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Abstract— One of the main pros of fuzzy systems is their ability
to design comprehensible models of real-world systems, thanks to
the use of a fuzzy rule structure easily interpretable by human
beings. This is especially useful for the design of fuzzy logic
controllers, where the knowledge base can be extracted from
expert knowledge. Even more, the availability of a readable struc-
ture allows the human expert to customize the fuzzy controller
to different environments by manually tuning its components.
Nevertheless, this tuning task is usually a time consuming
procedure when done manually, especially when several measures
are considered to evaluate the controller performance, and thus
the interest in the design of automatic tuning procedures for
fuzzy systems has increased along the last few years.

In this paper we tackle the tuning of the fuzzy membership
functions of a fuzzy visual system for autonomous robots. This
fuzzy visual system is based on a hierarchical structure of three
different fuzzy classifiers, whose combined action allows the robot
to detect the presence of doors in the images captured by its
camera. Although the global knowledge represented in the fuzzy
system knowledge base makes it perform properly in the door
detection task, its adaptation to the specific conditions of the en-
vironment where the robot is operating can significantly improve
the classification accuracy. However, the tuning procedure is
complex as two different performance indices are involved in the
optimization process (true positive and false positive detections),
thus becoming a multiobjective problem. Hence, in order to
automatically put the fuzzy system tuning into effect, different
single and multiobjective evolutionary algorithms are considered
to optimize the two criteria, and their behavior in the problem
solving is compared.

I. INTRODUCTION

Landmark detection is a fundamental task in the au-
tonomous mobile robot navigation using topological ap-
proaches [1], [2], [3], [4]. It is used for creating topological
maps [5] indicating the structure of an environment, and
for localization purposes. Among the landmarks that can be
detected, those that give information about the structure of
the environment are more relevant. In that sense, a door is
a common object that can be found in indoor environments.
Doors are important places regarding the structure of man-
made environments because they indicate access points be-
tween rooms. Therefore, they can been employed not only for
localization but also for navigation purposes [6], [7].

A fuzzy visual system was designed in a previous work [8]
to be used in autonomous mobile robots for navigating, map-

building and positioning purposes. The fuzzy visual system is
comprised by a hierarchy of three fuzzy classifiers and is able
to detect the doors present in the images captured by our robot.
The use of fuzzy logic allows the system to detect doors under
strong perspective deformations and at different distances. The
variables used, the number and shapes of the membership
functions for each variable and the rule base of the three
fuzzy systems were determined based on expert knowledge.
Furthermore, the system was manually tuned to the specific
conditions of our environment, i.e., to the usual conditions of
height and size of the doors of the environment and to the
distances and orientations under which they are seen by our
robot.

Nevertheless, the manual tuning of the visual system is
a tedious task and should be repeated in case of translating
the system to other working enviroment with different doors’
dimensions or camera height. An additional problem of tuning
our fuzzy visual system is that its performance is evaluated
by a multiobjective function. Although the global goal of the
fuzzy visual system can be enunciated as “to detect the doors
present in the images captured by the robot’s camera”, this
imply both (a) detect doors in the images where doors are
actually present, and (b) not to indicate the false presence
of a door in an image without any door. The former case is
evaluated using the True Positive Fraction (TPF) and the latter
by the True Negative Fraction (TNF). The two objectives are
independent and in conflict, but both must be maximized in the
tuning process. For these reasons, we consider interesting to
develop an automatic mechanism for tuning the fuzzy visual
system employing training images captured at the particular
environment in which it is going to be used.

In this work we propose a methodology to automatize
the tuning of the fuzzy visual system using an evolutionary
approach. We decided to use evolutionary algorithms (EAs)
[9] for tuning the system instead of classical tuning approaches
[10] because it is possible to consider the whole fuzzy visual
system as a unique system to optimize. Therefore, it is
only necessary to define one error function to evaluate the
performance of the whole system, instead of a different error
function for each one of the three composing fuzzy systems.
Besides, the multiobjective nature of the problem can be
managed in a proper way by means of multiobjective EAs
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(MOEAs) [11], [12].
Within the optimization field using EAs, we find the possi-

bility to choose among single-objective algorithms, involving
the aggregation of the different objectives into an scalar
single-objective function, and multiobjective algorithms, that
considers the joint optimization of all of them [11], [12].
In this work we have tested both approaches. On the one
hand, we have used two single-objective EAs: a generational
Genetic Algorithm [13] and the CHC algorithm [14]. On the
other hand, we have tested three MOEAs: SPEA [15], SPEA2
[16] and NSGA-II [17]. All of them are run under similar
conditions and their results compared at the end of this article.

