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Summary. A group selection of one alternative from a set of feasible ones should
be based on the preferences of individuals in the group. Decision making procedures
are usually based on pair comparisons, in the sense that processes are linked to some
degree of credibility of preference. The main advantage of pairwise comparison is
that of focusing exclusively on two alternatives at a time and on how they are re-
lated. However, it generates more information that needed and therefore inconsistent
information may be generated. This paper addresses both preference representation
and consistency of preferences issues in group decision making.
Different preference representation formats individuals can use to model or present
their preferences on a set of alternatives in a group decision making situation are
reviewed. The results regarding the relationships between these preference represen-
tation formats mean that the fuzzy preference relation “is preferred to” representing
the strength of preference of one alternative over another in the scale [0, 1] can be
used as the base element to integrate these different preference representation for-
mats in group decision making situations.
Due to the complexity of most decision making problems, individuals’ preferences
may not satisfy formal properties that fuzzy preference relations are required to
verify. Consistency is one of them, and it is associated with the transitivity prop-
erty. Many properties have been suggested to model transitivity of fuzzy preference
relations. As aforementioned, this paper provides an overview of the main results
published in this area.
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1 Introduction

Group Decision-Making (GDM) consists of multiple individuals interacting to
reach a decision. Each decision maker (expert) may have unique motivations
or goals and may approach the decision process from a different angle, but
have a common interest in reaching eventual agreement on selecting the ‘best’
option(s) [11,32].

Decisions depend, at least in part, on preferences [14]. Indeed, the following
quotation from Fishburn [13] fully justifies the above in the context of GDM:

Democratic theory is based on the premise that the resolution of
a matter of social policy, group choice or collective action should be
based on the desires or preferences of the individuals in the society,
group or collective

In order to reach a decision, experts have to express their preferences by
means of a set of evaluations over a set of alternatives. It has been common
practice in research to model GDM problems in which all the experts express
their preferences using the same preference representation format. However,
in real practice this is not always possible because each expert has his/her
unique characteristics with regard to knowledge, skills, experience and per-
sonality, which implies that different experts may express their evaluations by
means of different preference representation formats. In fact, this is an issue
that recently has attracted the attention of many researchers in the area of
GDM, and as a result different approaches to integrating different preference
representation formats have been proposed [5–7,12,23,23,49,50].

In many situations decision processes are based on preference relations,
in the sense that processes are linked to some degree of preference of any
alternative over another. The main advantage of pairwise comparison is that
of focusing exclusively on two alternatives at a time and on how they are
related. However, it generates more information that needed and therefore
inconsistent information may be generated.

This paper addresses both preference representation formats and the con-
sistency of preferences issues in group decision making. A review of the main
results on integration of preference representation structures will be given in
Section 2, while the problem of consistency when working with fuzzy prefer-
ence relations will be reviewed in Section 3. In Section 4 we make note the
existence of a conflict between the definition of a consistent multiplicative
preference relation and the scale proposed to provide a such preference rela-
tion. Obviously, the same problem exists when dealing with fuzzy preference
relations. In order to overcome this problem, In Section 5 we propose a set of
conditions to be verified by a function in order to model consistency of fuzzy
preferences. Finally, in Section 6 we draw our conclusions.
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2 Preference Representation Formats: Integration

Experts may provide preferences on a set of alternatives, X = {x1, x2, . . . , xn}
(n ≥ 2), by using many different representation formats. Among these formats
we have:

A preference ordering of the alternatives

In this case, an expert, ek, gives his preferences on X as an individual prefer-
ence ordering, Ok = {ok(1), ..., ok(n)}, where ok(·) is a permutation function
over the index set, {1, ..., n}, for the expert, ek, [5, 42]. Therefore, according
to this point of view , an ordered vector of alternatives, from best to worst,
is given.

A utility function

In this case, an expert, ek, gives his preferences on X as a set of n utility
values, Uk = {uk

i
, i = 1, ..., n}, uk

i
∈ [0, 1], where uk

i
represents the utility

evaluation given by the expert ek to the alternative xi [30, 47].

A preference relation

In the classical preference modelling, given two alternatives, an expert judges
them in one of the following ways: (i) one alternative is preferred to another;
(ii) the two alternatives are indifferent to him/her; (iii) he/she is unable to
compare them.

According to these cases, three binary relations can be defined: (i) the
strict preference relation P : (x, y) ∈ P if and only if the expert prefers x to y;
(ii) the indifference relation I: (x, y) ∈ I if and only if the expert is indifferent
between x and y; (iii) the incomparability relation J : (x, y) ∈ J if and only if
the expert unable to compare x and y.

Fishburn in [14] defines indifference as the absence of strict preference. He
also points out that indifference might arise in three different ways: (a) when
an expert truly feels that there is no real difference, in a preference sense, be-
tween the alternatives; (b) when the expert is uncertain as to his/her prefer-
ence between the alternatives because ‘he might find their comparison difficult
and may decline to commit himself[/herself] to a strict preference judgement
while not being sure that he[/she] regards [them] equally desirable (or un-
desirable)’; (c) or when both alternative are considered incomparable on a
preference basis by the expert. It is obvious from the third case that Fishburn
treats the incomparability relation as an indifference relation, i.e., J is empty
(there is no incomparability).

