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Abstract— The consistency of reciprocal preference relations
is studied. Consistency is related with rationality, which is asso-
ciated with the transitivity property. For fuzzy preference rela-
tions many properties have been suggested to model transitivity
and, consequently, consistency may be measured according to
which of these different properties is required to be satisfied.
However, we will show that many of them are not appropriate
for reciprocal preference relations. We put forward a functional
equation to model consistency of reciprocal preference relations,
and show that self-dual uninorms operators are the solutions
to it. In particular, Tanino’s multiplicative transitivity property
being an example of such type of uninorms seems to be an ap-
propriate consistency property for fuzzy reciprocal preferences.

I. INTRODUCTION

Preference relations are usually assumed to model experts’
preferences in decision making problems [6]. In the classi-
cal preference modelling, given two alternatives, an expert
judges them in one of the following ways:

(i) one alternative is preferred to another;
(ii) the two alternatives are indifferent to him/her;

(iii) he/she is unable to compare them.

According to these cases, three binary relations can be
defined:

(i) the strict preference relation P : (x, y) ∈ P if and only
if the expert prefers x to y (x � y);

(ii) the indifference relation I: (x, y) ∈ I if and only if the
expert is indifferent between x and y (x ∼ y);

(iii) the incomparability relation J : (x, y) ∈ J if and only
if the expert unable to compare x and y.

Fishburn in [6] defines indifference as the absence of strict
preference. He also points out that indifference might arise
in three different ways:

(a) when an expert truly feels that there is no real difference,
in a preference sense, between the alternatives;

(b) when the expert is uncertain as to his/her preference
between the alternatives because ‘he might find their
comparison difficult and may decline to commit him-
self[/herself] to a strict preference judgement while not
being sure that he[/she] regards [them] equally desirable
(or undesirable)’;

(c) or when both alternatives are considered incomparable
on a preference basis by the expert.
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It is obvious from the third case that Fishburn treats
the incomparability relation as an indifference relation, i.e.,
J is empty (there is no incomparability). Asymmetry is
considered by Fishburn [6] as an “obvious” condition for
preferences: if an expert prefers x to y, then he[/she] should
not simultaneously prefers y to x.

Using a numerical representation of preferences on a set
of alternatives X , we have [5]:

rij = 1 ⇔ xi � xj

rij = 0 ⇔ xj � xi

Clearly, this can be extended by adding the indifference case:

rij = 0.5 ⇔ xi ∼ xj

However, given three alternatives xi, xj , xk such that xi

is preferred to xj and xj to xk, the question whether the
“degree or strength of preference” of xi over xj exceeds,
equals, or is less than the “degree or strength of preference”
of xj over xk cannot be answered by the classical preference
modelling. The implementation of the degree of preference
between alternatives may be essential in many situations, and
this can be modelled using fuzzy preference relations [2].

A fuzzy preference relation R on a set of alternatives X
is a fuzzy set on the product set X×X , that is characterized
by a membership function

µR : X ×X −→ [0, 1].

When cardinality of X is small, the preference relation may
be conveniently represented by the n × n matrix R = (rij)
being rij = µR(xi, xj) ∀i, j ∈ {1, . . . , n}.

In this approach, given two alternatives an experts provides
(i) a value in the range (0.5, 1] to quantify the “degree or

strength of preference” of an alternative when preferred
to another;

(ii) the value 0.5 when the two alternatives are indifferent
to him/her;

(iii) no value when he/she is uncertain as to his/her prefe-
rence between the alternatives or he/she is unable to
compare them [9].

