithm z = (R0 � Ri)/SE p a/i Hyp.

6 CNN + CN2-SD 2.598076211353316 0.009374768459434853 0.0083 Accept
5 Ib2 + CN2-SD 2.3506403817006194 0.018741136789596654 0.0100 Accept
4 Ib3 + CN2-SD 2.103204552047923 0.03544789255246077 0.0125 Accept
3 CN2-SD 1.979486637221574 0.04776124267510374 0.0167 Accept
2 EIS-CHC + CN2-SD 1.1134612334371354 0.2655103889538738 0.0250 Accept
1 Drop3 + CN2-SD 0.24743582965269667 0.8045709480174359 0.0500 Accept

Control algorithm: ICF + CN2-SD.

Table 7
Holm table for SIZE

i Algorithm z = (R0 � Ri)/SE p a/i Hyp.

6 CN2-SD 4.701280763401239 2.5853474452390883E�6 0.0083 Reject
5 Ib3 + CN2-SD 3.2166657854850573 0.0012968957989590879 0.0100 Reject
4 CNN + CN2-SD 3.09294787065871 0.0019817894378099583 0.0125 Reject
3 Ib2 + CN2-SD 3.0310889132455356 0.002436734808989053 0.0167 Reject
2 Drop3 + CN2-SD 2.4124993391137934 0.015843566166002118 0.0250 Reject
1 ICF + CN2-SD 1.7320508075688774 0.08326451666355035 0.0500 Accept

Control algorithm: EIS-CHC + CN2-SD.
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Table 8
Wilcoxon test for a pairwise comparison between CN2-SD and EIS-
CHC + CN2-SD (p = 0.05)

Measure T = min(R+,R�) C. value Hyp. Best

ANT 0.0 2.0 Reject CHC + CN2-SD
COB 13.0 2.0 Accept –
COMP 13.0 2.0 Accept –
CONF 8.0 2.0 Accept –
SIG 6.0 2.0 Accept –
SUP 13.0 2.0 Accept –
WRACC 10.0 2.0 Accept –
SIZE 0.0 2.0 Reject CHC + CN2-SD

Table 9
Execution time in seconds in small size data sets for instance selection
algorithms and CN2-SD after instance selection

Algorithm Iris Led24Digit Contraceptive

Inst.Sel CN2-
SD

Inst.Sel CN2-
SD

Inst.Sel CN2-
SD

CN2-SD tfcv 1.30 41.50 1106.72
CNN + CN2-SD

tfcv
0.3 0.26 0.1 28.08 0.1 140.44

IB2 + CN2-SD
tfcv

0.1 0.30 0.1 28.33 0.1 168.53

IB3 + CN2-SD
tfcv

0.1 0.39 0.1 27.55 0.3 157.94

DROP3 + CN2-
SD tfcv

0.3 0.38 0.5 9.90 0.4 16.82

ICF + CN2-SD
tfcv

0.3 0.42 0.5 10.83 0.5 27.58

EIS-
CHC + CN2-
SD tfcv

0.8 0.22 11.9 6.89 88.2 0.61
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the differences between the control algorithm and the
remaining ones.

Studying the Holm’s test tables, we can point out the
following:

• Considering ANT index (Table 5):
The comparison of EIS � CHC + CN2 � SD with the
rest of the methods rejects the hypothesis that the algo-
rithms are equivalent. The use of EIS-CHC algorithm
previous the CN2-SD execution improves the ANT
index.

• Considering SIZE index (Table 7):
In the case of SIZE index, the hypothesis is rejected. The
test finds differences between the control algorithm (the
EIS � CHC + CN2 � SD which offers the best behav-
iour in this index in the ranking table) and most of the
algorithms. When the hypothesis is rejected means that
the control algorithm improves the other algorithm in
the comparison. Just in the comparison with
ICF + CN2 � SD the hypothesis is accepted, so the con-
clusion is that both present the same behaviour.