A preference structure on a set of alternatives X is defined as a triplet
(P, I, J) of binary relation in X that satisfy [38,39]:

1. P is irreflexive and asymmetrical
2. I is reflexive and symmetrical
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3. J is irreflexive and symmetrical
4. P ∩ I = P ∩ J = I ∩ J = ∅
5. P ∪ P t ∪ I ∪ J = A2

where P t is the transpose (or inverse) of P : (x, y) ∈ P ⇔ (y, x) ∈ P t. Condi-
tion 5 is called the completeness condition.

In [38] it is proved that a preference structure (P, I, J) on a se of alter-
natives X can be characterised by the single reflexive relation R = P ∪ I:
(x, y) ∈ R if and only if “x is as good as y”. R is called the large prefer-
ence relation of (P, I, J). Conversely, given any reflexive binary relation R
in X, a preference structure (P, I, J) can be constructed on it as follows:
P = R ∩ (Rt)c, I = R ∩ Rt, J = Rc ∩ (Rt)c, where Rc is the complement of
R: (x, y) ∈ R⇔ (y, x) /∈ Rc.

When using numerical representations of preferences on a set of alterna-
tives X, we have [13]:

rij = 1 ⇔ the expert prefers xi to xj ⇔ xi ≻ xj

rij = 0 ⇔ the expert prefers xj to xi ⇔ xj ≻ xi

Clearly, this can be extended by adding the indifference case:

rij = 0.5 ⇔ the expert is indifferent between xi and xj ⇔ xi ∼ xj

However, if xi is preferred to xj and xj to xk, the question whether the
“degree or strength of preference” of xi over xj exceeds, equals, or is less than
the “degree or strength of preference” of xj over xk cannot be answered by the
classical preference modelling. The implementation of the degree of preference
between alternatives may be essential in many situations. Take for example
the case of 3 alternatives {x, y, z} and 2 experts. If one of the experts prefers x
to y to z, and the other prefers z to y to x then using the above values it may
be difficult or impossible to decide which alternative is the best. This may be
not the case if intensities of preferences are allowed in the above model. As
Fishburn points out in [13], if alternative y is closer to the best alternative
than to the worst one for both experts then it might seem appropriate to
“elect” it as the social choice, while if it is closer to the worst than to the
best, then it might be excluded from the choice set. Intensity of preferences
can be implemented when modelling preferences by using fuzzy preference
relations [51] or multiplicative preference relations [40].

A fuzzy preference relation R on a set of alternatives X is a fuzzy set on the
product set X ×X, that is characterized by a membership function

µR : X ×X −→ [0, 1].

When cardinality of X is small, the preference relation may be conveniently
represented by the n × n matrix R = (rij) being rij = µR(xi, xj) ∀i, j ∈
{1, . . . , n}. The element rij ∈ R is usually interpreted as the preference degree
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of the alternative xi over xj , as follows [46]: rij = 1/2 indicates indifference
between xi and xj (xi ∼ xj), rij > 1/2 represents an uncertain preference of xi

over xj (xi ≻ xj) with rij = 1 when xi is definitely (certainly) preferred to xj .
In this case, the preference matrix, R, is usually assumed additive reciprocal,
i.e.,

rij + rji = 1 ∀i, j ∈ {1, . . . , n}.

A multiplicative preference relation A on a set of alternatives X is represented
by a matrix A ⊂ XxX, A = (aij), being aij interpreted as the ratio of the
preference intensity of alternative xi to that of xj , i.e., it is interpreted as xi

is aij times as good as xj . Saaty suggests measuring aij using a ratio-scale,
and precisely the 1 to 9 scale: aij = 1 indicates indifference between xi and
xj , aij = 9 indicates that xi is absolutely preferred to xj , and aij ∈ {1, . . . , 9}
indicates intermediate preference evaluations. In this case, the preference re-
lation, A, is usually assumed multiplicative reciprocal, i.e.,

aij · aji = 1 ∀i, j ∈ {1, . . . , n}.

In the context of GDM with heterogeneous information, an interesting
question to answer is that of the relationship between the different preference
representation formats.

Preference Orderings and Utility Functions → Binary Preference Relations

Clearly, from a preference ordering on X we can derive a binary preference
relation

xi � xj ⇔ o(i) ≤ o(j) ∀i, j = 1, . . . , n,

Also, given an utility function on X, a preference ordering, and consequently
a classical preference relation, can easily be derived as follows

o(i) ≤ o(j) ⇔ u(xi) ≥ u(xj) ∀i, j = 1, . . . , n,

Binary Preference Relations → Preference Orderings and Utility Functions

Given a binary preference relation, it is not always possible to assure the
existence of a unique preference ordering or an utility function verifying the
above equivalence. In order to get a positive answer additional conditions have
to be imposed to the preference relation.

