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Crossover operators with multiple descendents produce more than two offspring for each pair
of parents. They were suggested as an alternative method to the common practice of generating
only two offspring per couple. An offspring selection mechanism is responsible for choosing
the two offspring that become the children contributed by the mating. Recently, there has been
an increasing interest in incorporating this crossover scheme into real-coded genetic algorithm
models because its operation was particularly suitable to attain reliable and accurate solutions for
many continuous optimization problems.

In this paper, we undertake an extensive empirical study of the main factors that affect the
performance of real-parameter crossover operator with multiple descendents. To do this, we
focus our attention on three well-known neighborhood-based real-parameter crossover operators,
BLX-α, fuzzy recombination, and PNX. The experimental results obtained confirm that the
generation of multiple descendents along with the offspring selection mechanism that chooses the
two best offspring may enhance the operation of these three crossover operators. Another important
finding from our experiments is that real-coded genetic algorithms with crossover operators with
multiple descendents are more efficient than standard real-coded genetic algorithms, that is, they
offer solutions with higher quality, requiring fewer fitness function evaluations. C© 2008 Wiley
Periodicals, Inc.
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1. INTRODUCTION

In the initial formulation of the genetic algorithms (GAs),1,2 the candidate
solutions were coded using the binary alphabet; however, other coding types, such
as the real coding, have also been taken into account to deal with the representation
of the problem. The real coding approach seems to be adequate when tackling
optimization problems of parameters with variables in continuous domains.3−7 GAs
based on real-number representation are called real-coded GAs (RCGAs). Over the
past few years, many researchers have been paying attention to RCGAs,5,8−14 and
recently, there has been an increasing interest in solving real-world optimization
problems using these algorithms.

The crossover operator has always been regarded as one of the main search
operators in GAs15−17 because it exploits the available information in previous
samples to influence future searches. This is why most RCGA research has been
focused on developing effective real-parameter crossover operators, and as a result,
many different possibilities have been proposed.5,6,18,19 Neighborhood-based real-
parameter crossover operators are a family of operators that have currently received
special attention.18 They determine the genes of the offspring extracting values
from intervals defined on neighborhoods associated with the genes of the parents,
throughout probability distributions. Examples are BLX-α,20,21 PNX,22 and fuzzy
recombination,23 which are based on uniform, normal, and triangular probability
distributions, respectively. The degree of diversity induced by these operators may be
easily adjusted by means of varying an associated crossover step size parameter. The
greater its value is, the higher the variance (diversity) introduced into the population.

Usually, the crossover operator is applied to pairs of chromosomes, generat-
ing two offspring for each one of them, which are introduced in the population.2

However, crossover operators with multiple descendants (CX-MDs) have been
presented,24−29 which produce more than two offspring for each pair of parents.
In this case, an offspring selection mechanism limits the number of offspring that
will be population members. The most widely used mechanism selects the two best
offspring to form part of the next population.24,26,29 This particular scheme will be
called two-best-offspring strategy.

Nowadays, most RCGA models appeared in the literature are based on
neighborhood-based real-parameter CX-MDs.7,22,30−34 This success may be be-
cause they implement the strategy few points, many neighbors by a repeated ap-
plication of the crossover operator.35 This strategy, which is the basis of memetic
algorithms36 as well, arises as a flexible way to reach an exploration/exploitation
relationship that allows reliability and accuracy to be achieved simultaneously.9,37,38

This is one of the primordial objectives for most continuous optimization problems.
The main purpose of this paper is to determine the importance of real-parameter

CX-MDs as a way to improve the performance of real-parameter crossover operators.
In particular, we analyze the combination of three important factors that affect
the behavior of neighborhood-based real-parameter CX-MDs: (1) the number of
offspring per pair of parents, (2) the type of probability distribution of the real-
parameter crossover operator (BLX-α, fuzzy recombination, and PNX), and (3) the
crossover step size. We have considered the two-best-offspring strategy as offspring
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selection mechanism to carry out the experiments. One of the essential issues in this
study is to examine the synergetic effects among the diversity associated with real-
parameter crossover operators and the selection pressure derived from the offspring
selection mechanism.

We set up the paper as follows: In Section 2, we overview some impor-
tant aspects of neighborhood-based real-parameter crossover operators and de-
scribe BLX-α, fuzzy recombination, and PNX. In Section 3, we review different
CX-MDs models appeared in the specialized literature, paying particular attention
to the models proposed to deal with real coding. In addition, we present the RCGA
model with CX-MDs that will be used for the experiments. In Section 4, we de-
scribe the experimental study aimed at determining the goodness associated with
the neighborhood-based real-parameter CX-MDs. The study is made from two per-
spectives: the point of view of efficacy (quality of the solutions returned) and from
the point of view of efficiency (whether algorithms are able to find solutions with
acceptable quality requiring few fitness function evaluations). Finally, in Section 5,
we point out some concluding remarks and summarize a few new promising re-
search directions on the topic. In Appendix A, we include the features of the test
suite used for the experiments, and in Appendix B, we include tables with all the
results obtained.

2. NEIGHBORHOOD-BASED REAL-PARAMETER
CROSSOVER OPERATORS

Neighborhood-based real-parameter crossover operators use probability dis-
tributions for creating the genes of the offspring in restricted search spaces around
the regions marked by the genes of the parents.18 Examples are BLX-α,20,21 fuzzy
recombination,23 and PNX,22 which are based on uniform, triangular, and normal
probability distributions, respectively.

Let us assume that C1 = (c1
1, . . . , c

1
n) and C2 = (c2

1, . . . , c
2
n) are two chromo-

somes that have been selected to apply the crossover operator to them. Below, we
describe the way the three crossover operators create one offspring.

• BLX-α.20,21 The offspring H = (h1, . . . , hi, . . . , hn) is generated, hi is a randomly (uni-
formly) chosen number from the interval [Cmin − Iα, Cmax + Iα] (see Figure 1), where

Cmax = max
{
c1
i , c

2
i

}
, Cmin = min

{
c1
i , c

2
i

}
, and I = Cmax − Cmin.

Figure 1. BLX-α.
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Figure 2. Fuzzy recombination.

Nomura and Shimohara39 have demonstrated theoretically that BLX-α has the abil-
ity to promote diversity in the population of an Evolutionary Algorithm (EA). In particular,
both authors provide a formalization of this operator to analyze the relationship between
the solution probability density functions before and after its application, assuming an infi-
nite population. They state that BLX-α spreads the distribution of the chromosomes when
α > (

√
3 − 1)/2, otherwise reduces it. This property was verified through simulations.

• Fuzzy recombination (FR).23 The probability that the ith gene in an offspring has the
value vi is given by the distribution p(vi) ∈ {φ(c1

i ), φ(c2
i )}, where φ(c1

i ) and φ(c2
i ) are

triangular probability distributions having the following features (c1
i ≤ c2

i is assumed and
I = |c1

i − c2
i |):

Probability
Distribution Minimum Modal Maximum
φ(c1

i ) c1
i − d · I c1

i c1
i + d · I

φ(c2
i ) c2

i − d · I c2
i c2

i + d · I

where d is the parameter associated with FR. Figure 2 shows an example of applying this
crossover operator for the case of d = 0.5.

• PNX.22 First, one of the parents is selected randomly (let us consider, e.g., C1;
Figure 3). Then, the probability that the ith gene in an offspring has the value vi is
given by

p(vi) = N

(
c1
i ,

∣∣c1
i − c2

i

∣∣
η

)
,

where N (µ, σ ) is a random number drawn from a Gaussian distribution with mean µ
and standard deviation σ , and η is a tunable parameter.