The remainder of the paper is structured as follows: Section
II is devoted to report a brief state of the art on genetic tuning
of fuzzy systems and door detection. Section III reviews our
fuzzy visual system designed for detecting doors. Sections IV
and V describe the basis of the single-objective and multiob-
jective EAs used, respectively. Section VI shows the coding
scheme, genetic operators and fitness functions employed for
our tuning approach. Section VII shows the experiments car-
ried out and Section VIII exposes some conclusions. Finally,
we have added an Appendix that explains the basis of the
multiobjective topic and the metrics used to compare the
algorithms employed in this work.

II. PRELIMINARIES

A. Genetic Tuning of Fuzzy Systems
Tuning of fuzzy systems provides an automatic way to

increase their performance using a validated data set describing
the problem. Three main tuning approaches can be found in
the literature [18]: tuning of the scaling functions that maps the
input and output variables into the ranges in which the fuzzy
variables are defined; tuning of the membership functions
by moving, stretching or narrowing them; and tuning of the
fuzzy rules modifying the fuzzy labels in the THEN-part of
the rules. Although the tuning process has been performed
using different optimization techniques [10], the use of genetic
algorithms (GAs) has become very popular in this field [19],
[20], [21], [22], [23]. The term Genetic Fuzzy System has
been used in the literature to refer to those fuzzy systems
that somehow rely on GAs either to define their structure or
to adapt some of their parameters [18], [24].

Although a great effort has been done on the optimization
of fuzzy systems using single-objective approaches, there is
usually a need in real problems for fulfilling several objec-
tives at the same time. Those problems are referred to as
multiobjective in the literature (an interesting survey on the
topic can be found in [25]). The concept of Pareto-optimum,
formulated by Vilfredo Pareto [26], constitutes the origin of
the research in Pareto-based multiobjective optimization. In
a typical multiobjetive framework, there is a set of solutions
that are superior to the remainder when all the objectives are
considered, the Pareto set. These solutions are known as non-
dominated solutions. Since none of the Pareto set solutions is
absolutely better than the other non-dominated solutions, all
of them are equally acceptable as regards the satisfaction of
all the objetives. Appendix A gives a deeper understading of
the concept providing a mathematical descripion of it.

The term EMO (Evolutionary Multiobjective Optimization)
refers to a set of evolutionary techniques that have been used
to solve multiobjective optimization problems. The main ad-
vantage of EMO algorithms, so called MOEAs, is the ability of
simultaneously searching for several non-dominated solutions.
MOEAs find different non-dominated solutions to a problem
in a single run while several runs of a normal algorithm would
be required to obtain similar results.

MOEAs have also been used for Genetic Fuzzy Systems.
Much of the work has been focused on the learning of the
database or the rule base of the fuzzy system [27], [28],
[29], [30]. Nevertheless, there are also approaches to tune
the membership functions of the fuzzy system. In [31], a
fuzzy system that controls a missile is tuned using a MOEA.
It allowed to simultaneously optimize the rising and settling
time, the steady state error and the overshot of the controller.
In [32], a fuzzy system to control a MAS (Mass Rapid Transit)
is tuned using a multiobjective approach based on Dynamic
Evolution. The system was used to control the operation
of a train dedicated to the transport of people from one
station to another. It was composed of 16 parameters and
the results showed that the method was able to optimize the
system according to the objectives of punctuality, energy and
passenger comfort.

B. State of the art on door-detection

Door detection has been done in the literature using different
kind of sensors like laser [33] and sonar [34], [35], [36]. The
door-detection problem using computer vision has also been
previously tackled using different approaches.

In the work developed in [37], a pair of neural networks is
used to detect doors in color images. One net is employed to
detect the lateral and vertical bars of the door and the other to
detect the corners. The nets receive as input subwindows of
the image of size 18×18 centered in each pixel with the hue
and saturation components. After the classification process,
an analysis of the components found is performed to detect
if there is any door present in the image. The system has
the disadvantage of requiring a high computational effort in
processing each image. Furthermore, it can not detect fully
opened doors and it is dependent on the color of the doors
used for training.