Given the binary preference relation is preferred to (≻) on a countable set
X, with is indifferent to (∼) defined as x ∼ y if neither x ≻ y nor y ≻ x,
a fundamental result is that there exists an utility function u : X → R such
that

x ≻ y ⇔ u(x) > u(y)

if and only if ≻ on X is a weak order, i.e., it is transitive (x ≻ y ∧ y ≻ z ⇒
x ≻ z), irreflexive (we never have x ≻ x) and ∼ is transitive (x ∼ y∧y ∼ z ⇒
x ∼ z) [15]. The utility function u is said to represent the preference relation
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≻ . Obviously, in this case, any (positive) monotonic transformation of the
utility function u is also a utility function representing the same preference
relation because such a transformation preserves the ranking order of the
original utility numbers. So, if we begin with the utility function u and then
use the (positive) monotonic transformation f to get a new function v defined
as v(x) = f(u(x)), then v is also a utility function representing the same
preference relation as u.

Fuzzy Preference Relations → Preference Orderings and Utility Functions

Given a fuzzy preference relation on a finite set of alternatives X, not nec-
essarily reciprocal, Wang proved in [48] that if the following acyclic property
was verified

∀i1, i2, . . . , im ∈ {1, 2, . . . , n} :
ri1i2

> ri2i1
, ri2i3

> ri3i2
, . . . , rimim−1

> rim−1im
⇒ ri1im

> rimi1

then a total order can be produced in X, i.e, given any two arbitrary alter-
natives xi and xj in X, one of the following relations holds: xi ≻ xj , xj ≻ xi,
xi ∼ xj . A similar result was obtained in [2] when the fuzzy preference relation
is reciprocal and is weakly transitive (rij > 0.5 ∧ rjk > 0.5 ⇒ rik > 0.5).

With fuzzy preference relations, Orlovsky [37] proposed a rational criterion
to produce a total order onX based on the strict preference relation Rs = (rs

ij
)

with rs
ij

= max{rij − rji, 0} and the concept of non-dominance. Conditions
that guarantee the existence of un-fuzzy non-dominated alternatives were ob-
tained by Montero and Tejada (see [35,36]) and by Ko lodziejczyk [29]. A quan-
tifier non-dominance degree that extended Orlovsky’s non-dominance degree
was proposed by Chiclana et al. in [4].

Preference Orderings and Utility Functions → Fuzzy Preference Relations

In [5, 6, 22] the following results were obtained:

Proposition 1. Let X be a set of alternatives and λk
i

represents an evaluation
associated to alternative xi, indicating the performance of that alternative
according to a point of view (expert or criteria) ek. Then, the intensity of
preference of alternative xi over alternative xj, r

k
ij
, for ek is given by the

following transformation function

rk

ij = ϕ(λk

i , λ
k

j ) =
1

2
· [1 + ψ(λk

i , λ
k

j ) − ψ(λk

j , λ
k

i )],

where ψ is a function verifying

1. ψ(z, z) = 1

2
, ∀z ∈ R.

2. ψ is non decreasing in the first argument and non increasing in the second
argument.
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Utility Values and Fuzzy Preference Relations

Corollary 1. If λk
i

= uk
i

and

ψ(z, y) =





s(z)

s(z) + s(y)
if (z, y) 6= (0, 0)

1

2
if (z, y) = (0, 0)

where s : [0, 1] :→ R
+ is a non decreasing and continuous function, verifying

s(0) = 0, then ϕ transforms utility values given on the basis of a ratio scale

into fuzzy preference relations. In particular, if ψ(x, y) = x
2

x2+y2 , then

rk

ij = f1
(
uk

i , u
k

j

)
=

(
uk

i

)2
(
uk

i

)2
+
(
uk

j

)2

Preference Orderings and Fuzzy Preference Relations

Corollary 2. If λk
i

= ok(i), and ψ(λk
i
, λk

j
) = F (λk

j
− λk

i
), where F is any

non decreasing function, then ϕ transforms preference orderings into fuzzy
preference relations.

In particular, if ψ(x, y) = y−x

2(n−1)
, then

rk

ij = f2
(
ok

i , o
k

j

)
=

1

2

(
1 +

ok
j
− ok

i

n− 1

)

Multiplicative Preference Relations and Fuzzy Preference Relations

Proposition 2. Let X be a set of alternatives, and associated with it a mul-
tiplicative preference relation Ak =

(
ak

ij

)
. Then, the corresponding additive

fuzzy preference relation, Rk =
(
rk

ij

)
, associated with Ak is given as follows:

rk

ij = g
(
ak

ij

)
=

1

2

(
1 + log

9
ak

ij

)

These results may justify the choice of fuzzy preference relations as the
base element to integrate these different preference representation formats in
GDM context. In the following section we deal with issue of consistency of
preferences.

3 Consistency of Preferences

There are three fundamental and hierarchical levels of rationality assumptions
when dealing with preference relations [18]:

• The first level of rationality requires indifference between any alternative
and itself.
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• The second one assumes the property of reciprocity in the pairwise com-
parison between any two alternatives.

• Finally, the third one is associated with the transitivity in the pairwise
comparison among any three alternatives.

The mathematical modelling of all these rationality assumptions obviously
depends on the scales used for providing the preference values [9,16,26,40,46].