• Considering the remaining indexes, no differences have
been found among them. This implies that these indexes
are not affected by the instance selection algorithms.
Note that in the case of the CONF index, multiple com-
parisons tests used (Friedman and Iman–Davenport)
consider that there exist differences among the results,
but they are not remarkable due to Holm’s procedure
accepts all hypotheses of comparisons among all the
algorithms (Table 6), indicating their similarity in
CONF index.

In resume we can indicate that the instance selection
does not affect negatively the quality indexes of the sub-
group discovered. They maintain most of the quality
indexes and in the ones with different behaviour, like in
SIZE and ANT, the EIS � CHC + CN2 � SD improves
those indexes, generating smaller and more interpretable
set of subgroups.

To complete the analysis of the instance selection algo-
rithms combined with CN2-SD we include the Wilcoxon
test between the instance selection algorithm with best
indexes, EIS � CHC + CN2 � SD and the CN2-SD with-
out previous reduction of the input data set.

In Table 8 we present the results of this test where we
compare every index between both algorithms.

As we can see, the situation is similar than the test in the
previous sections offered to us. EIS-CHC presents the same
behaviour in most of the quality indexes, improving the
ones related to the size and the number of subgroups (SIZE
and ANT), reducing and making them more interpretable
by the user.

At this point, we have studied the effect of the instance
selection in the quality indexes of the subgroups discov-
ered. Now, we are interested in the effect of the instance
selection in the CN2-SD execution, concretely in its run-
time.
Table 9 shows the effect of data reduction in the CN2-
SD execution. It offers the run-time for the instance selec-
tion algorithms and CN2-SD after instance selection in
three different size data sets.

The reduction in run-time is remarkable when the
instance selection is applied. Using any of the instance
selection algorithms the reduction in execution time for
CN2-SD is at least of 85%.

In conclusion to the study of instance selection com-
bined with CN2-SD in small size data sets we make the fol-
lowing analysis:

• The reduction applied in the initial data set by means of
instance selection algorithms maintains the quality mea-
sures of the subgroup discovered. The statistical analysis
does not find differences among the algorithm in most of
the measures, and when the differences appear (SIZE
and ANT indexes) is in favor of instance selection
algorithms.

• The models discovered are smaller (SIZE) when the pre-
processing stage is developed, which makes them more
interpretable. Taking note to the Contraceptive data
set in Table 11 we can see the reduction in size from
56.0 with 3.4 antecedents per rule without reduction to
4.2 with 1.73 antecedents using EIS-CHC.
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• Paying attention to the run-time, we can point that the
instance selection reduces the run-time of CN2-SD.
For example, in Contraceptive data set, from 1106.72
to 0.61 s by means of EIS-CHC algorithm, using an
acceptable time for the reduction run (88.2 s).

We can reach as conclusion that the instance selection
affects positively to subgroup discovery, keeping WRACC
and SIG quality indexes and reducing the size of the mod-
els and the execution time of the subgroup discovery pro-
cess. This conclusion lead us to propose the use of
instance selection for high size data sets, allowing to sub-
group discovery algorithms to extract subgroups/rules
from large data sets.

5.4. Instance selection for CN2-SD subgroup discovery in
large size data sets

In this section we want to apply the CN2-SD in large
size data sets by means of instance selection, due to the sub-
group discovery algorithm cannot be applied directly. In
this section we use the stratified execution of each one of
the instance selection algorithms in large size data sets,
and we develop subgroup discovery over the selected
subsets.

To complete the analysis we include a new Table 10
where we can study the reduction effect of instance selec-
tion algorithms on the original large size data sets. Table
10 contains the average number of instances selected by
the instance selection algorithms when they are applied fol-
lowing the stratified strategy for Pen-Based and Adult data
sets.