Based on a functionality-based approach, a method for
generic object recognition used for robot navigation is pre-
sented in [38]. A door is defined as an inverted U that can
be crossed by people. A trinocular vision system is used in
order to detect segments in the images of the environment.
The segments are analyzed to check if they accomplish a set
of size and height restrictions typical of its indoor environment
doors. The trinocular vision system makes possible to know
the real position of the segments in the space and thus check
the imposed restrictions. The system has the disadvantage of
the cost of the perceptual system.

Other related works use neural networks in order to classify
the segments of the doors [39], add information provided by
other sensors [40] or focus on the door-detection problem in
corridors [41].
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III. OUR APPROACH FOR DOOR-DETECTION

In [8] we presented a new method for visual door-detection
based on the extraction of the segments from images and the
definition of several fuzzy concepts.

Our system is able to detect typical doors in grey-level
images and can be used for real-time applications. Three fuzzy
systems are employed to analyze the segments extracted from
an image looking for doorframes in different situations. The
system created is able to detect doors under the strong per-
spective deformations caused by the two degrees of freedom
(DOFs) allowed for the camera of our robot (a Nomad200).
The proposed method is valid for different image sizes since
all the parameters have been set with independence of the size
of the image.

The use of fuzzy logic brings several advantages when
dealing with the problem. It allows us to define concepts
in a flexible way. Properties like vertical or horizontal are
defined as linguistic variables allowing to manage perspective
deformations and vagueness in the segment extraction in a
natural way. Another advantage of using fuzzy logic is the
facility for combining the information provided by the visual
system with other previously developed perceptual model
based on ultrasound [5], [42].

Our approach is based on the detection of the image seg-
ments that form part of the doorframe. In the first step of the
processing, segments in the image are detected using computer
vision techniques. Then, the first fuzzy system analyzes them
and selects those that are more likely to belong to doorframes.
When a doorframe is captured in an image, it can form two
frame edges with its surrounding. Firstly, there is the frame
edge formed by the doorframe and the wall. Secondly, there is
the frame edge formed by the doorframe and either its leaf (if
their colors are different) or the gap of the door (if it is open).
Therefore, based on our experience we have identified two
possible cases in which a doorframe can be detected. In the
first case, only one of the frame edges is present. This case has
been formally defined by the Frame Edge (FE) fuzzy concept.
In the second case, both frame edges are detected. This case
has been formally defined by the Complete DoorFrame (CDF)
fuzzy concept. We have designed two fuzzy systems (one for
each case) able to detect these segment configurations.

Both cases can be better understood by looking at Figure 1.
Although Figure 1 shows the ideal case in which the segments
of the doorframe are completely vertical and horizontal, this
only happens when the camera is completely in front of the
door and aligned with it. Nevertheless, due to the two DOFs
that provide the pan-tilt unit over which is placed our camera,
the segments will normally appear in different directions and
with different sizes. Our aim is to detect doors despite these
perspective deformations and scale changes.

The detection process starts applying the Canny edge de-
tector [43] on a grey-level image. The result is a binary image
I(x, y) where pixels labeled as true belong to edges in the
original image. In order to ease the notation we assume that
the dimension of the image is Nimg ×Nimg . The edge pixels
detected are used to compute the Hough Transform [44] and
then the segments from the image are extracted [45]. Let us

(a) (b)

Fig. 1. (a) FE and (b) CDF Fuzzy concepts

denote the set of extracted segments by S = {S0, S1, ..., Sm}.
Each segment is composed of two points, Si = {pi

0, p
i
1},

where pi
j = (xi

j , y
i
j) (coordinates in the image plane). When

the segments are extracted, the analysis to detect possible
doors is performed in three phases. In the first phase, a fuzzy
system classifies the segments and rejects the less promising
according to their direction, size and position in order to
reduce the computational effort required for the posterior
phases. In the second phase, a fuzzy system searchs for the
FE fuzzy concept among the segments selected in the previous
phase. Finally, in the third phase, a fuzzy system analizes the
FEs found in the previous phase looking for CDFs. The three
phases of the process are explained in detail below. Then, the
need of an automatic tuning mechanism for the fuzzy systems
is justified.