A preference relation verifying the third level of rationality is usually called
a consistent preference relation and any property that guarantees the transi-
tivity of the preferences is called a consistency property. The lack of consis-
tency in decision making can lead to inconsistent conclusions; that is why it
is important, in fact crucial, to study conditions under which consistency is
satisfied [16,26,40].

In a crisp context, where an expert provides his/her opinion on the set
of alternatives X by means of a binary preference relation, R, the concept
of consistency it has traditionally been defined in terms of acyclicity [43],
that is the absence of sequences such as x1, x2, . . . , xk(xk+1 = x1) with
xjRxj+1∀j = 1, . . . , k. Clearly, this condition as said before is closely re-
lated to the transitivity of the binary relation and its corresponding binary
indifference relation.

In a fuzzy context, where an expert expresses his/her opinions using fuzzy
preference relations, R, or multiplicative preference relations, in the case of
Saaty’s method, A, the traditional requirement to characterise consistency
has followed the way of extending the classical requirements of binary pref-
erence relations. Thus, in these cases consistency is also based on the notion
of transitivity, in the sense that if alternative xi is preferred to alternative xj

and this one to xk then alternative xi should be preferred to xk. The main
difference in these cases with respect to the classical one is that transitivity
has been modelled in many different ways due to the role the intensities of
preference have [16,19–21,26,40,46,52].

Due to the hierarchical structure of the three rationality assumptions for a
preference relation, the verification of a particular level of rationality should be
a necessary condition in order to verify the next level of rationality. This means
that the third level of rationality, transitivity of preferences, should imply or
be compatible with the second level of rationality, reciprocity of preferences,
and the second level with the first one, indifference of any alternative with
itself.

This necessary compatibility between the rationality assumptions can be
used as a criterion for considering a particular condition modelling any one
of the rationality levels as adequate or inadequate. In the case of fuzzy (mul-
tiplicative) preference relations, the indifference between any alternative, xi,
and itself is modelled by associating the preference value rii = 0.5 (aii = 1).
The reciprocity of fuzzy (multiplicative) preferences is modelled using the
property rij + rji = 1, ∀i, j (aij · aji = 1, ∀i, j). A necessary condition for
a preference relation to verify reciprocity should be that indifference between
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any alternative and itself holds. Because reciprocity property implies the in-
difference of preferences, we conclude that both properties are compatible.

In the case of multiplicative preference relations Saaty means by consis-
tency what he calls cardinal transitivity in the strength of preferences, which
is a stronger condition than the traditional requirement of the transitivity of
preferences [40]:

Definition 1. A reciprocal multiplicative preference relation A = (aij) is con-
sistent if aij · ajk = aik ∀i, j, k = 1, . . . , n.

Inconsistency for Saaty is a violation of proportionality which may not en-
tail violation of transitivity [40]. Furthermore, consistency implies reciprocity,
and therefore, they are both compatible.

In [40] Saaty shows that a reciprocal multiplicative preference relation
is consistent if and only if its maximum or principal eigenvalue λmax is
equal to the number of alternatives n. Under this consistency property, Saaty
proves that there exists a set of priorities (utilities) {λ1, λ2, . . . , λn} such that
aij = λi

λj
. Moreover, this set of values is unique up to positive linear transfor-

mation f(λi) = β · λi with β > 0. Thus, if a multiplicative preference relation
is consistent then it can be represented by a unique (up to positive linear
transformations) utility function.

For fuzzy preference relations, there exist many properties or conditions
that have been suggested as rational conditions to be verified by a consistent
relation. Among these, we can citethe following:

1. Triangle condition [30]: rij + rjk ≥ rik ∀i, j, k.
This condition can be geometrically interpreted considering alternatives
xi, xj , xk as the vertices of a triangle with length sides rij , rjk and rik
[30], and therefore the length corresponding to the vertices xi, xk should
not exceed the sum of the lengths corresponding to the vertices xi, xj

and xj , xk.
2. Weak transitivity [46]: rij ≥ 0.5, rjk ≥ 0.5 ⇒ rik ≥ 0.5 ∀i, j, k.

The interpretation of this condition is the following: If xi is preferred to
xj and xj is preferred to xk, then xi should be preferred to xk. This
kind of transitivity is the usual transitivity condition (xi is preferred to
alternative xj and this one to xk then alternative xi should be preferred to
xk) a logical and consistent person should use if he/she does not want to
express inconsistent opinions, and therefore it is the minimum requirement
condition that a consistent fuzzy preference relation should verify.

3. Max-min transitivity [9, 52]: rik ≥ min(rij , rjk) ∀i, j, k.
The idea represented here is that the preference value obtained by a direct
comparison between two alternatives should be equal to or greater than
the minimum partial values obtained when comparing both alternatives
with an intermediate one. This kind of transitivity has been the traditional
requirement to characterise consistency in the case of fuzzy preference re-
lations [52], although it is a very strong concept that it could not be
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verified even when a fuzzy preference relation is considered perfectly con-
sistent from a practical point of view. For example, let us consider a set
of three alternatives X = {x1, x2, x3}, such that x1 ≺ x2 ≺ x3. Suppose
that the opinions about these alternatives are given by the following fuzzy
preference relation

R =




0.5 0.1 0
0.9 0.5 0.4
1 0.6 0.5


 .