With these results in mind, and considering that CN2-
SD presents execution problems with large size data sets,
we select the instance selection algorithms with smallest
subsets selected (subsets with less than 1000 instances, like
Table 10
Number of instances selected in mean by the instance selection algorithms exe

Data set Original size CNN IB3

Pen-Based 10992 1003.2 1043.5
Adult 45221 17407.4 11734.1

Table 11
Stratified instance selection in Pen-Based data set

Algorithm SIG WRACC SIZE A

IB2 Strat. + CN2-SD 162.614 0.057 42.5 3.
CHC Strat. + CN2-SD 145.272 0.053 25.8 3.

Table 12
Stratified instance selection in adult data set

Algorithm SIG WRACC SIZE AN

IB2 Strat. + CN2-SD 102.548 0.045 22.3 3.2
CHC Strat. + CN2-SD 159.120 0.066 16.1 3.3
EIS-CHC and IB2) to analyze their behaviour extracting
subgroups in Pen-Based and Adult data sets.

Tables 11 and 12, for Pen-based and Adult data sets
respectively, contain the results obtained with the combina-
tion of instance selection and CN2-SD, providing results
on all of the indexes considered and the time consumed
by the CN2-SD execution in seconds.

Analyzing Tables 11 and 12, we can point out the fol-
lowing conclusions:

• The execution of CN2-SD in Adult data set using the
subset selected by the algorithm IB2 Strat is composed
by 594.2 instances and it takes 2104.571 s and
5245.769 s for running the subset selected for
EIS-CHC. This situation indicates the difficulties which
appear to evaluate the CN2-SD over the whole data
set.

• In the medium size data set (Pen Based) the results are
similar between IB2 and EIS-CHC, but when the size
increases, the last one presents the best behaviour. It
offers the subgroups with highest SIG, WRACC,
CONF, SUP and COMP, and the number of subgroup
(SIZE) is smaller than the obtained by IB2.

As conclusion, we point out that the combination of the
highest reduction instance selection algorithms let us to run
the CN2-SD subgroup discovery algorithm in large size
data sets.

5.5. Analysis of the rules extracted in large size data sets:
Adult data set

In this section we present some of the rules extracted
from the adult data set, the largest one used in this study.
The instance selection method used is the EIS-CHC, due to
its good behaviour in the previous section.
cuted using the stratified strategy

EIS-CHC IB2 DROP3 ICF

332.3 603.2 32.4 2498.3
896.8 594.2 1904.6 7352.1

NT COB CONF SUP COMP TIME

575 0.225 0.404 0.079 0.999 301.6
562 0.188 0.467 0.072 0.997 356.4

T COB CONF SUP COMP TIME

71 0.290 0.429 0.179 0.998 2104.571
85 0.415 0.759 0.330 0.992 5245.769
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In adult data set the instances which compose it are
obtained from the US Census and the prediction task
desired consist of on classifying when one person has a
salary higher or lower than 50,000. It is available in the
UCI Repository (Newman et al., 1998), and its character-
istics appear in Table 2.

The information considered of each one of those people
and the domains of their values are:

• Age: Continuous value.
• Workclass: Private, self-emp-not-inc, self-emp-inc, fed-

eral-gov, local-gov, state-gov, without-pay, never-
worked.

• Final-weight: Continuous.
• Education: Preschool, 1st–4th, 5th–6th, 7th–8th, 9th,

10th, 11th, 12th, HS-grad, some-college, assoc-voc,
assoc-acdm, bachelors, masters, prof-school, doctorate.

• Education-num: Continuous. This attribute is a numer-
ical representation of the previous education attribute.
We keep it to conserve the original adult data set. The
association between this attribute and the previous one
is the order of the list in which the value appears (from
1 in preschool case to 16 in doctorate one).

• Marital-status: Married-civ-spouse, divorced, never-
married, separated, widowed, married-spouse-absent,
married-AF-spouse.

• Occupation: Tech-support, craft-repair, other-service,
sales, exec-managerial, prof-specialty, handlers-cleaners,
machine-op-inspct, adm-clerical, farming-fishing, trans-
port-moving, priv-house-serv, protective-serv, armed-
forces.