Figure 3. PNX.
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FR and PNX are gene-centric crossover operators, because each gene of the
offspring is generated in the neighborhood of the corresponding gene of one of the
parents. PNX chooses all the genes of the same parent to generate the offspring (it
is a parent-centric crossover operator30,40), whilst FR may select genes of the two
parents. On the other hand, BLX-α is a blend operator that does not show this clear
preference toward zones near the genes of the parents.

BLX-α, FR, and PNX share two important features:

• They include in its definition a parameter (α, d , and η, respectively), the crossover step
size, which determines the spread associated with the probability distributions used to
create offspring. The degree of diversity induced by these operators may be easily adjusted
by means of varying these parameters. The greater their value is, the higher the variance
(diversity) introduced into the population. Although some theoretical work exists about
them39,41 and there are adaptive techniques to adjust their values during the GA run,42

normally these operators are applied considering a fixed value for their crossover step
sizes, which was suggested by their creators (Eshelman and Schaffer21 recommend α =
0.5, Ballester and Carter22 suggested η = 2, and Voigt et al.23 proposed d = 0.5).

• They define a probability distribution of offspring solutions based on some measure of
distance among the parent solutions. If the parents are located closely to each other, the
offspring generated by the crossover might distribute densely around the parents. On the
other hand, if the parents are located far away from each other, then the offspring will
be sparsely distributed around them. An emergent property of this setting is that these
crossover operators allow the RCGA to convergence, divergence, or adapt to changing
fitness landscapes without incurring into extra parameters or mechanisms to achieve the
mentioned behavior. In fact, in the recent past, RCGAs with some of these crossovers have
been demonstrated to exhibit self-adaptive behavior similar to that observed in evolution
strategies and evolutionary programming approaches.17,43 Moreover, Beyer and Deb41

argue that a variation operator that harnesses the difference of the parents in the search
space is essential for the resulting evolutionary algorithm to exhibit self-adaptive behavior
on the population level.

3. CROSSOVER OPERATORS WITH MULTIPLE DESCENDENTS

One of the first versions of CX-MDs is brood recombination, which was
studied in genetic programming.44 Drawing on the work by Altenberg,25 Tackett26

devised this method to compensate for the highly disruptive type of crossover used
in genetic programming. Brood recombination promotes the idea that by exploring
more combinations of an individual crossover operation, there is more opportunity
for success. Thus, instead of a single or pair of crossover offspring, there is a large
number, or brood. A tournament is held between the members of the brood and
the winner is considered to be the offspring contributed by the mating. With this
mechanism, Tackett attempted to model the observed fact that many animal species
produce far more offspring than are expected to live. Although there are many
different mechanisms, the excess offspring die. This is a hard but effective way to
cull out the results of bad crossover.

Esquivel et al. were pioneering researchers to study the effects of CX-MDs
on standard GAs (with binary coding).28,45 They present multiple crossovers per
couple, which deeply explore the recombination possibilities of previously found
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solutions by allowing more than one crossover operation for each mating pair. Since
all of the generated offspring are introduced in the new population, the number of
children per couple is fixed as a maximum number and the process of producing
offspring is controlled, for each mating pair, in order to not exceed the population
size. The authors applied multiple crossovers per couple to optimize classic testing
functions and some harder (nonlinear, nonseparable) functions. They found that
(1) multiple crossovers per couple may provide an extra benefit in processing time
and similar quality of solutions when contrasted against the conventional approach,
which applies a single crossover operation per couple and (2) best quality results
were obtained allowing between two and four crossovers per couple. Esquivel
et al.46−48 proposed an extended version of their proposal, the multiparent CX-
MDs. In this case, more than two parents produce more than two offspring. These
operators were presented to tackle multiobjective optimization problems.

The next section describes some approaches of CX-MDs for real coding. We
should point out that other CX-MDs models appeared to cope with different types
of problems, such as the job shop scheduling problem49 and the traveling salesman
problem.50

3.1. Real-Parameter Crossover Operators with Multiple Descendents

Nowadays, there exists a clear tendency to design RCGAs using neighborhood-
based real-parameter CX-MDs.7,22,30,32−34 Next, we attempt to explain why. For
function optimization problems in continuous search spaces, an important difficulty
must be addressed: solutions of high precision must be obtained by the solvers.17 In
this sense, specific genetic operators for RCGAs have been presented that favor the
local tuning of the solutions, such as the nonuniform mutation.4 In addition, real-
coded memetic algorithms have been proposed, which result from the hybridization
of RCGAs and local search techniques that efficiently refine solutions.35

RCGAs with neighborhood-based real-parameter CX-MDs may be seen as a
kind of real-coded memetic algorithm.35 The justification is the following: Once
a standard RCGA has found fit areas of the search space, it searches over only
a small fraction of the neighborhood around each search point. It must derive its
power from integrating multiple single neighborhood explorations in parallel over
successive generations of a population. This many points, few neighbors strategy is
in direct contrast to a hill climber that potentially focuses effort on a greater fraction
of the search neighborhood of one point but only around one point at a time. This
strategy might be called few points, many neighbors.37 Precisely, with the use of
CX-MDs, RCGAs may follow this strategy, with the aim of inducing an effective
local search on the neighborhood of the parents involved in crossover.

Thus, neighborhood-based real-parameter CX-MDs are crossover-based local
search techniques. With the passing of generations, the RCGA loses diversity due
to the selective pressure. Under this circumstance, the self-adaptive nature of neigh-
borhood real-parameter crossover operators (they can generate offspring adaptively
according to the distribution of parents without any adaptive parameter (Section 2))
allows the creation of offspring distributed densely around the parents, favoring an
effective local tuning.
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Different RCGAs based on neighborhood-based real-parameter CX-MDs have
been proposed in the literature. Below, we describe the fundamentals of three of
them. Their excellent behavior reveals that the study of this topic is a promising
research area for the improvement of the performance of RCGAs.

• Minimal generation gap (MGG). This steady-state RCGA model was originally suggested
by Satoh et al.27 and later used in a number of studies.51−55 A generation alternation is
done through applying a crossover operation λ times to a pair of parents randomly
chosen from the population. From the parents and their offspring, the best individual is
selected and a random one using the roulette wheel technique. The original parents are
replaced with them. The elite individual is selected for producing selective pressure and
the random one for introducing diversity into the population. No mutation is applied under
this mechanism.

• Generalized generation gap (G3). Deb et al.30 modify the MGG model to make it compu-
tationally faster by replacing the roulette-wheel selection with a block selection of the best
two solutions. The G3 model also preserves elite solutions from the previous iteration. In
G3, the recombination and selection operators are intertwined in the following manner:

1. From the population P (t) select the best parent and µ other parents randomly.
2. Generate λ offspring from the chosen parents using a multiparent real-parameter

crossover operator.
3. Choose two elements at random from the population P (t).
4. Form a combined subpopulation of chosen two elements and offspring, choose

the best two solutions and replace the chosen two elements with these solutions.

The results of the G3 method were compared with two commonly used real-coded EAs, the
correlated self-adaptive evolution strategy and differential evolution and with a commonly
used classical unconstrained optimization method, namely the quasi-Newton algorithm
with the BFGS update method. Compared to all these algorithms, G3 consistently and
reliably performed better.