On the one hand, this matrix reflects the fact that x1 ≺ x2 ≺ x3; it verifies
weak transitivity and the triangle condition. On the other hand, it does
not verifies max-min transitivity because r13 < min{r12, r23}.

4. Max-max transitivity [9, 52]: rik ≥ max(rij , rjk) ∀i, j, k.
This concept represents the idea that the preference value obtained by a
direct comparison between two alternatives should be equal to or greater
than the maximum partial values obtained when comparing both alterna-
tives using an intermediate one. This is a stronger concept than max-min
transitivity and therefore if a fuzzy preference relation does not verify the
latter neither verifies the former.

5. Restricted max-min transitivity [46]: rij ≥ 0.5, rjk ≥ 0.5 ⇒ rik ≥
min(rij , rjk) ∀i, j, k.
When a fuzzy preference relation verifies this condition it is modelled the
concept that when an alternative xi is preferred to xj with a value pij

and xj is preferred to xk with a value rij , then xi should be preferred
to xk with at least an intensity of preference rik equal to the minimum
of the above values. The inequality should becomes equality only when
there exist indifference between at least two of the three alternatives. A
consistent fuzzy preference relation has to verify this condition, which goes
a step further than weak transitivity because add an extra requirement
about the degrees of preferences involved. This transitivity condition is
therefore stronger than weak transitivity but it is milder than max-min
transitivity. It is easy to prove that the above fuzzy preference relation R
verifies restricted max-min transitivity.

6. Restricted max-max transitivity [46]: rij ≥ 0.5, rjk ≥ 0.5 ⇒ rik ≥
max(rij , rjk) ∀i, j, k.
In this case it is modelled the concept that when an alternative xi is pre-
ferred to xj with a value rij and xj is preferred to xk with a value rij ,
then xi should be preferred to xk with at least an intensity of preference
rik equal to the maximum of the above values. As in the previous case,
the the equality should hold only when there exist indifference between
at least two of the three alternatives, in which case, restricted max-max
transitivity and restricted max-min transitivity coincide. It is clear that
this concept is, on the one hand, stronger than restricted max-min tran-
sitivity and, on the other hand, milder than max-max transitivity. This
concept has been considered by Tanino [46] as a compulsory condition to



226 F. Chiclana, et al.

be verified by a consistent fuzzy preference relation. It is easy to prove that
the fuzzy reciprocal preference relation R, given above, verifies restricted
max-max transitivity.

7. Multiplicative transitivity [46]:
rji

rij
·

rkj

rjk
= rki

rik
∀i, j, k.

Tanino in [46] introduced this concept of transitivity only in the case of
being rij > 0 ∀i, j, and interpreting rij/rji as a ratio of the preference
intensity for xi to that of xj , i.e., xi is rij/rji times as good as xj . Multi-
plicative transitivity includes restricted max-max transitivity [45,46], and
rewritten as rij · rjk · rki = rik · rkj · rji ∀i, j, k. In the case of a reciprocal
fuzzy preference relation this expression can be expressed in the following
form:

∀i, j, k :
rij · rjk · (1 − rik) = rik · rkj · rji ⇔
rij · rjk − rij · rjk · rik = rik · rkj · rji ⇔
rik · rkj · rji + rij · rjk · rik = rij · rjk ⇔
rik · (rkj · rji + rij · rjk) = rij · rjk ⇔

rik =
rij · rjk

rij · rjk + rji · rjk

⇔

rik =
rij · rjk

rij · rjk + (1 − rij) · (1 − rjk)

This expression is a well known andlike uninorm which is self-dual with
respect to the negator operator N(x) = 1−x (for more details see [17,28]).
This type of transitivity has also been studied by De Baets et al. in [8]
within a general framework of transitivity of reciprocal fuzzy preference
relations, the cycle-transitivity, under the name of ‘isostochastic transi-
tivity’. This is also a symmetric sum in the sense of Silvert [44] that
has been applied for information combination in approximate reasoning
(see [10] and cites within it).

8. Additive transitivity [45,46]: (rij − 0.5) + (rjk − 0.5) = (rik − 0.5) ∀i, j, k,
or equivalently rij + rjk + rki = 3

2
∀i, j, k.

This kind of transitivity has the following interpretation: suppose we want
to establish a ranking between three alternatives xi, xj and xk, and that
the information available about these alternatives suggests that we are
in an indifference situation, i.e. xi ∼ xj ∼ xk. When giving preferences
this situation would be represented by rij = rjk = rik = 0.5. Suppose
now that we have a piece of information that says xi ≺ xj , i.e. rij < 0.5.
This means that rjk or rik have to change, otherwise there would be a
contradiction, because we would have xi ≺ xj ∼ xk ∼ xi. If we suppose
that rjk = 0.5 then we have the situation: xj is preferred to xi and there
is no difference in preferring xj to xk. We must then conclude that xk