• Relationship: Wife, own-child, husband, not-in-family,
other-relative, unmarried.

• Race: White, Asian-Pac-Islander, Amer-Indian-Eskimo,
Other, Black.

• Sex: Female, male.
• Capital-gain: Continuous.
• Capital-loss: Continuous.
• Hours-per-week: Continuous.
• Native-country: United-States, Cambodia, England,

Puerto-Rico, Canada, Germany, Outlying-US (Guam-
USVI-etc.), India, Japan, Greece, South, China, Cuba,
Iran, Honduras, Philippines, Italy, Poland, Jamaica,
Vietnam, Mexico, Portugal, Ireland, France, Domini-
can-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia,
Hungary, Guatemala, Nicaragua, Scotland, Thailand,
Yugoslavia, El-Salvador, Trinidad and Tobago, Peru,
Hong, Holland-Netherlands.

The possible values for prediction are: 650K, >50K.
We present some of the rules extracted for each one of

the two classes, showing their quality indexes.
Some rules for the class person who earn 650K:

(1) IF education-num 6 11.5 AND capital-loss 61784.0
AND capital-gain 65100.0 THEN Class: 650K.
Unusualness(Wracc): 0.080; significance: 114.745
confidence: 0.870; support: 0.592; coverage: 0.680.
This rule indicates that somebody who has less than
medium educational level, without important capi-
tal-losses and capital-gains in the year, earns less or
equal than 50K.

(2) IF age 635.5 AND capital-loss 61784.0 AND capi-
tal-gain 67550.0 THEN Class: 650K.
Unusualness(Wracc): 0.061; significance: 109.947
confidence: 0.893; support: 0.391; coverage: 0.438;
In this case, the rule shows that somebody younger
than 35.5 years, with minimal capital-losses but med-
ium capital-gains, earns less or equal than 50K.

(3) IF hours-per-week 644.5 AND education-
num 6 12.0 AND capital-loss 62215.5 AND capi-
tal-gain 6 7550.0 THEN Class: 650 k.
Unusualness(Wracc): 0.075; significance: 125.159
confidence: 0.886; support: 0.495; coverage: 0.559.
This rule represents the case of somebody with less
than medium educational level, with medium capi-
tal-losses and capital-gains, working less than 44.5 h
per week, who will earn 650K.

(4) IF relationship = not-in-family AND capital-loss
62215.5 AND capital-gain 67550.0 THEN Class:
650K.
Unusualness(Wracc): 0.043; significance: 100.877
confidence: 0.924; support: 0.234; coverage: 0.253.
This rule indicates that somebody who does not live
in family, with medium capital-losses and capital-
gains in the year, earns less or equal than 50K.

Some rules for the class person who earn >50K:

(1) IF marital-status 5married-civ-spouse AND educa-
tion-num >10.5 AND hours-per-week >22.5 AND
age >28.0 THEN Class: >50K.
Unusualness(Wracc): 0.074; significance: 305.430 con-
fidence: 0.721; support: 0.113; coverage: 0.157.
In this case, somebody who is not married, with med-
ium-high educational level, working more than 22.5 h
per week and older than 28 years, earns more than 50K.

(2) IF capital-gain >5100.0 AND sex 5male THEN
Class: >50K.
Unusualness(Wracc): 0.032; significance: 222.386
confidence: 0.984; support: 0.0429; coverage: 0.043.
This is a rule which indicates that a woman with more
than medium capital-gain per year, earns more than
50K.

(3) IF relationship 5husband AND education-num
>10.0 AND age >28.0 THEN Class: >50K.
Unusualness(Wracc): 0.073; significance: 301.652
confidence: 0.720; support: 0.112; coverage: 0.155.
The rule shows the case of a woman who has no hus-
band, with medium-high educational level, older than
28, earns more than 50K.