The main advantage of pairwise comparison is that of
focusing exclusively on two alternatives at a time which
facilitates experts when expressing their preferences. How-
ever, this way of providing preferences limits experts in their
global perception of the alternatives and, as a consequence,
the provided preferences could not be rational. Usually, ratio-
nality is related with consistency, which is associated with the
transitivity property [10]. Transitivity seems like a reasonable
criterion of coherence for an individual’s preferences: if x is
preferred to y and y is preferred to z, common sense suggests
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that x should be preferred to z.
Many properties have been suggested to model transitivity

of a fuzzy preference relation and, consequently, consistency
may be measured according to which of these different
properties is required to be satisfied. One of these properties
is the additive transitivity property, which is equivalent to
Saaty’s consistency property for multiplicative preference
relations [10]. However, as we will show this consistency
property is in conflict with the corresponding scale used for
providing the preference values. In order to overcome this
conflict, a set of conditions will be put forward for a fuzzy
preference relation to be considered ‘fully consistent.’ Under
this set of conditions we show that consistency of preferences
should be modelled using uninorm operators. In particular,
Tanino’s multiplicative transitivity property [22], being an
example of such type of uninorms, seems to be an appropriate
consistency property for fuzzy reciprocal preferences.

The rest of the paper is set out as follows. Preliminaries
on consistency of preferences are provided in Section II. In
Section III, a set of conditions for a fuzzy preference relation
to be considered ‘fully consistent’ will be established. Self-
dual uninorms operators are shown to be the solutions to
this set of conditions in Section IV. Finally, conclusions are
drawn in Section V.

II. CONSISTENCY OF PREFERENCES

There are three fundamental and hierarchical levels of ra-
tionality assumptions when dealing with preference relations
[12]:

• The first level of rationality requires indifference be-
tween any alternative xi and itself.

• The second one requires that if an expert prefers xi to
xj , that expert should not simultaneously prefer xj to
xi. This asymmetry condition is viewed as an “obvious”
condition/criterion of consistency for preferences [6].
This rationality condition is modelled by the property of
reciprocity in the pairwise comparison between any two
alternatives, which is seen by Saaty as basic in making
paired comparisons [19].

• Finally, the third one is associated with the transitivity in
the pairwise comparison among any three alternatives.

This hierarchical structure also requires for a particular
level of rationality to be compatible with the upper ones:
the third level of rationality should imply or be compatible
with the second level of rationality, and this with the first
one. This necessary compatibility between the rationality
assumptions could be used as a criterion for considering
a particular condition modelling any one of the rationality
levels as adequate or inadequate.

A preference relation verifying the third level of rationality
is usually called a consistent preference relation and any
property that guarantees the transitivity of the preferences
is called a consistency property. The lack of consistency in
decision making can lead to inconsistent conclusions; that is
why it is important, in fact crucial, to study conditions under
which consistency is satisfied [20].

In a crisp context, where an expert provides his/her opinion
on the set of alternatives X by means of a binary preference
relation, R, the concept of consistency has traditionally
been defined in terms of acyclicity [21], i.e. the absence
of sequences such as x1, x2, . . . , xk(xk+1 = x1) with
xjRxj+1∀j = 1, . . . , k. Clearly, this condition as said before
is closely related to the transitivity of the binary relation and
its corresponding binary indifference relation.

In a fuzzy context, the traditional requirement to char-
acterise consistency has followed the way of extending the
classical requirements of binary preference relations. Thus,
consistency is also based on the notion of transitivity, in the
sense that if alternative xi is preferred to alternative xj and
this one to xk then alternative xi should be preferred to xk,
which is normally referred in this context as weak transitivity.
However, the main difference in this case with respect to the
classical one is that consistency has been modelled in many
different ways due to the role the intensity of preference has
[7], [10], [13]–[15], [19], [22], [24]. Indeed, many properties
or conditions have been suggested as rational ones for a fuzzy
preference relation to be considered a consistent one. Among
these properties we can cite :

• Max-min transitivity [4], [24]:
rik ≥ min{rij , rjk}

• Restricted max-min transitivity [22]:
min{rij , rjk} ≥ 0.5 ⇒ rik ≥ min{rij , rjk}

• Max-max transitivity [4], [24]:
rik ≥ max{rij , rjk}

• Restricted max-max transitivity [22]:
min{rij , rjk} ≥ 0.5 ⇒ rik ≥ max{rij , rjk}

• Multiplicative transitivity [22]:
rji

rij
· rkj

rjk
= rki

rik

• Additive transitivity [22]:
(rij − 0.5) + (rjk − 0.5) = rik − 0.5

We note that these conditions are stronger than weak
transitivity, and therefore a fuzzy preference relation might
be transitive but not consistent (see [10], [17], [22]).