• Family competition (FC). The FC model of Yang and Kao9 introduces an alternative
variation of CX-MDs that explores the neighborhood of an individual by applying it
repeatedly crossover with different mates. During the FC procedure, each individual Ip

sequentially becomes the family father. With a probability pc, this family father and
another solution I1 randomly chosen from the rest of the parent population are used as
the parents in a crossover operation. Then, the new offspring is operated by mutation
to generate an offspring C1. For each family father, this procedure is repeated L times.
Finally, L solutions (C1, . . . , CL) are produced but only the solution Cb with the best
value of fitness function survives. Later, a replacement selection is used to select the better
one from the family parent and its best individual.

The FC principle is that each individual in the population does a local search with
length L and only the best offspring survives. Since L solutions are created from the same
family father and perform selection, the family competition strategy is similar to (1, λ)
selection. The authors suggested that FC is a good way to avoid premature convergence
but also to keep the spirit of local searches. Experiments made by the authors verified
that their approach is more robust than other EAs, such as genetic algorithms, evolution
strategies, and evolutionary programming.

Finally, we may remark that the CX-MDs model allows the design of hybrid
real-parameter CX-MDs. These crossovers use different kinds of crossover operators
to produce diverse offspring from the same parents. For example, treating the parents
as two points, p1 and p2, Wright24 proposed a linear crossover that generates
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three offspring, O1 = 0.5·p1+0.5·p2, O2 = 1.5·p1 − 0.5·p2, and O3 = −0.5·p1

+ 1.5·p2. The two most promising points are selected to substitute the parents
in the population. In, Herrera et al.29 another instance of hybrid real-parameter
CX-MDs is presented, which generates four offspring for each pair of parents,
applying two explorative crossovers and two exploitative crossovers to them. The
two most promising offspring of the four become members of the new population,
replacing their parents.

3.2. RCGA Model with Real-Parameter CX-MDs

In this section, we describe the RCGA with CX-MDs that we have used for
the experiments. We have taken a generational RCGA model that applies the non
uniform mutation operator.14 This operator has been widely used with good results.5

The selection probability calculation follows linear ranking56 (ηmin = 0.75), and the
sampling algorithm is the stochastic universal sampling.57 The elitist strategy58 is
also considered. This involves making sure that the best performing chromosome
always survives intact from one generation to the next.

The CX-MDs mechanism applied is very simple31; for each pair of parents, nd

offspring are created applying repeatedly the crossover operator to them. Then, the
two-best-offspring strategy is applied, providing two children. These children will
undergo mutation before they replace their parents in the population.

With this CX-MDs model, the generation of two new individuals requires nd

+ 2 evaluations, resulting from the evaluation of the nd offspring and the evaluation
of the chromosomes obtained from the mutation of the selected children. In our
experiments, we consider different values for nd and maintain the same number of
fitness function evaluations for all the algorithms compared.

4. EXPERIMENTS

Minimization experiments on the test suite described in Appendix A were
carried out to study the behavior of the RCGA model with the CX-MDs model
presented in Section 3.3. In Section 4.1, we describe the algorithms built to do this.
In Section 4.2, we show the results and draw some conclusions from the point of
view of the efficacy. In Section 4.3, we compare the results of the best algorithms.
Finally, in Section 4.4, we analyze the RCGAs from the point of view of efficiency.

4.1. Algorithms

We have implemented different instances of RCGA with CX-MDs. They are
distinguished with regard to crossover operator and crossover step size value (BLX-α
with α = 0.1, 0.3, 0.5, and 0.7, FR with d = 0.1, 0.3, 0.5, and 0.7, and PNX with η

= 1, 2, 3, and 4), and nd value (nd = 2, 4, 6, 8, 16, 32, 64, and 128). All the possible
combinations of these values were investigated.

The population size of the RCGAs is 61 individuals, the probability of updating
a chromosome by mutation is 0.125, and the crossover probability is 0.6. We carried
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Table I. TB/St obtained using BLX-α with different α values for each nd value.

2 4 6 8 16 32 64 128

0.3 (90.90) 0.5 (72.72) 0.3 (72.72) 0.3 (63.63) 0.3 (54.54) 0.3 (63.63) 0.3 (72.72) 0.3 (90.90)
0.1 (54.54) 0.3 (63.63) 0.5 (63.63) 0.5 (54.54) 0.5 (54.54) 0.5 (63.63) 0.5 (54.54 0.1 (36.36)
0.5 (36.36) 0.1 (27.27) 0.7 (27.27) 0.1 (45.45) 0.7 (45.45) 0.7 (45.45) 0.7 (36.36) 0.5 (36.36)
0.7 (9.09) 0.7 (0.0) 0.1 (18.18) 0.7 (36.36) 0.1 (18.18) 0.1 (18.18) 0.1 (0.0) 0.7 (18.18)

out all the algorithms 30 times, each one with a maximum of 100,000 fitness function
evaluations.

4.2. Analysis of Results

The results obtained are outlined in Tables B1–B3 in Appendix B. The perfor-
mance measure used is the A performance: average of the best-fitness function found
at the end of each run. In addition, to facilitate the comparison between a set of al-
gorithms, we have introduced a performance measure called total best/similar t-test
(TB/St). For each algorithm, this measure specifies the percentage of test functions
in which this algorithm obtains either the best A performance or one similar to the
best according to a t-test (at 0.05 level of significance), considering the algorithms
in the set.

To facilitate the analysis of the results in Tables B1–B3, we have introduced
two tables for each crossover operator. For each nd value, the first table (Tables I,
III, and V) ranks the crossover step size values (α, d, and η) attending on the
TB/St performance obtained (its values appears in brackets as well). The second
table (Tables II, IV, and VI) compares (by means of the ST/St performance) the
best step size values for each nd value (they are the first in the corresponding
aforementioned table). It displays the step size along with the nd value (in brackets)
and the corresponding TB/St performance obtained in the comparison.

Tables II, IV, and VI show that the best results are returned using nd > 2. This
means that our simple CX-MDs model (Section 3.3) with nd > 2 outperforms the

Table II. Comparison of the best
combinations of α and nd values.

α(nd ) TB/St

0.3 (16) 63.63
0.5 (4) 54.54
0.3 (8) 54.54
0.3 (32) 45.45
0.3 (64) 36.36
0.3 (2) 27.27
0.3 (128) 27.27
0.3 (6) 18.18
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Table III. TB/St obtained using FR with different d values for each nd value.

2 4 6 8 16 32 64 128

0.3 (81.81) 0.3 (81.81) 0.5 (63.63) 0.5 (63.63) 0.3 (63.63) 0.3 (81.81) 0.5 (90.0) 0.5 (90.90)
0.5 (54.54) 0.7 (63.63) 0.7 (63.63) 0.7 (63.63) 0.7 (63.63) 0.5 (72.72) 0.7 (63.63) 0.7 (81.81)
0.7 (45.45) 0.1 (45.45) 0.1 (45.45) 0.1 (45.45) 0.5 (54.54) 0.7 (72.72) 0.3 (54.54) 0.3 (36.36)
0.1 (36.36) 0.5 (45.45) 0.3 (45.45) 0.3 (45.45) 0.1 (36.36) 0.1 (45.45) 0.1 (9.09) 0.1 (18.18)

Table IV. Comparison of the best
combinations of d and nd values.

d (nd ) TB/St

0.5 (8) 90.9
0.3 (16) 81.81
0.3 (4) 63.63
0.5 (6) 54.54
0.5 (64) 54.54
0.3 (32) 45.45
0.5 (128) 36.36
0.3 (2) 18.18

Table V. TB/St obtained using PNX with different η values for each nd value.

