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_ 1 INTRODUCTION
oﬁ.e of the biggest challenges in genomics i ‘e elucidation of the design principles controlling gene
nevworks 1], THowever, knowing the connectivity of a given network is not sufficient to define the

. i aamics of a gr f 5; 1t 1s als i ath of the connections In a
Ithat the expression dynamics of 4 group of genes; i 1s also required to specily the streng h of the co n

HaToM pevwork, which are determined by the cis-promoter features pqrticigating_ in the regulationv [2]. Therefore, a
{good as deeper understanding of rcgglatory_ networks demands the ‘1dentlﬂ(‘:at_mn of tht? key features used_by a
't for the -g-un;criptiunal regullator to _dlifer::l_‘ltlalky control genes that display distinct behaviours despite helonging to
‘easons), networks with identical wiring design. X o

lities. We initially report & model-based approach to analyze genomes for promoter featwres, which 18

specially designed to account for sequence variability, location and topology intrinsic to differential gene
expression.  We use these features to generaie genome-wide deseriptions developing a predictive
iptional database. This information constitutes the input for a machine learning method [3] that

- transer
3. Neural intearates regulatory features knowledge from different sources, comprehensively exploring the space for all
possible combinations. Moreover, the method uses an unsupervised strategy and conceptual clustering
Standard techniques [3, 4], where pre-existing examples are not required. The features are analyzed concurrently, and
recurrent dynamic relations are recognized to generate profiles (i.e., groups of promoters sharing common
(2005 ) features).
Jutaticnal The formulation of the conceptual clustering problem would result in the generation of many profiles
with small extent, as it is easier to explain or profile-match smaller data subsets than those that constitute 2
sinpiiters significant p“ortiou of the dataset. For this reason, our approach also considers additio_nal criteria to extract
broader profiles based on their size, diversity and their overlap [3, 47. These are conflicling criteria that are
mposium formulated as a multi-objective and multimodal optimization problem [5, 6. where several solutions can be
optimal and only few of them are biologically meaningful. Therefore, we have developed visualization
ories, lechniques using Spotfire visual analysis tools [7] to illuminate relationships otherwise not noticed and to

identily gene profiles that are biologically significant and difficult to detect [8]. This visualization technique
sets 2 framework for decision making in genomics.

Application of our method to the enteric bacteria Escherichia coli and Salmonella enterica uncovered
novel members of, as well as regulatory interactions in the regulon controlled by the PhoP protein that were
not discovered using previous approaches. Our predictions were experimentally validated to establish that
the PhoP protein uses multiple mechanisms to control gene transcription, and is @ central element in a highly
connected network [9].

1
To whom correspondence should be addressed: zwir@borcim.wustledu
One gene can be regulated by the same transcription factor using more than one binding site. We consider each one of them and their corresponding
relations with other regulatory elements as a promote
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purpose of our method is to identify Interesting substructures; here termed profiles. within a regulat g

network, which can provide possible mechanisms by which the respective genes are controfled. These
- profiles can further be used to classify additional promoters (e.g., newly identified).

Our method represents and learns from structural data by following four main phases:

Database ereation b y modelling promoter features. We focus on four types of features for dt‘scribing
our set of co-regulated promoters that are naturally encoded into diverse data types: fix-length DNA motife
from teanscriptional regulator binding sites, represented by position weight matrices (“Submotif™); veriable.
length motifs from RNA polymerase encoded into a neural net, their location in the chromosome is studied
as a distribution and encoded into luzzy sets (“RNA Pol site”); categorical data from the motif orientation
(“Orientation™) (Fig. 1); and gene expression from multiple experiments represented as vector patterns
(“Expression™) [9]. We account for the variability of the data by treating these features as fuzzy (le., not
precisely defined) instead of categorical entities [10-12].

Initialization of promoter profiles for each type of feature. Qur method clusters independently
promoters considering individually each type of feature to build level-1 injtia] profiles based on the fuzzy C-
means clustering method and a validity index [10] to estimate the number of clusters, as an unsupervised
discretization of the features [12, 13], For example, we obtained three level. | profiles for the “expression”
feature (£),...£]) . The superseript denotes the level-1 in this case; and the subscript denotes the specific
profile. Each profile is represented by its protoiype (e.g., binding motifs as a weighted matrix}). Then,
different types of original features can he unified by converting the promoter values for a feature into degrees
of matching with the prototype of that feature (i.c., membership value to a cluster) (Fig. 2).

Dynamically profile learning by domain knowledge fusion. We group profiles by navigating in a
lattice which is the feature search space [3, 4] and create systematically higher level profiles (i-e., offspring
profiles) based on the combination by fuzzy intersection of parental profiles. For example, level-1 profiles:
(E' .M} andR') produce level-2 profiles (£ M} , MZP; and£7R ). As the exploration process
continues level-3-profiles are obtained from Intersection of the promoter members of level-2- profiles and
not between those belonging to the initial profiles (e.g., E’MIP’is product of aggregating £7 17 |

M;F} and EXP? ; where initial profiles £}, M; and B are not involved). This is because our approach
dynamically re-discretizes the original features at each level, adapiing each feature for the set of promoters
recovered by the profile, and allows re-asgi gnations of observations between sibling profiles.