As aforementioned, the value 0.5 is usually used to model
the first level of rationality in the case fuzzy preference
relations, and therefore we have

rii = 0.5 ∀i. (1)

The second level of rationality of fuzzy preferences is
modelled using the following reciprocity property

rij + rji = 1 ∀i, j. (2)

Clearly, reciprocity property implies indifference, and there-
fore both properties are compatible.

Max-max transitivity cannot be verified under reciprocity.
Indeed, if R = (rij) is reciprocal and verifies max-max
transitivity, then:

∀i, j, k : rki = 1− rik

≤ 1−max{rij , rjk}
= min{1− rij , 1− rjk}
= min{rji, rkj}
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From max-max transitivity we have that:

∀i, j, k : rki ≥ max{rkj , rji}

and therefore we have that max-max transitivity and reci-
procity can be verified only when

∀i, j, k : rik = rij = rjk = 0.5.

Max-min transitivity and reciprocity imply:

∀i, j, k : rik = 1− rki

≤ 1−min{rkj , rji}
= max{1− rkj , 1− rji}
= max{rjk, rij}

Therefore, max-min transitivity under reciprocity can be
rewritten as

∀i, j, k : min{rij , rjk} ≤ rik ≤ max{rij , rjk}.

The restricted versions of max-max and max-min do not im-
ply reciprocity. For example, the following fuzzy preference
relation

R =

 0.5 0.6 0.8
0.4 0.5 0.7
0.1 0.3 0.5


verifies both restricted transitivity properties but it is not
reciprocal. This does not imply that they are incompatible
with the reciprocity property. In fact, a fuzzy preference
relation can be reciprocal and still verify both restricted
transitivity properties, as the one we would have obtained
by changing the values r13 for 0.9 or the value r31 for 0.2.
The same applies to max-min transitivity and multiplicative
transitivity.

Additive transitivity implies both reciprocity and indiffe-
rence and we might conclude that it is the most adequate
property among the above list to model consistency of fuzzy
preferences. However, additive transitivity is in conflict with
scale used for providing the preference values. Indeed, if we
have a set of three alternatives {x1, x2, x3} with r12 = 0.75
and r23 = 0.9, additive transitivity leads to the meaningless
negative value r13 = 1.5 − r12 − r23 = −0.15. This could
be avoided by using the set of real numbers as the range of
possible preference values, which assumes that the human
judgement is capable of comparing the relative dominance of
any two objects [19]. But if this is to be assumed then there
would not be any reason for the scale [0, 1] to be changed
and therefore additive transitivity might not be considered
the most suitable condition to model consistency of fuzzy
preference relations.

III. CONSISTENCY FUNCTION OF RECIPROCAL
PREFERENCES

The assumption of experts being able to quantify their
preferences in the domain [0,1] instead of {0, 1} or a set
with finite cardinality, as it may be a set of linguistic labels
[11], [18], underlies unlimited computational abilities and
resources from the experts. Taking these unlimited computa-
tional abilities and resources into account we may formulate

that an expert’s preferences are consistent when for any three
alternatives xi, xj , xk their preference values are related in
the ‘exact’ form

rik = f(rij , rjk) ∀i, j, k (3)

xi xj

xk

-Q
Q

Q
Q

Q
Q
Q

QQk

�
�
�
�
���

rij

rjk

r ik
=

f(
r ij

, r
jk
)

being f a function f : [0, 1]× [0, 1] → [0, 1].
In practical cases expression (3) might obviously not be

verified even when the preference values of a preference rela-
tion are transitive, i.e., they comply with the weak transitivity
property. However, the assumption of modelling consistency
using the expression (3) can be used to introduce levels of
consistency, which in group decision making situations could
be exploited by assigning a relative importance weight to
each one of the experts in arriving to a collective preference
opinion. Also, expression (3) can be used as a principle for
deriving missing values. Indeed, using just those preference
values provided by an expert, expression (3) could be used
to estimate those preference values which were not given
by that expert because he/she was uncertain as to his/her
preference between the alternatives or he/she is unable to
compare them. By doing this, we assure that the estimated
values are ‘compatible’ with the rest of the information
provided by that expert.