2 4 6 8 16 32 64 128

4 (100) 3 (90.9) 3 (100) 3 (81.81) 3 (100) 3 (100) 2 (81.81) 2 (81.81)
3 (45.45) 4 (81.81) 4 (63.63) 2 (45.45) 2 (54.54) 2 (63.63) 3 (54.54) 3 (54.54)
1 (0) 2 (9.09) 2 (45.45) 4 (45.45) 4 (45.45) 4 (45.45) 4 (45.45) 4 (45.45)
2 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Table VI. Comparison of
the best combinations of η
and nd values.

η (nd ) TB/St

3 (8) 90.9
3 (6) 81.81
3 (32) 63.63
3 (4) 36.36
3 (16) 36.36
2 (64) 36.36
2 (128) 9.09
4 (2) 0

standard way of applying BLX-α, FR, and PNX (i.e., with nd = 2). For the case
of PNX (Table VI), the performance with nd = 2 is the worst, as compared with
the other nd values, achieving a TB/St performance of 0%. This result suggests
that our CX-MDs process arises as a key mechanism for improving the behavior of
neighbourhood-based real-parameter crossover operators.
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For FR and PNX, the combinations d = 0.5 and nd = 8 (Table IV) and η = 3
and nd = 8 (Table VI) obtain a high TB/St value (90.9%), respectively. Thus, these
settings allow a robust behavior for PNX and FR to be obtained for test problems
with different features.

For BLX-α, α = 0.3 offers the best TB/St performance for most nd values
(Table I). However, Table II shows that it was not possible to find a suitable com-
bination of α and nd values to achieve a robust operation for BLX-α (the best
combination presents a TB/St performance of 63.63%). This means that different
combinations of these parameters become well suited to different types of problems.

We may extract an important conclusion from this study: Gene-centric crossover
operators (FR and PNX) are particularly adequate to design real-parameter CX-MDs
models, because they may offer outstanding levels of robustness on problems with
different difficulties.

4.3. Comparison of the Best Performing RCGAs

In this section, we undertake the comparison of the RCGAs based on BLX-α,
FR, and PNX, respectively, which reached the best solutions. Their features along
with the TB/St performance resulting from their comparison are shown in Table VII.

The most remarkable observation is that FR with d=0.5 and nd = 8 obtains a
TB/St value of 100%. On the one hand, FR may collect information from the genes
of the two parents to build the offspring. This allows the generation of offspring
that are more diverse than the ones generated by PNX. On the other hand, FR is
an instance of gene-centric crossover operator, which has arisen as suitable kind of
crossover operator for design CX-MDs models (Section 4.2). This would explain
its advantages on the best RCGA based on BLX-α. The joint effects of these
two features make FR with multiple descendents a robust real-parameter crossover
operator.

4.4. Study of the Efficiency

There exist at least two ways to study the performance of search algorithms:

• The first one studies it from the point of view of the efficacy of the algorithms. This quality
determines the accuracy levels of the solutions returned by the algorithm, without taking
into account the time needed to obtain them. Effective algorithms are recommendable for
real problems, where the objective function may be evaluated very quickly and a precise

Table VII. Comparison of the best performing RCGAs.

Cross over operator Crossover step size nd TB/St

BLX-α α = 0.3 16 63.63
FR d = 0.5 8 100
PNX η = 3 8 45.45
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Table VIII. Comparison of the standard RCGAs with different nev values.

BLX-α (α = 0.5 and nd = 2) FR (d = 0.5 and nd = 2) PNX (η = 2 and nd = 2)

nev TB/St nev TB/St nev TB/St

50,000 9.09 50,000 27.27 50,000 45.45
100,000 54.54 100,000 54.54 100,000 54.54
150,000 100 150,000 36.36 150,000 63.63
200,000 9.09 200,000 63.63 200,000 100

solution is needed. To study the efficacy, we assign enough objective function evaluations
to the algorithms and analyze the quality of the final solutions achieved (Section 4.3).

• The second view concentrates on of the efficiency of the algorithms. Search algorithms
are efficient when they return solutions with an acceptable quality requiring few objective
function evaluations. They are advisable for the real problem with a time-consuming
objective function and where obtaining the exact solution is not the crucial objective.

In this section, we access the efficiency of our RCGA model with CX-MDs
by running it with different number of fitness function evaluations (nev = 50,000,
100,000, 150,000, and 200,000) and comparing the results with the ones of the
standard RCGAs (nd = 2). First, we have executed the standard RCGA based on
BLX-α, FR, and PNX, using the step size values recommended by their authors (α
= 0.5, d = 0.5, and η = 2, respectively). For each crossover operator, Table VIII
outlines the TB/St performance derived from the comparison of the results obtained
by these algorithms, throughout the different nev values.

In Table VIII, we may observe (in boldface) that the best nev values are 150,000
when using BLX-α and 200,000 for both FR and PNX.

Now, we compare the results of the standard RCGAs with the best nev values
previously obtained against the corresponding RCGA with CX-MDs using nd = 8
(this value was a promising setting in Section 4.3) and the different nev values.
Tables IX–XI contain the TB/St values obtained from this comparison, for BLX-α,
FR and PNX, respectively.

The most significant remark from Table IX is that the RCGA based on BLX-α
with multiple descendents with nd = 8 and nev = 50,000 (and with all the nev

values higher that this one) achieves better TB/St performance than the standard
RCGA based on this crossover operator that ends its runs after 150,000 evaluations.
Analyzing the FR crossover, the approach with nd = 8 and nev = 100,000 improves

Table IX. Standard RCGA based on BLX-α with α = 0.5 and nev = 150,000
versus RCGA with CX-MDs.

Algorithms 50,000 100,000 150,000 200,000

RCGA with CX-MDs and nd = 8 90.9 100 100 100
Standard, RCGA based on BLX-α, 27.27 18.18 18.18 18.18
α = 0.5, and nev = 150,000
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Table X. Standard RCGA based on FR with d = 0.5 and nev = 200,000
versus RCGA with CX-MDs.

Algorithms 50,000 100,000 150,000 200,000

RCGA with CX-MDs and nd = 8 54.54 90.9 81.81 72.72
Standard RCGA based on FR, d = 0.5, 90.9 36.36 63.63 54.54
and nev = 200,000

Table XI. Standard RCGA based on PNX with η = 2 and nev = 200,000
versus RCGA with CX-MDs.

Algorithms 50,000 100,000 150,000 200,000

RCGA with CX-MDs and nd = 8 72.72 100 100 100
Standard RCGA based on PNX, η = 2, 90.9 45.45 18.18 27.27
and nev = 200,000

the results of the standard RCGA with nev = 200,000, and the same situation occurs
using PNX crossover.

From these results, we may conclude that RCGAs with CX-MDs consistently
outperform standard RCGAs from the point of view of efficiency. Thus, the im-
plementation of the strategy few points, many neighbors by means of the CX-MDs
mechanism imposes an efficient exploration/exploitation relationship that allows
reliability and accuracy of RCGAs to be highly intensified.

5. CONCLUSIONS

This paper presented an empirical study of a simple CX-MDs model for
RCGAs. For each pair of parents, it generates nd offspring and selects the two
best offspring as the children contributed by the mating. Three different instances of
this model were implemented by considering three well-known neighborhood-based
real-parameter crossover operators, BLX-α, FR, and PNX. The results of combin-
ing different step size values and nd values were analyzed and the efficiency of the
model was examined. The main conclusions achieved were

• The application of CX-MDs (with nd > 2) may enhance the operation of BLX-α, FR,
and PNX.