(4) IF education-num >10.0 AND relationship = hus-
band AND hours-per-week >21.5 AND age >28.0
THEN Class: >50K.
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Unusualness(Wracc): 0.072; significance: 301.822
confidence: 0.729; support: 0.109; coverage: 0.150.
This rule shows the situation of the woman of the
previous rule, when she has husband. In the same sit-
uation, with medium-high educational level, older
than 28, but with husband, she has to work more
than 21.5 hours per week to earn more than 50K.

As we can see, these rules offer interesting hidden infor-
mation difficult to find by experts.
6. Concluding remarks

This paper addresses the scaling problem involved when
CN2-SD is applied in large size data sets. To avoid the
drawbacks introduced by data set size, we propose the
Appendix A. Results for small size data sets

Tables A.1–A.7.

Table A.1
Instance selection and subgroup discovery in Iris Data Set

Algorithm SIG WRACC SIZE

CN2-SD 3.441 0.136 4.800
CNN + CN2-SD 3.161 0.086 4.700
Drop3 + CN2-SD 3.712 0.183 3.000
Ib2 + CN2-SD 2.597 0.085 4.200
Ib3 + CN2-SD 3.395 0.151 3.800
ICF + CN2-SD 3.469 0.155 3.000
EIS-CHC + CN2-SD 3.916 0.177 2.600

Table A.2
Instance selection and subgroup discovery in Glass Data Set

Algorithm SIG WRACC SIZE

CN2-SD 3.029 0.073 15.000
CNN + CN2-SD 2.606 0.054 11.700
Drop3 + CN2-SD 2.339 0.049 9.400
Ib2 + CN2-SD 2.637 0.050 10.800
Ib3 + CN2-SD 2.532 0.047 11.100
ICF + CN2-SD 2.362 0.047 9.500
EIS-CHC + CN2-SD 2.332 0.041 5.000

Table A.3
Instance selection and subgroup discovery in Led24Dig Data Set

Algorithm SIG WRACC SIZE

CN2-SD 3.992 0.052 30.000
CNN + CN2-SD 3.846 0.046 25.600
Drop3 + CN2-SD 2.898 0.038 10.200
Ib2 + CN2-SD 3.760 0.044 25.000
Ib3 + CN2-SD 3.878 0.049 25.000
ICF + CN2-SD 2.615 0.040 10.200
EIS-CHC + CN2-SD 3.288 0.025 7.600
use of instance selection previous the subgroup discovery
task. An experimental study has been carried out to ana-
lyze the results offered with and without pre-processing in
different size data sets.

The main conclusion reached is that instance selection
algorithms can be applied as pre-processing stage allowing
to maintain the quality of the subgroups discovered by the
CN2-SD algorithm, increasing the interpretability of the
subgroups and facing the scaling problem which appears
in large size data sets.

As instance selection pre-process, we can stress the use
of IB2 and EIS-CHC due to the high reduction achieved
which is useful for us for applying CN2-SD in large size
data sets. In particular, EIS-CHC shows very good results
in combination with CN2-SD, and we can point out that
this algorithm is a good choice in combination with
CN2-SD.
ANT COB CONF SUP COMP

1.485 0.552 0.622 0.320 1.000
1.420 0.316 0.609 0.191 0.893
1.333 0.338 0.911 0.296 0.960
1.328 0.374 0.570 0.210 0.940
1.717 0.384 0.775 0.279 0.940
1.567 0.476 0.742 0.313 0.993
1.200 0.330 0.892 0.299 0.800

ANT COB CONF SUP COMP

3.438 0.384 0.576 0.181 0.990
3.841 0.303 0.482 0.141 0.974
3.102 0.272 0.518 0.135 0.928
3.993 0.336 0.470 0.141 0.967
4.052 0.332 0.450 0.142 0.957
2.935 0.263 0.473 0.126 0.974
1.628 0.248 0.421 0.110 0.885