Frofiles evaluation using a multimodal and mulfi-objective context. Profile evaluation is carried out as
a multi-objective optimization problem between the extent of the profile and the quality of matching among
its members and the corresponding features [S, 12]. The extent of a profile is calculated by using the
hypergeometric distribution that gives the chance probability (ie.. probability of intersection (PI)) of
observing at least p candidates from aset V) of size 4 within another set V, of size n, within a universe of g

o (RY g1 (g v
PIV, ) =1~ F“[QJ[\;: —@'l/th]

SV, )= (f _Zm:ﬂ e f’fn“)/f .= {L!‘,ﬁ i1, > (z} (2)

candidates:

where ¥ is an alpha-cut of the offspring profile and ¥, is an alpha-cut of the union of its parenis. The PI [14]
is a more informative measure than the number of promoters belonging to the profile, such as the Jaccard
coefficicnt, in being an adaptive measure that is sensitive to small sets of examples, while retaining
specificity with large datasets.

The quality of matching between promoters and features of a profile (i.e., similarity of inersection
(SD)) is calculated using the equation (2), where g, is the degree of membership of promoter £ to an arbitrary
alpha-cut U, of the profile ; and n, 1s the number of elements of u,.

The trade-off between the opposing objectives (ie., PI and SI) is estimated by selecting a set of
solutions that are non-dominated, in the sense that there is no other solution that is superior to them in all
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objectives (i.c., Pareto optimal frontier) [3, 12]. The dominance relationship in a minimization problem is
defined as a < biif ¥i 0, (a) 20, (b) 30, (a)< O, (b) where O, and O, are either P1 or SI (Fig. 3).

The other property that characterizes good clusters is diversity, which is accounted in situations where
we need to describe a system from different points of view [S]. We addressed this problem by identifying all
non-dominated optimal profiles that have no better solution in the local neighbourhood of the decision
variable space. This strategy, which combines multi-objective and multimodal optimization concepts, relies
on compstition of solutions for determining their search space ‘niches’ (1e. 1o keep all important solutions
without the need to be exhaustive). Thus the non-dominance relationship is only applied to profiles in the
Jocal neighbourbood [5] by using the hypergeometric metric (equation (1)) between profiles. For example,
profile D;E}P; (PI=6.4E-6; SI=0.029) retrieves different promoters than profile D}E]P} (P1=2.84E-4;
§1=0.035) that would be dominated by the first one if no niching strategy were applied (Fig. 4ab).

'3 RESULTS AND DISCUSSION
We investigated the utility of our approach by exploring the regulatory targets of the PhoP protein in £ coli
and Salmonella, which is at the top of a highly connected network that controls transcription of dozens of
genes mediating virulence and the adaptation to low Mg environments [15] (see [9] for a complete list of
;romozers). Genetic and genomic approaches have been successfully used to assign genes fo distinct
regulatory networks both in prokaryotes and eukaryotes. However, little is known about the differential
ex‘f)l‘essit)n of genes within a regulon. At its simplest, genes within a regulon are controlled by a common
transcriptional regulator in response to the same inducing signal. The fact that such co-regulated genes may
be differentially regulated is ofien concealed by microarray gene expression experiments, which sometimes
hither to only allow a relatively crude classification of gene expression patterns into a limited number of
classes (c.g., up- and down-regulated genes [16]). Therefore, and becanse the fundamental mechanism
controlling gene expression operates at the level of transcription initiation, subtle differences in co-regulated
genes could be caused by the cis-acting regulatory elements.

We fused the cis-features from different domains into 2 common Framework by representing features
as fuzzy sets (Fig. 2). The detailed analysis of the gene behaviour would not be possible to be obtained
neither by just inspecting each feature nor by using all features in a typical clusiering technique. This
happens because beforehand it is not known which ageregations of features are biologically meaningful for
the different set of promoters. Therefore, we used a conceplual clustering approach to search through the
space of all polential hypotheses. The fuzzy representation allowed us to homogenize features and was
specifically designed to account for the variability in sequence, location and topology intrinsic to differential
gene expression. The final data was transformed into an effective visual form (Fig. 4b), which improved our
interaction with the large volume of profiles produced, and helped the overview of the behaviour of
promoters according to features and profiles.

We recovered several optimally evalualed profiles (Fig. 4a), thus, revealing distinct putative profiles
that can describe the PhoP regulation process from different angles. The predictions made by our method
were experimentally validated [9] to establish that the PhoP protein uses multiple mechanisms to control
gene transcription, and moreover, these profiles can be used to effectively explain the different kinetic
behaviour of co-regulated genes measured by GFP reporier strains with high-temporal resolution (Fig. 5).
For example, the profile EJMA’ (PI=1.95E™; SI=0.006) corresponds to the canonical PhoP-regulated

promoters, and encompasses promoters (e.g., those of the phoP, mg1d, rstd, 5B, yobG and yrbl. genes) that
share the class IT RNA polymerase sites situated close to the PhoP boxes, high expression patterns, and
typically PhoP box submotif. This profile includes not only the prototypical phoP and mgtd promoters [17],
but also other promoters, which was not known to be under PhoP control. We found that the promoters
sharing this profile produced the earlier rise times and the higher levels of transcription (Fig. 5).