• CX-MDs based on gene-centric crossover operators (FR and PNX) achieved the most
promising results. They obtained an acceptable robustness on problems with different dif-
ficulties. In particular, FR with multiple descendents is the best alternative. This operator
makes a better use of the information contained in the genes of the parents than BLX-α
does, but, in addition, FR offers a higher exploration potential than PNX.

• RCGAs with CX-MDs are most efficient than standard RCGAs. Putting into practice
the strategy “few points, many neighbors” induces a suitable exploration/exploitation
relationship for empowering both reliability and accuracy.

In essence, the research line initiated with the present work is indeed worth of
further studies. We are currently extending our investigation to different test suites
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and real-world problems. We also intend to

• study the behavior of CX-MDs considering other real-parameter crossover operators, such
as multiparent crossover operators, which combine the features of more than two parents
for generating the offspring.30,51,53,59,60,61

• Some forms of crossover operators are more suitable to tackle certain problems than
others. For this reason, techniques that combine multiple crossovers have been suggested
as alternative schemes to the common practice of applying only one crossover model to
all the elements in the population.11 The generation of the multiple descendents may be
carried out by using different kinds of real-parameter crossover operators. Thus, hybrid
real-parameter CX-MDs arises as a promising topic to be investigated.
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algorithms for single and multiobjective optimization in the job shop scheduling problem. J
Know Based Syst 2002;15(1-2):12–25.

50. Walters T. Repair and brood selection in the traveling salesman problem. In: Eiben AE, Back
T, Schoenauer M, Schwefel HP, editors. Proc Parallel problem solving from nature, vol V.
Berlin: Springer-Verlag. Lecture Notes in Computer Science vol 1498; 1998. pp 813–822.

51. Kita H, Kobayashi S. Multi-parental extension of the unimodal normal distribution crossover
for real-coded genetic algorithms. In: Proc Int Conf. on Evolutionary Computation’99.
Piscataway, NJ: IEEE Press; 1999. pp 646–651.

52. Takahashi O, Kita H, Kobayashi S. A distance alternation model on real-coded genetic
algorithms. In: Proc 1999 IEEE Int Conf on Systems, Man, and Cybernetics. Piscataway,
NJ: IEEE Press; 1999. pp 619–624.

53. Tsutsui S, Yamamura M, Higuchi T. Multi-parent recombination with simplex crossover
in real-coded genetic algorithms. In: Proc Genetic and Evolutionary Computation Conf
(GECCO-99). San Mateo, CA: Morgan Kaufmann, 1999. pp 657–664.

54. Zhou Y, Li Y, He J, Kang L. Multi-objective and MGG evolutionary algorithm for constrained
optimization. In: Congress on evolutionary computation 2003. Piscataway, NJ: IEEE Press;
2003. pp. 1–5.

55. Takahashi O, Kobayashi S. An angular distance dependent alternation model for real-coded
genetic algorithms. In: Proc Congress on Evolutionary Computation 2004. Piscataway, NJ:
IEEE Press; 2004. pp 2159–2165.

56. Baker JE. Adaptative selection methods for genetic algorithms. In: Grefenstette JJ, editor.
Proc. First Int Conf on Genetic Algorithms and Their Applications. Hillsdale, MA: Lawrence
Erlbraum Associates; 1985, pp 101–111.

International Journal of Intelligent Systems DOI 10.1002/int
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APPENDIX A: TEST FUNCTIONS

Sphere model.58

fSph(x) =
n∑

i=1

x2
i

−5.12 ≤ xi ≤ 5.12, n = 25, fSph(x∗) = 0.

Schwefel’s function 1.2.62

fSch(x) =
n∑

i=1

i∑
j=1

x2
j

−65.536 ≤ xi ≤ 65.536, n = 25, fSch(x∗) = 0.
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Generalized Rastrigin’s function.63

fRas(x) = a · n +
n∑

i=1

x2
i − a · cos(ω · xi)

a = 10, ω = 2 · π, −5.12 ≤ xi ≤ 5.12, n = 25, fRas(x
∗) = 0.

Griewangk’s function.64

fGri(x) = 1

d

n∑
i=1

x2
i − �n

i=1 cos

(
xi√
i

)
+ 1

d = 4000, −600 ≤ xi ≤ 600, n = 25, fGri(x
∗) = 0.

Expansion of F10.65

eF10(x) = f10(x1, x2) + · · · f10(xi−1, xi) + · · f10(xx, x1)

f10(x, y) = (x2 + y2)0.25 · [sin2(50 · (x2 + y2)0.1 + 1]

n = 25, x, y ∈ (−100, 100] , eF10(x∗) = 0.

Generalized Rosenbrock’s function.58

fRos(x) =
n−1∑
i=1

(100
(
xi+1 − x2

i

)2 + (xi − 1)2)

−5.12 ≤ xi ≤ 5.12, n = 25, fRos(x
∗) = 0.

Systems of linear equations.66

The problem may be stated as solving for the elements of a vector X,
given the matrix A and vector B in the expression: A·X = B. The evaluation
function used for these experiments is

Psle(x1, . . . , xn) =
n∑

i=1

n∑
j=1

(aij · xj ) − bj .

Clearly, the best value for this objective function isPsle (x∗) = 0. Inter-
parameter linkage (i.e., nonlinearity) is easily controlled in systems of linear
equations, their nonlinearity does not deteriorate as increasing numbers of
parameters are used, and they have proven to be quite difficult.

We have studied an example of a 10-parameter problem. We have
considered that −127 ≤ xi ≤ 127 and the following matrices:
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5 4 5 2 9 5 4 2 3 1 1 40
9 7 1 1 7 2 2 6 6 9 1 50
3 1 8 6 9 7 4 2 1 6 1 47
8 3 7 3 7 5 3 9 9 5 1 59
9 5 1 6 3 4 2 3 3 9 1 = 45
1 2 3 1 7 6 6 3 3 3 1 35
1 5 7 8 1 4 7 8 4 8 1 53
9 3 8 6 3 4 7 1 8 1 1 50
8 2 8 5 3 8 7 2 7 5 1 55
2 1 2 2 9 8 7 4 4 1 1 40

Frequency modulation sounds parameter identification.67

The problem is to specify six parameters a1, w1, a2, w2, a3, w3 of
the frequency modulation sound model represented by

y(t) = a1 · sin(w1 · t · θ + a2 · sin(w2 · t · θ + a3 · sin(w3 · t · θ))),

with θ = (2 · π/100). The fitness function is defined as the summation of
square errors between the evolved data and the model data as follows:

Pf ms(a1, w1, a2, w2, a3, w3) =
100∑
t=0

(y(t) − y0(t))2,

where the model data are given by the following equation:

y0(t) = 1.0 · sin(5.0 · t · θ + 1.5 · sin(4.8 · t · θ + 2.0 · sin(4.9 · t · θ))).

Each parameter is in the range from −6.4 to 6.35. This problem is
a highly complex multimodal one having strong epistasis, with minimum
value Pf ms(x∗) = 0.

Polynomial-fitting problem.68

This problem lies in finding the coefficients of the following polynomial
in z

P (z) =
2k∑

j=0

cj × zj , k > 0 is an integer

such that P (z) ∈ [−1, 1] for z ∈ [−1, 1], and P (1.2) ≥ T2k(1.2) and
P (−1.2) ≥ T2k(−1.2), where T2k(z) is a Chebychev polynomial of degree
2k.