In what follows we will set out a set of conditions or
properties to be verified by such a function f .

The first condition to impose to function f is that it must
be monotonic (increasing), i.e. if any of the preference values
rij , rjk increases while the other remains fixed then the
preference value rik will not decrease.

Property 1 (Monotonicity):

f(x, y) ≥ f(x′, y′) if x ≥ x′and y ≥ y′ (4)

Equation (3) implies that

f(rij , rjk) = f(ril, rlk) ∀i, j, k, l.

On the other hand we have rij = f(ril, rlj) and rlk =
f(rlj , rjk). Putting these expressions together we have

f(f(ril, rlj), rjk) = f(ril, f(rlj , rjk)) ∀i, j, k, l.

Thus function f must be associative.
Property 2 (Associativity):

f(f(x, y), z) = f(x, f(y, z)) ∀x, y, z ∈ [0, 1] (5)

The application of equation (3) and the assumed reciprocity
property of preferences give

∀i, j, k : rki = f(rkj , rji) = f(1− rjk, 1− rij)
rki = 1− rik = 1− f(rij , rjk)
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and hence

f(1− rjk, 1− rij) = 1− f(rij , rjk) ∀i, j, k.

Property 3 (Reciprocity):

f(x, y) + f(1− y, 1− x) = 1 ∀x, y ∈ [0, 1] (6)

Making y = 1 − x and x = y = 0.5 in property 3 we have
respectively:

Property 4 (Indifference):

f(x, 1− x) = 0.5 ∀x ∈ [0, 1] (7)

Property 5 (Transitivity of Indifference):

f(0.5, 0.5) = 0.5 (8)

From properties 2 and 4 we derive the following:

∀i, k : f(0.5, rik) = f(f(rik, 1− rik), rij)
= f(rik, f(1− rik, rik))
= f(rik, 0.5)

From equation (3) and property 2 we have that

∀i, k : rik = f(rij , rjk)
= f(rij , f(rji, rik))
= f(f(rij , rji), rik).

By property 4, f(rij , rji) = 0.5 which reduces the previous
expression to

rik = f(0.5, rik) ∀i, k.

Therefore, we have that 0.5 must be the identity element of
function f.

Property 6 (Identity element):

f(0.5, x) = f(x, 0.5) = x ∀x ∈ [0, 1] (9)

The following result can be easily proved from properties 1
and 6:

Proposition 1:

• min{rij , rjk} ≥ 0.5 ⇒ f(rij , rjk) ≥ max{rij , rjk}
• max{rij , rjk} ≤ 0.5 ⇒ f(rij , rjk) ≤ min{rij , rjk}
• rij ≤ 0.5 ≤ rjk ⇒ rij ≤ f(rij , rjk) ≤ rjk

This result means that a reciprocal preference relation that
verifies expression (3) also verifies restricted max-min and
restricted max-max transitivity properties. Clearly, this result
rules out the property max-min transitivity as a candidate for
modelling the consistency of reciprocal preference relations.

From proposition 1 we derive the following two results:
Corollary 1:

x ≥ 0.5 ⇒f(x, 1) = f(1, x) = 1
x ≤ 0.5 ⇒f(x, 0) = f(0, x) = 0

Corollary 2: f(0, 0) = 0 ∧ f(1, 1) = 1

A problem arises when (x, y) ∈ {(0, 1), (1, 0)}. Indeed, on
the one hand, by property 3 we would have that f(0, 1) =
f(1, 0) = 0.5. On the other hand, properties 2, 6 and

corollary 1 imply

x ≥ 0.5 ⇒ x =f(0.5, x) = f(f(0, 1), x)
=f(0, f(1, x)) = f(0, 1) = 0.5

x ≤ 0.5 ⇒ x =f(x, 0.5) = f(x, f(0, 1))
=f(f(x, 0), 1) = f(0, 1) = 0.5

Thus, the value f(0, 1) = f(1, 0) = 0.5 implies that 0.5 =
x ∀x ∈ [0, 1]. Therefore, properties 3 and 4 must be true for
(x, y) ∈ [0, 1]2\{(0, 1), (1, 0)}.