has to be preferred to xi. Furthermore, as xj ∼ xk then rij = rik, and
so (rij − 0.5) + (rjk − 0.5) = (rij − 0.5) = (rik − 0.5). We have the same
conclusion if rik = 0.5. In the case of rjk < 0.5, then we have that xk is
preferred to xj and this to xi, so xk should be preferred to xi. On the other
hand, the value rik has to be equal to or lower than rij , being equal only
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in the case of rjk = 0.5 as we have already shown. Interpreting the value
rji −0.5 as the intensity of strict preference of alternative xj over xi, then
it seems reasonable to suppose that the intensity of preference of xi over
xk should be equal to the sum of the intensities of preferences when using
an intermediate alternative xj , that is, rik −0.5 = (rij −0.5)+(rjk −0.5).
The same reasoning can be applied in the case of rjk > 0.5 [26, 45, 46].
The fuzzy preference relation R, given above, verifies additive transitivity.

The following diagram shows all logical relationships between the defined
transitivity conditions. We note that there is no relationship between weak-
transitivity and triangle condition [30],

(7)
⇓

(1) ⇐ (8) ⇒ (6) ⇒ (5) ⇒ (2)
⇑ ⇑

(4) ⇒ (3)

In the following, we will show that max-max transitivity is not compatible
with the reciprocity property. If a fuzzy preference relation verifies max-max
transitivity and reciprocity then rik ≥ max{rij , rjk} ∀i, j, k and rij = 1 −
rji} ∀i, j, which implies:

1 − rik ≤ 1 − max{rij , rjk} ∀i, j, k ⇒ rki ≤ min{rkj , rji} ∀i, j, k

which contradicts max-max transitivity. The same conclusion can be obtained
regarding max-min transitivity. Therefore both properties are not adequate
properties to model the transitivity for fuzzy preference relations.

If we examine the relationship between restricted max-max transitivity
and reciprocity, then we conclude that the fuzzy preference relation also has
to verify the complementary restricted min-min transitivity, that is,

∀i, j, k : min{rij , rjk} ≤ 0.5 ⇒ rik ≥ min{rij , rjk}.

However, nor restricted max-max transitivity nor restricted min-min transi-
tivity imply reciprocity. For example, the following fuzzy preference relation

R =




0.5 0.6 0.8
0.4 0.5 0.7
0.1 0.3 0.5




verifies both restricted transitivity properties but it is not reciprocal. This does
not imply that they are incompatible with the reciprocity property. In fact,
a fuzzy preference relation can be reciprocal and still verify both restricted
transitivity properties, as the one we would have obtained by changing the
values r13 for 0.9 or the value r31 for 0.2.
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If we examine the compatibility between the additive consistency property
and reciprocity then we conclude that the first one implies the second one.
Firstly, we show that additive consistency property implies indifference of
preferences. Indeed, when i = j = k additive consistency property reduces
to rii + rii + rii = 1.5 ∀i which implies rii = 0.5 ∀i. Secondly, we show
that additive consistency property implies reciprocity property. If k = i then
additive consistency reduces to rij +rji+rii = 1.5 ∀i, j and because we already
have that rii = 0.5 ∀i then rij + rji = 1 ∀i, j.

As shown in [26], additive transitivity for fuzzy preference relations can be
seen as the parallel concept of Saaty’s consistency property for multiplicative
preference relations [41]:

Proposition 3. Let A = (aij) be a consistent multiplicative preference rela-
tion, then the corresponding reciprocal fuzzy preference relation, R = g(A)
verifies additive transitivity property.

In such a way, the following definition of a consistent fuzzy preference
relation may be given:

Definition 2. A reciprocal fuzzy preference relation R = (rij) is additive con-
sistent if rij + rjk + rki = 3

2
∀ i, j, k = 1, . . . , n.

In [26], Herrera-Viedma et. al. gave a characterisation of the consistency
property defined by the additive transitivity property of a fuzzy preference re-
lation Rk = (rk

ij
). Using this characterization method, a procedure was given

to construct a consistent fuzzy preference relation R̃k from a non-consistent
fuzzy preference relation Rk. As in the case of multiplicative preference rela-
tions, if a fuzzy preference relation is additive transitivity then it can be rep-
resented by a unique (up to positive linear transformations) utility function.
Additive transitivity has been used to obtain more consistent fuzzy preference
relation from a given one (see [31]) and as shown in [1,24,25] it is also a valu-
able concept for incomplete fuzzy preference relations as it reduces experts’
uncertainty when choosing values to estimate their unknown ones, which is
not the case if other types of transitivity conditions were to be used.

4 Conflict Between Additive and Multiplicative

Consistency Properties and Scales

There are many reasons that point in the direction of considering additive
consistency as an adequate property to model transitivity of fuzzy preferences.
However, a conflict between the additive consistency property and the scale
used for providing the preference values, i.e., the closed interval [0, 1], can
appear. To show this, we will use a simple example.

Let us suppose a set of three alternatives {x1, x2, x3} for which we have
the following information: alternative x1 is considerably more important than
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alternative x2 and this one is demonstrably or very considerably more impor-
tant than alternative x3. Suppose that these statements are modelled using
the following values r12 = 0.75 and r23 = 9 respectively. If we want to main-
tain the additive consistency property then we would obtain a negative value
r13 = 1.5 − r12 − r23 = −0.15.