A. Segment classification

The total number of extracted segments could be high and
it is desirable to reduce it and select only those that could
belong to a doorframe. Therefore, an initial classification is
performed. Two classes of segments are of interest, the vertical
segments that belong to the lateral bars of a doorframe, and
the horizontal segments that belong to the upper part of the
doorframe. Nevertheless, it is important to remember that we
wish to detect the doors under the perspective deformations
that make the segments appear neither completely vertical nor
horizontal. Therefore, we have defined two fuzzy concepts
to represent both cases and manage these deformations. The
Vertical Segment (VS) fuzzy concept refers to those segments
that belong to the lateral bars of the doorframe, while the Hor-
izontal Segment (HS) fuzzy concept regards to those segments
that belong to the upper part of the doorframe. The two rule
bases shown in Table I, extracted from expert knowledge, are
used to calculate the membership degree of a segment Si to
the VS and HS concepts in the [0, 1] range. Both values are
calculated by a fuzzy inference process and its corresponding
defuzzification. We shall denote the membership degree of a
segment Si to the VS and HS fuzzy concepts by V S(Si) and
HS(Si), respectively. The fuzzy sets related to the VS concept
are three (low, medium and high) and are identical to the fuzzy
sets related to the HS concept. The HS and VS fuzzy concepts
are defined based on three fuzzy variables (Direction, Size and
YPosition) that evaluate three different features of a segment.

The fuzzy variable Direction refers to the direction in the
image plane of a segment Si = {pi

0, p
i
1} ; pi

j = (xi
j , y

i
j). It

has three possible values (horizontal, medium and vertical)
and its input value is given by Equation 1. The fuzzy variable
Size refers to the size of a segment in the image. It has three
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(a) Original image (b) All extracted segments (c) Horizontal segments (d) Vertical segments

Fig. 2. Segment classification process

IF THEN
Direction Size YPosition VS(Si) HS(Si)
horizontal small high low high
horizontal medium high low high
horizontal big high low high
medium small high low medium
medium medium high low high
medium big high low high
vertical small medium low
vertical medium high low
vertical big high low

TABLE I
RULE BASES FOR CLASSIFICATION OF SEGMENTS IN VERTICAL OR

HORIZONTAL

possible values (small, medium and big) and its input value
is given by Equation 2. Finally, the fuzzy variable YPosition
refers to the position of a segment in the y-plane of the
image. It has three possible values (low, medium and high)
and its input value is given by Equation 3. We should remind
that Nimg stands for the image size in the latter equations.
For more details about the meaning of these variables and
equations, the interest reader is referred to [8].

Direction(Si) =
2
π

arctan
( |ya

1 − ya
0 |

|xa
1 − xa

0 |
)

. (1)

Size(Si) =
dist(pi

0, p
i
1)

Nimg

√
2

. (2)

Y Position(Si) =
yi
0 + yi

1

2Nimg
. (3)

Each one of the extracted segments is analyzed and its
corresponding membership degrees V S(Si) and HS(Si) to
the fuzzy concepts VS and HS are calculated. The aim of
this process is dual, on the one hand, to classify the segments
into horizontal and vertical segments, and on the other hand,
to eliminate those segments that, according to their features,
do not seem to belong to a doorframe. Therefore, the values
V S(Si) and HS(Si) are computed and only those segments
whose membership degree to one of the two concepts exceed
a certain threshold t1 are used in the following phases. Those
whose membership degrees to the fuzzy concepts VS and
HS are below t1 are considered to have a low possibility of
belonging to a doorframe and are thus removed to speed up the

further processing. If Si is selected for the next phases then
it is classified as a vertical segment if V S(Si) > HS(Si)
or as a horizontal segment otherwise. Let us denote the set
of vertical segments selected as V = {V 0, ..., V n/V S(Si) >
t1 ∧ V S(Si) > HS(Si)} and the horizontal one as H =
{H0, ...., Hn/HS(Si) > t1 ∧ V S(Si) ≤ HS(Si)}.

The appropriate selection of t1 is not a trivial task. A low
value causes an acceptance of all the segments detected, thus
not increasing the speed of the further processing. On the
other hand, the use of very high values could reject segments
actually belonging to frame edges of a doorframe.