The solution to the polynomial-fitting problem consists of the coef-
ficients of T2k(z). This polynomial oscillates between −1 and 1 when its
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argument z is between −1 and 1. Outside this region, the polynomial rises
steeply in direction of high positive ordinate values. This problem has its
roots in electronic filter design and challenges an optimization procedure
by forcing it to find parameter values with grossly different magnitudes,
something very common in technical systems. The Chebychev polynomial
employed here is

T8(z) = 1 − 32 · z2 + 160 · z4 − 256 · z6 + 128 · z8.

It is a nine-parameter problem. The pseudocode algorithm shown below
was used to transform the constraints of this problem into an objective
function to be minimized, called PChev . We consider that C = (c0, . . . , c8)
is the solution to be evaluated and

PC(z) =
∑8

j=0
cj × zj .

Choose p0, . . . , p100 f rom [−1, 1] ;
R = 0;
For i = 0, . . . , 100 do

If (−1 > PC(pi) or PC(pi) > 1) then
R ← R + (1 − PC(pi))2;

If (PC(1.2) − T8(1.2) < 0) then
R ← R + (PC(1.2) − T8(1.2))2;

If (PC(−1.2) − T8(−1.2) < 0) then
R ← R + (PC(−1.2) − T8(−1.2))2;

Return R;

Each parameter (coefficient) is in the range from −512 to 512. The
objective function value of the optimum is PChev(C∗) = 0.

Ackley’s function.69

fAck(x) = −a · exp

⎛
⎝−b ·

√√√√1

n

n∑
i=1

x2
i

⎞
⎠

− exp

(
1

n

n∑
i=1

cos ω · xi

)
+ a + e

a = 20, b = 0.2, ω = 2 · π, −32.768 ≤ xi ≤ 32.768,

n = 25, fAck(x∗) = 0.
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Bohachevsky’s function.70

fBoh(x) = x2
1 + 2x2

1 − 0.3 cos(3πx1) cos(4πx2) + 0.3

−6 ≤ xi ≤ 6, fBoh(x∗) = 0.

APPENDIX B: RESULTS OF THE EXPERIMENTS

Table B.I. Results for BLX-α.
nd α Sph Sch Ras Gri EF10 SLE Ros PFP FMS Ack Boh

2 0.1 4.2E−09 5.5E+01 4.6E+00 2.5E−02 1.6E+00 2.3E+01 2.2E+01 2.7E+02 1.7E+01 2.9E−04 6.0E−12
4 0.1 1.9E−11 7.3E+01 3.4E+00 6.7E−03 1.3E+00 6.6E+01 2.2E+01 7.7E+02 1.7E+01 2.1E−05 1.3E−14
6 0.1 7.1E−12 6.8E+01 2.2E+00 4.4E−03 3.6E+00 8.2E+01 2.3E+01 6.0E+02 1.8E+01 1.1E−05 0.0E+00
8 0.1 8.8E−11 8.0E+01 1.5E+00 3.7E−03 5.4E+00 7.8E+01 2.3E+01 7.8E+02 1.4E+01 3.7E−05 1.0E−15
16 0.1 3.7E−08 1.0E+02 1.3E+00 7.5E−03 9.0e+00 6.8E+01 2.2E+01 6.9E+02 1.7E+01 6.2E−04 4.4E−17
32 0.1 2.6E−06 8.4E+01 2.0E+00 1.4E−02 1.0e+01 5.7E+01 2.3E+01 7.2E+02 1.4E+01 7.2E−03 1.9E−14
64 0.1 1.5E−04 6.3E+01 3.0E+00 1.1E−01 1.0E+01 3.6E+01 2.8E+01 5.2E+02 1.8E+01 3.9E−02 7.0E−11
128 0.1 4.2E−04 6.1E+01 4.7E+00 2.7E−01 1.3E+01 2.8E+01 3.4E+01 2.7E+02 1.7E+01 1.4E−01 1.1E−08
2 0.3 7.5E−11 3.3E+01 7.8E+00 1.5E−02 3.1E−01 2.0E+01 2.1E+01 2.1E+02 1.3E+01 3.9E−05 7.5E−14
4 0.3 9.0E−15 3.4E+01 2.6E+00 3.0E−03 2.0E−02 5.7E+01 2.1E+01 3.7E+02 1.2E+01 4.6E−07 0.0E+00
6 0.3 1.1E−15 2.7E+01 1.0E+00 2.9E−03 8.7E−03 6.8E+01 2.1E+01 4.2E+02 9.1E+00 1.5E−07 0.0E+00
8 0.3 3.2E−16 2.7E+01 8.2E−01 4.0E−03 6.7E−03 5.5E+01 2.1E+01 3.9E+02 9.3E+00 1.0E−07 0.0E+00
16 0.3 3.7E−16 2.5E+01 1.0E+00 1.8E−03 8.0E−03 4.1E+01 2.1E+01 3.2E+02 7.2E+00 9.1E−08 0.0E+00
32 0.3 1.6E−14 2.5E+01 1.1E+00 3.2E−04 1.6E−02 3.8E+01 2.3E+01 3.4E+02 5.2E+00 6.0E−07 0.0E+00
64 0.3 3.1E−11 2.2E+01 9.2E−01 2.2E−05 1.3E−01 2.5E+01 2.1E+01 3.3E+02 4.7E+00 1.7E−05 9.2E−16
128 0.3 3.5E−07 1.9E+01 3.4E+00 1.0E−03 2.0E+00 1.9E+01 2.1E+01 1.5E+02 3.5E+00 2.4E−03 2.7E−11
2 0.5 6.3E−06 1.3E+03 8.7E+01 5.2E−01 1.4E+01 2.6E+01 2.6E+01 3.1E+02 1.5E+01 1.0E−02 7.8E−12
4 0.5 1.8E−14 2.3E+00 8.3E+00 4.9E−04 6.8E−02 2.1E+01 2.0E+01 2.1E+02 1.0E+01 6.8E−07 0.0E+00
6 0.5 3.3E−15 6.3E−01 5.3E+00 4.1E−04 2.6E−02 1.9E+01 2.0E+01 2.4E+02 8.1E+00 2.9E−07 0.0E+00
8 0.5 2.2E−15 5.0E−01 3.6E+00 5.7E−04 2.1E−02 1.8E+01 2.0E+01 2.2E+02 9.6E+00 2.3E−07 0.0E+00
16 0.5 4.8E−15 7.8E−01 2.0E+00 6.3E−12 2.3E−02 2.4E+01 2.1E+01 1.5E+02 4.1E+00 3.5E−07 0.0E+00
32 0.5 1.0E−13 1.8E+00 1.6E+00 3.3E−10 7.7E−02 2.5E+01 2.1E+01 1.5E+02 4.3E−15 1.4E−06 1.7E−15
64 0.5 2.8E−10 7.1E+00 3.9E+00 2.9E−06 4.3E−01 2.1E+01 2.1E+01 2.1E+02 1.0E+00 8.6E−05 3.0E−14
128 0.5 4.4E−06 4.0E+01 4.4E+01 1.3E−02 4.2E+00 2.3E+01 2.1E+01 2.7E+02 5.0E−01 1.0E−02 3.1E−10
2 0.7 8.8E+00 4.1E+03 1.1E+02 3.0E+01 1.2E+02 4.3E+02 2.1E+03 1.1E+04 1.5E+01 1.2E+01 3.2E+00
4 0.7 1.8E+00 3.9E+03 1.2E+02 6.8E+00 9.7E+01 2.6E+02 8.9E+02 2.4E+03 1.9E+01 7.7E+00 2.6E−12
6 0.7 4.3−07 3.5E+03 1.3E+02 4.3E−01 1.2E+01 2.7E+01 2.5E+01 3.8E+02 1.5E+01 2.4E−03 5.4E−14
8 0.7 3.8E−09 3.1E+03 1.2E+02 3.7E−02 2.1E+00 9.1E+00 2.1E+01 3.2E+02 9.4E+00 2.9E−04 1.2E−14
16 0.7 1.0E−10 2.3E+03 1.3E+02 2.0E−06 5.4E−01 1.1E+01 2.0E+01 2.3E+02 1.2E+00 4.9E−05 1.1E−14
32 0.7 9.2E−10 1.1E+03 1.1E+02 9.2E−03 7.9E−01 1.3E+01 2.1E+01 1.1E+02 3.8E−09 1.3E−04 1.1E−13
64 0.7 3.5E−07 7.1E+02 1.1E+02 7.1E−03 2.8E+00 1.4E+01 2.1E+01 3.2E+02 3.4E−04 2.7E−03 1.6E−12
128 0.7 2.8E−04 8.2E+02 1.1E+02 3.4E−01 1.2E+01 2.1E+01 2.2E+01 6.4E+02 1.2E+00 1.0E−01 8.5E−09