Another uncovered profile OgEff‘}s (PI=1.95E-5, SI=0.05), product of the aggregation of different

fealures than the previous example because not every feature is relevant for all profiles, includes promoters
(c.g., those of the mgtC, mig-14, pasC, pagk, and virK genes of Salmonella) that share a PhoP box in the
opposite orientation of the canonical PhoP-regulated promoters as well as a class | RNA polymerase sites
situated at medium distances from the PhoP boxes. We tested this profile by GFP and found that effectively
differs from the previous canonical profile, exhibiting the Jatest genes with the lowest levels of expression
(Fig. 5). Notably, this profile was recovered despite its potential domination by another profile (ie,
PI=1.95E™; SI=0.006 vs, PI=1.95E-3, 81=0.05) because we use a multimodal optimization strategy (i.c.,
niching) that retrieves local optimal profiles that describe the system from different points of view (Fig. 4a),
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The optimization strategy was visualized as a heat map, where the different features spaces (i.e., groups of
genes covered by a profile) can be identified by an optimal profile (i.e., non-dominated), and several of these
solutions can be possible and even biologically significant (Fig. 4b).

 We also uncovered another slightly different profile QP (PI=0.033, SI=0.044), which includes
promoters (e.g., those of the ompT gene of E. coli and the pipD, ugiL and ybjX genes of Salmonella) that
exhihit a PhoP binding site in the opposite orientation, but preserves the RNA polymerase of the canonical
PhoP regulated promoters. We tested the kinetic behaviour of genes in this profile and found that present an
intermediate value between previously described regulatory profiles (Fig. 5).

We showed that our method can make precise mechanistic predictions even with incomplete input
dataset and high levels of uncertainty by fusing heterogeneous domains of knowledge into regulatory
profiles. In addition, we exemplified how diversity is required to obtain biologically significant regulatory
profiles. Therefore, we provided an optimal selection strategy based on multi-objective and multimodal
optimization techniques that describe the sysiem from different points of view. We also showed that the
uneertainty of exploration process can be narrowed down by applying regular visualization tools.
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FIGURE LEGENDS

Figure 1. Heterogamous domain featurcs. The PhoP proteins binds to 2 DNA strain and recruits the RNA polymerase using a class T
activator approach (class 11 activators hind to sites that overlap the target promoter -35 region) that can bind at different upstream
locations {(c.g., close, medium and remote distance to RNA polymerase) and at different orientations from the open reading frame.
One of the putative PhoP submotifs is detailed as a logos chart, where the characters representing the sequence are stacked on top of
cach other for each position in the aligned sequences and the height of each letter is made proportional to its frequency.

Figure 2. Database representation. The regulatory features model heterogeneous domains corresponding to different cis- and
expression descriptions of the PhoP regulated promoters by using fuzzy membership values. Here we exemplify data from DNA
sequences representing Phol binding sites, the orientation of this site, the class and distance of the RNA polymerase that interacts
with the PhoP protein, and gene expression patierns. The heat map cells represent the degres of matching between a promoter value
and the model of a feature (red: high; green: low). This framework facilitates the application of machine leaming methods to exiract
profiles, which are sets of promoters sharing a commean set of features.
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[".m..lrc 3. Knowledge fusion. A node representation of the latiice that fuses profiles comtaining different types of features (e.z.,
"T"e"‘\ Pol sites™ and “orfentation”). The profiles are evaluated by using probability (PI) which measures the extent of a profile (low
]‘; of the cireles: small; high: big) and the similarity (ST) which measures the explanatory quality of a profile (low p-value: green;
s I

;iﬂ,;f Selection of the most representative profiles. a) Non-dominance optimization approach (Non-dominated solutions red;
g;ni;m‘:d ones in green) bEl\vr.‘L:r{ two conflicting objectives PI and _Sl_ This_ guideline is applied in local neighbourhond to support
- giversity. b) Heal map corre_spom_h_ng to promoters (columns) recogrngr.fd at dlfferegt degrees of matching (green: low; red: high) by
the profiles (rows) divided in nctglhbourhood _(clusters). These lucglatncs are dommated'by a representative profile (left columns).
This guideline prevents the popq!atlcu of solutlonsl w0 vonverge to a single region and obtains optimal and diverss solutions.

Fi i B Independent validation of profiles using kinetic classes. Transeriptional activity of wild-type Salmoneila harbouring
plasmids with transcriptional fusion between a promozerles_s gﬁ: gene and the promoters.. The activity of each promoter is
pmportioneel to the number of GFP molecules pmn‘iucc_d per um.[ time per cell [dGi(t)/dt]/ODi(1)], where Gift) is GFP fluorescence
from wild-type Salmonella strain 14028s, and ODl(t) is the optical density. The activity signal was smoothed by a polynomial fit
(sixth order). The genes are evaluated by their rise time and levels of franscriptions.
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