If f(0, 1) (f(1, 0)) exists then

f(0, 1) = f(0, f(1, x)) = f(f(0, 1), x) ∀x ≥ 0.5

f(0, 1) = f(f(x, 0), 1) = f(x, f(0, 1)) ∀x ≥ 0.5

There are two alternative cases to the value 0.5. If f(0, 1) >
0.5 then f(0, 1) = f(f(0, 1), 1) = 1, while if f(0, 1) < 0.5
then f(0, 1) = f(0, f(0, 1)) = 0. Therefore, we have that in
all cases:

Proposition 2: f(0, 1), f(1, 0) ∈ {0, 1}

Another desirable property to be verified by function f
should be that of continuity as it is expected that a slight
change of the values in (rij , rjk) should produce a slight
change in the value rik. Continuity is not possible to be
achieved in (0, 1) nor in (1, 0). Indeed, the following is true

lim
x→0

f(x, 1− x) 6= f(0, 1) ∧ lim
x→0

f(1− x, x) 6= f(1, 0).

To conclude this section of properties of function f , we
note that if there exist alternatives xj , xk and xl such that

f(rij , rjk) = f(rij , rjl) ∀i

then applying properties 6, 4 and 2 we have that

rjk =f(0.5, rjk) = f(f(rji, rij), rjk)
=f(rji, f(rij , rjk)) = f(rji, f(rij , rjl))
=f(f(rji, rij), rjl) = f(0.5, rjl)
=rjl

Obviously, when f(rkj , rji) = f(rlj , rji) ∀i then we also
obtain rkj = rlj .

This property is usually known with the name of “cancella-
tive.” Due to the problems with the definition of function f
when (x, y) ∈ {(0, 1), (1, 0)}, we have that:

Property 7 (Cancellative):

f(x, y) = f(x, z) ∀x ∈]0, 1[⇒ y = z

f(y, x) = f(z, x) ∀x ∈]0, 1[⇒ y = z

Summarising, a solution to the functional equation (3)
for reciprocal preference values is any function f : [0, 1] ×
[0, 1] −→ [0, 1] with the following properties:

• f is continuous, monotonic increasing, associative, can-
cellative and reciprocal in [0, 1]2\{(0, 1), (1, 0)}.

• f(0, 1), f(1, 0) ∈ {0, 1}.
• f has 0.5 as its identity element.
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IV. UNINORMS AND CONSISTENCY OF RECIPROCAL
PREFERENCES

Uniorms were introduced by Yager and Rybalov in 1996
[23] as a generalisation of the t-norm and t-conorm. Uni-
norms share the properties commutativity, associativity and
monotonicity with t-norms and t-conorms. It is the boundary
condition or identity element the one that is used to gener-
alise t-norms and t-conorms. The identity element of t-norms
is the number 1, while for t-conorms the identity element is
0. Uninorms can have an identity element lying anywhere in
the unit interval [0, 1].

Clearly, function f in the previous section share all pro-
perties of a uninorm except perhaps commutativity, which
cannot be directly derived from the above set of properties.
However, commutativity of f can be derived indirectly from
associativity, cancellativity and continuity of f . Indeed, the
following result was proved by Aczél in [1]:

Theorem 1: Let I be a (closed, open, half-open, finite or
infinite) proper interval of real numbers. Then F : I2 −→ I is
a continuous operation on I2 which satisfies the associativity
equation

F (F (x, y), z) = F (x, F (y, z))∀x, y, z ∈ I

and is cancellative, that is,

F (x1, y) = F (x2, y) or F (y, x1) = F (y, x2)
implies x1 = x2 for any z ∈ I

if, and only if, there exists a continuous and strictly mono-
tonic function φ : J −→ I such that

F (x, y) = φ
[
φ−1(x) + φ−1(y)

]
∀x, y ∈ I (10)

Here J is one of the real intervals

]−∞, γ], ]−∞, γ[, [δ,∞[, ]δ,∞[, or ]−∞,∞[ (11)

for some γ ≤ 0 ≤ δ. Accordingly I has to be open at least
from one side.

The function in (10) is unique up to a linear transformation
of the variable (φ(x) may be replaced by φ(Cx), C 6= 0 but
by no other function.)