This conflict between the additive consistency property and the scale used
for providing preference values suggests that a modification of this property
where it acts incoherently has to be made. Because restricted max-max tran-
sitivity is the minimum condition required for a reciprocal fuzzy preference
relation to be considered consistent, then the modification to introduce in the
additive consistency property should maintain restricted max-max transitivity
and, by reciprocity, the complementary restricted min-min transitivity.

Obviously, the same problem exists when dealing with multiplicative pref-
erence relations.The following simple example will show that there exists a
conflict between the scales used to associate multiplicative preference values
to judgements and the definition of consistency given by Saaty. Let us sup-
pose a set of three alternatives {x1, x2, x3} on which an expert provides the
following judgements: alternative x1 is considerably more important than al-
ternative x2 and this one demonstrably or overwhelming more important than
alternative x3. In such a case, using Saaty’s 1-9 scale, we would have the values
a12 = 5 and a23 = 7.

On the one hand, if we want to maintain the multiplicative consistency
property then, according to Saaty [40], we would have to assign the value
a13 = a12 · a23 = 35, and the only solution would be using the following
consistent reciprocal multiplicative preference relation

A =




1 5 35
1/3 1 7
1/35 1/5 1


 .

Therefore, to avoid such a type of conflict we could proceed by choosing a
different scale for providing judgements or by modifying the above definition.
With respect to the first question, the use of any other scale of the form
[1/a, a], a ∈ R

+, would not make this conflict disappear, which means that
the the only possible solution to overcome this conflict would consist of using
the scale of pairwise comparison from 0 to +∞. However, as Saaty points
out in [40], this may not be useful at all because it assumes that the human
judgement is capable of comparing the relative dominance of any two objects,
which is not the case.

On the other hand, we note that if a13 ∈ [7, 9] transitivity still holds. We
analyze this fact by means of the measure of consistency proposed by Saaty.
In [40] Saaty shows that a reciprocal multiplicative preference relation is con-
sistent if and only if its maximum or principal eigenvalue λmax is equal to the
number of alternatives n. However, because perfect consistency is difficult to
obtain in practice, especially when measuring preferences on a set with a large
number of alternatives, Saaty defined a consistency index (CI = λmax − n)
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that reflects the deviation from consistency of all the aij of a particular recip-
rocal multiplicative preference relation from the estimated ratio of priorities
wi/wj .

A measure of inconsistency independent of the order of the reciprocal
multiplicative preference relation is defined as the consistency ratio (CR).
This is obtained by taking the ratio of CI to the random index (RI), which is
an average consistency index of a sample set of randomly generated reciprocal
matrices from the scale 1 to 9 (size 500 up to 11 by 11 matrices, and size 100 for
squares matrices of orders 12, 13 14 and 15). For this consistency measure, he
proposed a threshold of 0.10 to accept the reciprocal multiplicative preference
relation as consistent. When the CR is greater than 0.10 then, in order to
improve consistency, those judgements with a greater difference aij and wi/wj ,
are usually modified and a new priority vector is derived.

In our previous example we observe that the conflict between the multi-
plicative consistency property and the scale used by Saaty arises because if we
impose consistency then we get values outside the range [1/9, 9]. If we restrict
the possible values of a13 to be in [1/9, 9], then it is clear than in this case
alternative x1 should be considered as overwhelming more important than
alternative x3, and thus the value of a13 should be greater or equal to 7. If
a13 = 7 we get a CR value of 0.25412, with a13 = 8 a CR value of 0.212892
and with a13 = 9 a CR value of 0.179714, all of them greater than the min-
imum 0.10 for considering any reciprocal multiplicative preference relation
consistent in this situation.

All these considerations mean that if we do not change the scale used
to associate preference values to judgement or want to have a homogeneous
scale when working in a group decision context, then the above definitions of
consistency of preference relations should be modified.

I the next section, we set out the properties to be verified by a f : [0, 1] ×
[0, 1] → [0, 1] so that it can be used to obtained rik from the pair of values
(rij , rjk), that is, rik = f (rij , rjk).

5 Consistency Function of Preferences: Conditions to

Verify

The assumption of experts being able to quantify their preferences in the
domain [0,1] instead of {0, 1} or a set with finite cardinality, as it may be a
set of linguistic labels [3,27,33,34], underlies unlimited computational abilities
and resources from the experts. Taking these unlimited computational abilities
and resources into account we may formulate that an expert’s preferences are
consistent when for any three alternatives xi, xj , xk their preference values are
related in the exact form

rik = f(rij , rjk)

being f a function f : [0, 1] × [0, 1] → [0, 1]. In what follows we will set out a
set of conditions or properties to be verified by such a function f .
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The above equality can be interpreted as the equation to solve in a a
situation when we do want to compare the alternatives xi and xk, but cannot
do it directly, but we have an alternative xj of which we know the exact values
of rij and rjk. In this situation, we can establish a broad comparison between
alternatives xi and xk on the basis of the values rij and rjk. Indeed, we can
distinguish the following cases:

Case 1. rij = 0.5 (rjk = 0.5) which means that xi ∼ xj (xj ∼ xk) and as a
consequence the strength of preference between xi and xk should be the same
as the one between xj and xk. We then have: rik = rjk (rik = rjk).