Figure 2 shows an example of the classification process with
an image of our environment. Figure 2(a) shows an image
captured with the camera of our robot. In Figure 2(b) all the
segments extracted in the image are depicted. Figures 2(c) and
2(d) show the segments classified as horizontal and vertical
using the previous method. Once the interesting segments have
been selected and classified, they are analyzed in order to find
if their relationships show that they compose a doorframe.

B. Frame Edge Detection

The next step is to analyze if there is any frame edge (FE) in
the set of extracted segments. The FE fuzzy concept expresses
the idea that there is a horizontal segment (HS) joined to a pair
of vertical segments (VS) in its upper part. The HS and VS
fuzzy concepts have been previously calculated. Nevertheless,
it is already necessary to analyze if there is a trio of segments
(two vertical and one horizontal) whose distances reveal that
they belong to a frame edge. The Frame Edge Cohesion fuzzy
concept (FEC) is defined for that purpose.

The detection process starts selecting for each horizontal
segment Hi ∈ H , a pair of vertical segments {V j , V k} ∈
V and analyzing them. Let us denote the trio by F i =
{Li, Supi, Ri}, being Li ∈ V the leftmost vertical segment,
Supi ∈ H the horizontal segment, and Ri ∈ V the rightmost
vertical segment of the selected trio.

The membership degree FEC(F i) ∈ [0, 1] of F i to
the fuzzy concept FEC is calculated using the rule base of
Table II (also extracted from expert knowledge) by a fuzzy
inference process and its corresponding defuzzification. The
SegDistV V (F i) and SegDistV H(F i) fuzzy variables are
used to measure the distance between the segments.

FEC expresses if a trio of segments are close enough to
be part of a frame edge. Altough FEC(F i) indicates that the
degree of separation between the segments of F i is appropriate
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(c) CDF(b) CDF(a) FE

Fig. 3. Examples of the FE and CDF fuzzy concepts detected in images of our environment

to belong to a frame edge, it does not take into account the
corresponding membership degree of each individual segment
to the VS and HS concepts. Therefore, the membership degree
FE(F i) ∈ [0, 1] of F i to the FE fuzzy concept is calculated
(as expressed in Equation 4) to take into account how well the
individual segments accomplish the corresponding HS and VS
fuzzy concepts.

SegDistV V (F i) SegDistV H(F i)
VL L M H VH

VL L L L L L
L H M M L L
M H H M L L
H H M L L L
VH M L L L L

TABLE II
RULE BASE FOR LINGUISTIC VARIABLE FEC(F i)

FE(F i) = min{FEC(F i), V S(Li),HS(Supi), V S(Ri)}
(4)

Only those trios F i whose membership degree FE(F i)
exceeds a threshold t2 are used in the following phase. Let
us denote this set as F = {F 0, ..., Fn/FE(F i) > t2}. Image
3(a) shows an example of an FE detected in an image of our
environment.

C. Double Frame Detection

In some cases, it is possible to see the two frame edges
of a door. For example, when the door is seen open from
the side that does not contain its leaf, or when the door is
closed but the color of its leaf is different from the color of
the frame. Therefore, the set of frame edges F selected in
the previous phase is analyzed in order to detect if two of
them belong to the same door. The Complete Door Frame
(CDF) fuzzy concept evaluates if two frame edges belong to
the same door (see Figure 1(b)). The previous phase allows
the detection of frame edges by the FE concept. A new fuzzy
concept, Frame Edges Similarity (FES), evaluates the degree
in which two frame edges F i and F j are parallel and close.

The definition of this concept is based on the philosophy
employed to create the variables and rule sets of the previously
described concepts and the interest reader in referred to [8] for
further information. Then, using both concepts (FE and FES),
the membership degree of the two frame edges to the CDF
fuzzy concept is calculated using fuzzy logic operations. A
threshold t3 is used, as in the previous cases, to select those
pairs whose membership degree to the CDF concept is high
enough to be considered for a posterior analysis. Figures 3(b)
and 3(c) shows examples of CDFs detected in images of our
environment.

D. Neccesity of an automatic tuning mechanism

The number of variables, the number of linguistic labels for
each of them and the rule bases have been created based on
expert knowledge. Furthermore, the appropriate ranges for the
linguistic labels and the values for the parameters t1, t2 and
t3 have been manually selected based on the experimentation
developed to achieve a good performance of the fuzzy visual
system in our working environment. Nevertheless, if we wish
to use the same fuzzy visual system to detect doors of different
sizes or with cameras placed at different heights, it is neccesary
to tune the system again to these particular conditions.