ANT COB CONF SUP COMP

3.080 0.186 0.431 0.071 1.000
3.196 0.187 0.391 0.066 1.000
3.165 0.112 0.381 0.050 0.800
3.141 0.179 0.370 0.063 1.000
3.596 0.191 0.391 0.069 0.995
3.241 0.095 0.418 0.050 0.740
1.722 0.271 0.213 0.051 0.910



Table A.4
Instance selection and subgroup discovery in Pima Data Set

Algorithm SIG WRACC SIZE ANT COB CONF SUP COMP

CN2-SD 1.655 0.053 31.600 2.375 0.442 0.652 0.281 1.000
CNN + CN2-SD 1.664 0.044 28.200 3.555 0.337 0.622 0.215 0.999
Drop3 + CN2-SD 1.891 0.063 12.600 3.072 0.446 0.680 0.303 0.997
Ib2 + CN2-SD 1.985 0.041 28.700 3.688 0.300 0.598 0.191 1.000
Ib3 + CN2-SD 1.835 0.040 25.900 3.245 0.296 0.590 0.187 0.974
ICF + CN2-SD 2.007 0.072 12.100 2.682 0.534 0.671 0.362 1.000
EIS-CHC + CN2-SD 2.316 0.074 2.000 1.000 0.500 0.683 0.341 1.000

Table A.5
Instance selection and subgroup discovery in Lymphography Data Set

Algorithm SIG WRACC SIZE ANT COB CONF SUP COMP

CN2-SD 0.673 0.010 23.500 3.647 0.373 0.348 0.137 1.000
CNN + CN2-SD 0.732 -0.002 21.700 3.736 0.252 0.276 0.085 0.929
Drop3 + CN2-SD 0.787 0.001 8.800 2.673 0.239 0.353 0.097 0.921
Ib2 + CN2-SD 0.738 0.004 21.600 3.751 0.317 0.310 0.111 0.986
Ib3 + CN2-SD 0.776 0.002 20.100 4.255 0.291 0.295 0.102 0.994
ICF + CN2-SD 0.757 0.005 8.500 2.512 0.267 0.374 0.113 0.967
EIS-CHC + CN2-SD 0.563 0.007 2.300 1.033 0.342 0.348 0.113 0.765

Table A.6
Instance selection and subgroup discovery in Contraceptive Data Set

Algorithm SIG WRACC SIZE ANT COB CONF SUP COMP

CN2-SD 2.266 0.032 56.000 3.402 0.392 0.439 0.166 1.000
CNN + CN2-SD 2.254 0.035 40.200 3.351 0.418 0.431 0.170 1.000
Drop3 + CN2-SD 2.596 0.042 24.300 3.691 0.393 0.468 0.175 1.000
Ib2 + CN2-SD 2.291 0.035 40.100 3.289 0.431 0.433 0.176 0.999
Ib3 + CN2-SD 2.628 0.069 39.400 3.373 0.433 0.448 0.178 1.000
ICF + CN2-SD 2.678 0.046 27.300 3.754 0.400 0.458 0.180 1.000
EIS-CHC + CN2-SD 2.412 0.034 4.200 1.730 0.332 0.488 0.156 0.932

Table A.7
Instance selection and subgroup discovery in Wine Data Set

Algorithm SIG WRACC SIZE ANT COB CONF SUP COMP

CN2-SD 4.471 0.188 6.800 2.502 0.323 0.941 0.305 0.989
CNN + CN2-SD 3.571 0.162 4.200 1.962 0.321 0.891 0.277 0.932
Drop3 + CN2-SD 3.384 0.157 3.400 1.433 0.326 0.848 0.270 0.922
Ib2 + CN2-SD 3.027 0.134 3.300 1.662 0.350 0.807 0.259 0.910
Ib3 + CN2-SD 3.802 0.171 4.200 1.922 0.348 0.883 0.297 0.949
ICF + CN2-SD 3.664 0.156 3.000 1.133 0.298 0.876 0.260 0.837
EIS-CHC + CN2-SD 3.515 0.146 3.000 1.000 0.302 0.860 0.247 0.787
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