Table B.II. Results for FR.
nd d Sph Sch Ras Gri EF10 SLE Ros PFP FMS Ack Boh

2 0.1 6.2E−11 5.1E+02 2.7E+00 1.2E−02 2.4E−01 2.1E+02 5.0E+01 2.4E+03 9.2E+00 4.0E−05 1.1E−13
4 0.1 2.0E−16 4.8E+02 5.6E−01 1.4E−02 3.3E−03 2.5E+02 4.4E+01 3.7E+03 6.2E+00 6.1E−08 0.0E+00
6 0.1 8.4E−18 4.7E+02 7.9E−01 1.6E−02 1.1E−03 2.2E+02 4.8E+01 3.3E+03 4.3E+00 1.3E−08 0.0E+00
8 0.1 4.7E−18 5.1E+02 1.2E+00 1.1E−02 9.9E−04 1.9E+02 5.0E+01 3.0E+03 5.5E+00 1.1E−08 0.0E+00
16 0.1 8.7E−14 3.5E+02 2.0E+00 1.4E−02 8.3E−02 1.2E+02 5.6E+01 3.3E+03 2.7E+00 1.3E−06 0.0E+00
32 0.1 3.2E−07 2.5E+02 2.8E+00 4.2E−02 1.0E+00 1.5E+02 6.5E+01 2.7E+03 3.4E+00 2.4E−01 0.0E+00
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Table B.II. Continued.
nd d Sph Sch Ras Gri EF10 SLE Ros PFP FMS Ack Boh

64 0.1 6.5E−03 2.3E+02 2.9E+00 3.3E−01 4.8E+00 1.1E+02 6.2E+01 2.3E+03 4.1E+00 1.2E+00 2.8E−09
128 0.1 4.6E−02 2.8E+02 2.8E+00 1.0E+00 1.2E+01 1.2E+02 5.9E+01 2.1E+03 7.3E+00 1.4E+00 1.3E−01
2 0.3 4.8E−12 4.4E+01 1.1E+01 1.2E−02 1.7E−01 5.3E+01 2.6E+01 7.9E+02 1.0E+01 1.1E−05 1.1E−14
4 0.3 1.4E−16 4.8E+01 9.2E−01 1.0E−03 5.2E−03 1.2E+02 3.3E+01 1.1E+03 6.2E+00 6.2E−08 0.0E+00
6 0.3 1.8E−17 4.8E+01 4.9E−01 1.4E−03 2.4E−03 9.5E+01 3.3E+01 1.3E+03 6.9E+00 2.0E−08 0.0E+00
8 0.3 1.0E−17 4.6E+01 5.3E−01 1.6E−03 1.8E−03 1.1E+02 3.6E+01 1.1E+03 2.8E+00 1.5E−08 0.0E+00
16 0.3 1.3E−17 3.3E+01 1.5E+00 1.3E−03 2.0E−03 8.7E+01 3.8E+01 1.0E+03 3.8E−01 1.8E−08 0.0E+00
32 0.3 4.1E−15 3.5E+01 2.1E+00 2.4E−04 1.0E−02 4.3E+01 2.9E+01 7.9E+02 1.1E+00 3.0E−07 0.0E+00
64 0.3 4.8E−10 2.9E+01 1.8E+00 2.4E−04 1.8E−01 6.3E+01 2.8E+01 8.7E+02 8.3E−01 8.0E−05 1.9E−15
128 0.3 1.4E−05 1.1E+02 6.4E+00 2.0E−02 3.1E+00 7.4E+01 3.4E+01 5.4E+02 1.0E+00 1.3E−02 9.0E−10
2 0.5 1.3E−11 8.9E+00 1.9E+01 7.7E−03 2.4E−01 2.6E+01 2.5E+01 4.5E+02 7.3E+00 1.8E−05 7.3E−14
4 0.5 8.2E−16 3.3E+00 3.8E+00 4.9E−04 1.4E−02 4.0E+01 2.3E+01 3.7E+02 6.6E+00 1.4E−07 0.0E+00
6 0.5 1.6E−16 1.9E+00 1.7E+00 2.4E−04 9.2E−03 5.1E+01 2.4E+01 5.1E+02 6.3E+00 6.3E−08 0.0E+00
8 0.5 1.0E−16 2.5E+00 1.3E+00 9.0E−04 7.8E−03 4.8E+01 2.1E+01 5.4E+02 3.7E+00 5.2E−08 0.0E+00
16 0.5 1.7E−16 4.4E+00 1.3E+00 2.4E−04 8.0E−03 4.8E+01 2.1E+01 5.4E+02 9.0E−01 6.0E−08 0.0E+00
32 0.5 6.9E−15 4.3E+00 1.5E+00 3.2E−04 1.8E−02 3.1E+01 2.4E+01 4.1E+02 6.7E−01 4.1E−07 0.0E+00
64 0.5 1.7E−10 9.8E+00 1.2E+00 2.5E−04 2.7E−01 2.7E+01 2.1E+01 3.5E+02 6.9E−01 5.9E−05 4.0E−15
128 0.5 5.4E−06 6.3E+01 1.6E+01 9.7E−03 3.2E+00 3.2E+01 2.2E+01 5.2E+02 3.9E−01 1.0E−02 2.6E−10
2 0.7 1.5E−06 1.4E+03 7.8E+01 4.7E−01 7.5E+00 3.0E+01 2.6E+01 4.8E+02 1.1E+01 4.1E−03 6.9E−12
4 0.7 1.3E−14 2.6E+00 9.3E+00 1.0E−03 4.8E−02 1.7E+01 2.0E+01 2.4E+02 7.2E+00 6.2E−07 0.0E+00
6 0.7 2.0E−15 1.0E+00 5.4E+00 2.4E−04 2.0E−02 2.9E+01 2.0E+01 3.3E+02 5.2E+00 2.4E−07 0.0E+00
8 0.7 1.4E−15 6.2E−01 3.4E+00 4.9E−04 1.7E−02 3.4E+01 2.0E+01 2.4E+02 4.5E+00 1.7E−07 0.0E+00
16 0.7 2.1E−15 8.4E−01 2.6E+00 2.4E−12 1.8E−02 2.9E+01 2.1E+01 2.3E+02 1.6E+00 2.2E−07 0.0E+00
32 0.7 4.6E−14 2.4E+00 1.7E+00 1.2E−10 4.7E−02 2.7E+01 2.1E+01 2.3E+02 3.7E−01 1.0E−06 0.0E+00
64 0.7 3.0E−10 8.2E+00 1.9E+00 1.8E−05 3.7E−01 1.7E+01 2.1E+01 2.7E+02 1.1E+00 8.0E−05 1.6E−14
128 0.7 5.6E−06 5.1E+01 3.6E+01 1.3E−02 4.1E+00 2.9E+01 2.1E+01 4.7E+02 2.0E−01 1.0E−02 2.9E−10