Manual tuning of the fuzzy systems is a tedious task,
aggravated in our case by the fact that the performance of
our system depends on two different aspects. On the one
hand, it is required that the system detects the doors present
in images with doors. However, it is also important that the
system does not indicate the false presence of a door when the
robot is looking at scenes without doors. The first objective is
measured by the True Positive Fraction (TPF) and the second
by the True Negative Fraction (TNF) (the functions employed
to measure these values are later explained in Section VI-C).
These reasons have lead us to consider the development of
an automatic mechanism to perform the tuning. The aim is to
be able to automatically tune the fuzzy visual system by just
providing a set of images captured at the desired environment
both with and without doors manually labeled.

Automatic tuning of fuzzy systems has been treated using
both classical optimization approaches (like gradient descent)
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Generational Genetic Algorithm(N ,pselect,pcrossover):
1) Nselect = N ∗ pselect

2) Ncrossover = N ∗ pcrossover

3) Nmutate = N ∗ (1− pselect − pcrossover)
4) Pt=0=Create Initial Population of N individuals
5) While not achieved the termination condition

5.1 Select Nselect individuals using binary tournament and copy them to P ′

5.2 Select Ncrossover individuals using binary tournament and cross over them. Add the Ncrossover

offsprings to P ′

5.3 Select Nmutate individuals and mutate them. Add the mutated individuals to P ′

5.4 Assign Pt+1 = P ′ and empty P ′

5.5 t=t+1

Fig. 4. Generational GA

and evolutionary approaches. In our particular case, the latter
offers the advantage of allowing us to consider the whole fuzzy
visual system as a unique system to optimize. Therefore, it
is possible to measure its performance by just analyzing its
final results over a data set, instead of analyzing the individual
performance of each one of its three composing fuzzy systems
(that is the case if we had used classical approaches).

Since the tuning of our fuzzy visual system is a multiob-
jective problem, we can use both single-objective approaches
(combining the different functions into a single escalar func-
tion) or multiobjective approaches. In this work we test both in
order to select the most appropriate one. In the two following
sections, the basis of the employed EAs are explained.

IV. SINGLE-OBJECTIVE APPROACHES FOR TUNING THE
FUZZY VISUAL SYSTEM

The two single-objective EAs considered are described in
the next two subsections.

A. Generational GA

EAs have proved to be a useful tool for solving a broad class
of difficult optimization problems [46]. Among EAs, GAs are
a particular instance based on the natural evolution concept.
In that area, the generational GA (GGA) [13] is the classic
exponent of this type. A GGA starts with random population
that is evolved each iteration using selection, crossover and
mutation operators, and the offspring population directly sub-
stitutes the parent one for the next generation. Each individual
is ranked with a fitness accordingly to its goodness in the
problem solving.

In our implementation, the selection operator chooses a set
of individuals to be part of the following generation without
any modification. This operator introduces the selective pres-
sure concept, making the good individuals to more probably
be in the next generation. In our case, we have used a binary
tournament that involves randomly choosing two individuals
of the current population and selecting the one with the best
fitness for the next generation population.

The crossover operator exploits the idea that from the
combination of good individuals (parents) it is possible to
generate good new individuals (offsprings). The parents are
selected using binary tournament and the resulting offsprings
are used for the next population.

Finally, the mutation operator works on an individual by
randomly altering it. The use of this operator allows to
explore undiscovered parts of the search space and prevents
the algorithm to get stuck in local minima.

Figure 4 outlines the GGA operation. In order to run the
algorithm, it is neccesary to specify the number of individuals
of the population N and the percentage of those individuals
that are to be selected, crossed over and mutated. At each itera-
tion, a new population P ′ is created using the aforementioned
operators over the individuals of the current population Pt.
The current population is entirely replaced by the new one.
Notice that the proposed GA does not consider elitism. We
implemented the two versions, elitist and non elitits, and the
latter performed better for the current problem. This can be
due to the higher diversity induced by the non elitist version.