We note that although function F in theorem 1 was not
assumed to be commutative, the result (10) shows that it is.
Also, function F is strictly monotonic as a result of Aczél
theorem. Therefore, the assumption of modelling consistency
of reciprocal preferences in [0, 1] using the functional expres-
sion (3) has as solution f a uninorm with identity element
0.5 which is strictly increasing.

Fodor, Yager and Rybalov in [8] provide a represen-
tation theorem for almost continuous uninorms U , i.e.
uninorms with identity element in ]0, 1[ continuous on
[0, 1]2\{(0, 1), (1, 0)}. This representation theorem coincides
with (10), with generator function φ−1 : [0, 1] −→ [−∞,∞]
such that h(0) = −∞, h(1) = ∞. Furthermore, such a
uninorm must be self-dual with respect a strong negation N

with fixed point e, i.e.

U(N(x), N(y)) =N(U(x, y))
N(e) =e

Indifference and reciprocity of preferences in [0, 1] is based
on the use of the strong negation N(x) = 1 − x. Thus,
the solutions to the functional equation (3) for reciprocal
preference values are self-dual uninorms with respect to
N(x) = 1− x.

Interestingly, multiplicative transitivity property
rji

rij
· rkj

rjk
=

rki

rik
∀i, j, k.

introduced by Tanino when rij > 0 ∀i, j, can be expressed,
under the assumption of reciprocity, as

∀i, j, k : rij · rjk · (1− rik) = rik · rkj · rji ⇔
rij · rjk − rij · rjk · rik = rik · rkj · rji ⇔
rik · rkj · rji + rij · rjk · rik = rij · rjk ⇔

rik · (rkj · rji + rij · rjk) = rij · rjk ⇔

rik =
rij · rjk

rij · rjk + rji · rjk
⇔

rik =
rij · rjk

rij · rjk + (1− rij) · (1− rjk)

This type of transitivity has been studied by De Baets
et al. in [3] under the name of ‘isostochastic transitiv-
ity’. Clearly, multiplicative transitivity is the restriction to
[0, 1]2\{(0, 1), (1, 0)} of the well known andlike uninorm

U(x, y) =


0, (x, y) ∈ {(0, 1), (1, 0)}

xy

xy + (1− x)(1− y)
, otherwise

(12)
This ‘multiplicative’ uninorm is self-dual with respect to
the negator operator N(x) = 1 − x and has the generator
function φ−1(x) = ln x

1−x [16]. The behaviour of uninorms
on the squares [0, 0.5] × [0, 0.5] and [0.5, 1] × [0.5, 1] is
closely related to t-norms and as t-conorms [8]. For the above
multiplicative uninorm (12), we have that

U(x, y) =
TU (2x, 2y)

2
∀x, y ∈ [0, 0.5]

with

TU (x, y) =
xy

2− (x + y − xy)
∀x, y ∈ [0, 1]

being the well known Einstein product.
On the evidence obtained so far, we conclude that from

the many properties or conditions suggested as rational ones
for a fuzzy preference relation to be considered a consis-
tent one, Tanino’s multiplicative transitivity property is the
most appropriate for the case of reciprocal fuzzy preference
relations.

V. CONCLUSIONS

Rationality is related with consistency, which is associated
with the transitivity property. For fuzzy preference relations
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many properties have been suggested to model transitivity.
However, it has been shown that also many of them are not
appropriate as they are in conflict with the corresponding
scale used for providing the preferences or because they are
incompatible with the reciprocity and indifference properties,
which are seen as basic in making paired comparisons. In this
paper, we have proved that under a set of conditions consis-
tency of preferences is to be modelled using uninorm oper-
ators. In particular, for reciprocal fuzzy preference relations
we have that consistency should be modelled by Tanino’s
multiplicative transitivity property. Using this consistency
property, in the future we will address the issue of measuring
the level of consistency of a reciprocal fuzzy preference
relation, which could be very useful in the aggregation
processes of GDM problems. Also, the estimation of the
preference values of those pairs of alternatives an expert
is unable to compare will be addressed by designing a
multiplicative consistency based estimation procedure.
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