Table B.III. Results for PNX.
nd η Sph Sch Ras Gri EF10 SLE Ros PFP FMS Ack Boh

2 1 6.5E+03 6.5E+03 1.3E+02 7.1E+01 1.4E+02 5.8E+02 6.5E+03 2.7E+04 1.6E+01 1.4E+01 5.0E+00
4 1 1.9E+01 6.7E+03 1.5E+02 7.4E+01 1.5E+02 5.8E+02 7.0E+03 2.2E+04 1.8E+01 1.5E+01 6.0E+00
6 1 1.9E+01 6.6E+03 1.6E+02 6.2E+01 1.5E+02 5.6E+02 6.6E+03 2.1E+04 1.7E+01 1.4E+01 5.3E+00
8 1 1.7E+01 6.5E+03 1.7E+02 5.7E+01 1.4E+02 5.3E+02 6.3E+03 1.7E+04 1.8E+01 1.4E+01 4.3E+00
16 1 1.2E+01 6.0E+03 1.7E+02 4.8E+01 1.3E+02 4.4E+02 4.3E+03 1.1E+04 1.7E+01 1.4E+01 2.5E−06
32 1 9.3E+00 5.8E+03 1.6E+02 3.2E+01 1.3E+02 3.2E+02 3.2E+03 9.0E+03 8.1E+00 1.2E+01 3.0E−08
64 1 5.0E+00 5.5E+03 1.6E+02 1.8E+01 1.1E+02 2.1E+02 1.9E+03 6.4E+03 4.8E+00 1.0E+01 1.4E−07
128 1 2.8E+00 4.9E+03 1.6E+02 1.0E+01 1.0E+02 1.9E+02 1.1E+03 4.9E+03 8.8E+00 8.8E+00 3.0E−05
2 2 2.9E+00 3.3E+03 1.1E+02 1.0E+01 1.1E+02 3.3E+02 5.5E+02 7.8E+03 1.5E+01 8.8E+00 2.0E+00
4 2 2.0E−03 2.8E+03 1.2E+02 8.8E−01 7.9E+01 7.1E+01 1.5E+02 8.9E+02 1.3E+01 1.1E+00 1.3E−12
6 2 5.5E−08 2.2E+03 1.2E+02 1.1E−01 1.4E+01 1.2E+01 2.3E+01 3.3E+02 5.6E+00 9.2E−04 8.2E−14
8 2 2.7E−09 1.7E+03 1.2E+02 4.9E−03 3.8E+00 1.0E+01 2.0E+01 3.7E+02 3.9E+00 2.2E−04 4.2E−14
16 2 3.7E−10 7.5E+02 1.1E+02 8.2E−03 1.4E+00 1.7E+01 2.0E+01 2.8E+02 1.9E+00 8.8E−05 7.9E−14
32 2 6.1E−09 1.9E+02 1.0E+02 2.2E−02 2.0E+00 1.2E+01 2.0E+01 2.3E+02 3.9E−01 3.4E−04 9.6E−13
64 2 2.2E−06 2.1E+02 1.0E+02 4.2E−02 6.7E+00 1.5E+01 2.1E+01 2.6E+02 7.8E−01 7.1E−03 2.4E−11
128 2 1.1E−03 4.5E+02 1.0E+02 6.4E−01 2.1E+01 3.2E+01 2.4E+01 5.4E+02 3.1E+00 2.6E−01 1.1E−07
2 3 3.5E+01 2.5E+02 4.3E+01 6.9E−02 1.0E+01 5.6E+01 3.5E+01 5.7E+02 1.3E+01 1.5E−03 1.2E−11
4 3 1.9E−11 1.3E+00 2.5E+01 2.4E−02 6.5E−01 4.7E+01 2.5E+01 3.9E+02 5.9E+00 2.1E−05 1.3E−14
6 3 5.0E−12 9.0E−01 2.5E+01 2.0E−02 4.4E−01 3.0E+01 2.8E+01 3.0E+02 4.4E+00 1.0E−05 6.9E−15
8 3 4.3E−12 1.6E+00 2.0E+01 1.5E−02 4.1E−01 3.4E+01 2.4E+01 3.5E+02 6.9E+00 1.0E−05 1.1E−14
16 3 1.6E−11 4.8E+00 2.1E+01 9.3E−03 5.8E−01 2.8E+01 2.0E+01 2.6E+02 4.0E+00 2.0E−05 4.8E−14
32 3 2.8E−09 1.6E+01 2.1E+01 7.8E−03 1.8E+00 2.4E+01 2.0E+01 2.6E+02 3.3E+00 2.2E−04 1.6E−12
64 3 4.6E−06 5.9E+01 3.8E+01 2.2E−02 9.3E+00 2.4E+01 2.3E+01 3.3E+02 5.5E+00 1.1E−02 1.3E−10
128 3 2.1E−03 1.9E+02 7.9E+01 6.7E−01 2.8E+01 3.0E+01 3.1E+01 3.4E+02 6.5E+00 5.3E−01 1.0E−06
2 4 8.7E−10 7.2E+00 3.1E+01 2.4E−02 6.5E+00 7.2E+01 3.7E+01 7.0E+02 9.3E+00 1.1E−04 5.9E−13

(continued )

International Journal of Intelligent Systems DOI 10.1002/int
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Table B.III. Continued.
nd η Sph Sch Ras Gri EF10 SLE Ros PFP FMS Ack Boh

4 4 1.6E−11 1.0E+01 2.0E+01 1.6E−02 1.1E+00 5.8E+01 3.2E+01 5.9E+02 7.1E+00 1.9E−05 1.6E−14
6 4 1.0E−11 1.3E+01 2.0E+01 1.6E−02 8.9E−01 6.2E+01 3.0E+01 4.6E+02 8.4E+00 1.5E−05 1.0E−14
8 4 1.1E−11 1.5E+01 1.9E+01 2.7E−02 8.5E−01 4.9E+01 3.3E+01 3.3E+02 6.4E+00 1.6E−05 3.0E−14
16 4 9.7E−11 3.0E+01 2.4E+01 1.5E−02 1.7E+00 3.6E+01 2.4E+01 3.2E+02 6.1E+00 5.9E−05 1.1E−13
32 4 1.7E−07 6.6E+01 2.6E+01 1.6E−02 6.8E+00 4.0E+01 3.5E+01 3.4E+02 6.0E+00 4.9E−05 5.7E−12
64 4 2.0E−04 1.3E+02 3.2E+01 1.5E−01 2.1E+01 2.7E+01 2.6E+01 3.4E+02 7.4E+00 4.6E−01 6.3E−09
128 4 1.3E−02 2.8E+02 5.7E+01 1.0E+00 4.7E+01 4.2E+01 4.1E+01 4.7E+02 9.4E+00 2.1E+00 1.5E−02
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