Case 2. rij > 0.5 and rjk > 0.5. In this case, alternative xi is preferred to
alternative xj (xi ≻ xj) and alternative xj is preferred to alternative xk (xj ≻
xk). We then have that xi ≻ xj ≻ xk which implies xi ≻ xk and therefore
rik > 0.5. Furthermore, in these cases restricted max-max transitivity should
be imposed, which means that xi should be preferred to xk with a degree of
intensity at least equal to the maximum of the intensities rij and rjk: rik ≥
max{rij , rjk}, where the equality holds only when there exists indifference
between at least one of the alternatives and xj , i.e., rij = 0.5 or rjk = 0.5, as
we have said in case 1. As a result, in this case rik > max{rij , rjk} should be
verified.

Case 3. When rij < 0.5 and rjk < 0.5, a similar argument to the one of case
2 leads to rik < min{rij , rjk}.

Case 4. One reference value is greater than 0.5 and the other is lower than
0.5. Suppose that rij > 0.5 and rjk < 0.5. This is equivalent to rij > 0.5
and rkj = 1 − rjk > 0.5, that is: xi ≻ xj and xk ≻ xj . The comparison
of alternatives xi and xj is done by comparing the intensities of preferences
of them over the alternative xj . An indifference situation between xi and xk

would exist only when both alternatives are preferred over xj with the same
intensity, while the alternative with greater intensity of preference over xj

should be preferred to the other one. This is summarized in the following
way:




xi ∼ xk if rij = rkj ⇔ rij + rjk = 1
xi ≻ xk if rij > rkj ⇔ rij + rjk > 1
xi ≺ xk if rij < rkj ⇔ rij + rjk < 1



⇔





rik = 0.5 if rij + rjk = 1
rik > 0.5 if rij + rjk > 1
rik < 0.5 if rij + rjk < 1





It is obvious that the greater the value |rij + rjk − 1| the greater |rik − 0.5|.

The following modification of the additive consistency property where it
acts incoherently meet the above conditions:

f(x, y) =





min{x, y} x, y ∈ [0, 0.5]

max{x, y} x, y ∈ [0.5, 1]

x+ y − 0.5 otherwise
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However, this function is not associative which is a necessary requirement for
a function to be considered consistent in this context. Indeed, we have hat:

rik = f(rij , rjk) = f (rij , f(ril, rlk)) ; rik = f(ril, rlk) = f (f(rij , rjl), rlk)

and therefore it is true that:

f (f(rij , rjl), rlk) = f (rij , f(ril, rlk))

In terms of function f , case 1 implies f(0.5, x) = f(x, 0.5) = x ∀x ∈
[0, 1], which means that function f has neutral element 0.5. In particular,
f(0.5, 0.5) = 0.5 which means that the neutral element of f is idempotent.
This property in conjunction with case 2 mean that function f behaves in
[0.5, 1] × [0.5, 1] as a t-conorm, while in conjunction with case 3 mean that
function f behaves in [0, 0.5] × [0, 0.5] as a t-norm. Clearly, other properties
desirable to be verified by such a function f include that of being continuous
except maybe in the points (0, 1) and (1,0); increasing with respect to both
arguments x and y; and commutative.

We make note that uninorm operators present all the above properties,
which may suggest that function f may belong to the class of uninorms op-
erators. As said in Section 3, multiplicative transitivity is a uninorm, and
therefore it may be taken as the condition to be verified for a fuzzy preference
relation to be considered as consistent.

6 Conclusions

In a GDM problem experts may provide their preferences by means of different
preference representation formats. The integration of heterogeneous informa-
tion is therefore an important issue to be addresses in these situations. A
review of the main results regarding the relationships between the numerical
representation formats was provided, and it was suggested that the fuzzy pref-
erence relation “is preferred to” representing the strength of preference of one
alternative over another in the scale [0, 1] could be used as the base element to
integrate these different preference representation formats in group decision
making situations.

Once preferences are provided by the expert, the problem of measuring
the consistency of these preferences becomes crucial to get ‘good’ solutions.
While for crisp and multiplicative preference relations there might exist an
agreement on the properties to be satisfied in order to be considered con-
sistent, this is not the case for fuzzy preference relations. Indeed, for a fuzzy
preference relation to be considered consistent, many different properties have
been suggested. Most of these properties are related in some way to the tradi-
tional concept of transitivity. One of this properties is the additive transitivity
property, which is equivalent to Saaty’s consistency property for multiplica-
tive preference relations. However, both consistency properties are in conflict
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with the corresponding scale used for providing the preferences. I order to
overcome this conflict, a set of conditions have been set for reciprocal fuzzy
preference relations to be considered ‘fully consistent.’ These set of conditions
suggest that consistency might be represented by a uninorm operator. One of
the suggested properties to model consistency for fuzzy preference relations,
the multiplicative consistency, introduced by Tanino in 1988, is an example
of a such operator.
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