B. CHC

The CHC algorithm [14] is an evolutionary approach that
introduces an appropriate trade-off between diversity and
convergence. For that purpose, it uses a high selective pressure
based on an elitist scheme in combination with a highly
disruptive crossover and a re-start when the population is
stagnated. It is based on four distinguishing components [14]:
• HUX crossover operator. The original algorithm was

designed to be used with binary coding and this crossover
operator ensures the obtaining of the most diverse off-
springs from their parents.

• Incest prevention. Two parents are not crossed over if
they are too similar. This ensures diversity.

• Elitist selection. A temporary population is obtained by
joining the parents and offspring generated, and the best
N individuals of it compose the new population.

• Re-start. When the population reaches an stagnated state,
it is re-started keeping the best individual.

The algorithm pseudo-code is shown in Figure 5. In the
first step, the population is created using a perturbation op-
erator over the initial chromosome. In our case, the initial
chromosome is created from the original definition of the
fuzzy visual system previously explained (based on expert
knowledge). Then, the algorithm measures the mean distance
of the population (Dmean) in order to estimate when two indi-
viduals are too close to be crossed and in this way avoiding a
possible incest. Incest prevention forces to cross over separated
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CHC:
1) P0=Create initial population
2) Dmean=Calculate mean distance of the population
3) Dmax=Calculate maximum distance between individuals
4) Decrement = DecFactor ∗Dmax

5) While not achieved the termination condition
5.1 Pair up randomly the individuals of the population to be used as parents of the new offspring

population
5.2 Create a new offspring population Offspringi with M individuals (M ≤ N) using the crossover

operator. If the distance between the two parents is smaller than Dmean do not generate the
offspring

5.3 Replace the individuals of Pi with the individuals of Offspringi that are better than them
5.4 If no new offspring are generated Dmean = Dmean −Decrement
5.5 If Dmean < 0 re-start keeping the best individual and recalculate Dmean and Decrement

Fig. 5. CHC evolutionary algorithm

elements causing an exploration of the area covered by the
individuals of the population. Dmean is decremented each time
the incest prevention mechanism makes impossible to generate
any new offspring in one iteration. DecFactor allows us to
select the degree of convergence of the algorithm, the smaller
it is, the greater the level of convergence allowed and vice
versa. When Dmean is below zero, the population is re-started
keeping the best individual found. The new population is
generated using the perturbation operator on the best individual
with probability 35%. It means that only the 35% of the
chromosome is altered.

V. MULTIOBJECTIVE APPROACHES FOR TUNING THE
FUZZY VISUAL SYSTEM

The three MOEAs used are reviewed in the next three
subsections.

A. SPEA
The SPEA algorithm [15] is a Pareto-based MOEA that

employs an elitist scheme. In order to maintain the elitism,
the algorithm keeps an external population P e with the non-
dominated solutions found since the start of the run. The
outline of the algorithm can be seen in Figure 6.

The algorithm starts creating a random population P of N
elements. The non-dominated solutions of P are stored in the
external elitist population P e that is updated each generation.

A fitness value is assigned to all the elements of P and
P e. The fitness of the elements from P is calculated using
a different criteria than the elements of P e. An individual
~xi from P e is evaluated using Equation 5. The value ni is
the number of solutions in P dominated by ~x. Equation 5
assigns low values to those non-dominated solutions that do
not dominate other solutions in order to enforce the search in
this area that is not appropriately covered by the population.
On the other hand, an individual ~xj from P is evaluated using
Equation 6. This equation gives low values to those individuals
that are weakly dominated.

s(~xi) =
ni

N + 1
(5)

s(~xj) = 1 +
∑

~xi∈P e and ~xi dominates ~xj

s(~xi) (6)

Once a fitness value is calculated for all the individuals,
those that are going to be mutated and crossed over are
selected using binary tournament among all the elements of
P ∪ P e. After applying the variation operators, the non-
dominated solutions existing in the new population are copied
to P e, removing the dominated and duplicated ones. There-
fore, the new elitist population is comprised by the best non-
dominated solutions found so far, including new and old elitist
solutions.

In order to limit the growth of the elitist population,
a clustering algorithm is employed if the number of non-
dominated solutions found is greater that a threshold value
Ne. The clustering algorithm (showed in Figure 7) selects the
solutions closer to the center of each cluster.

B. SPEA2

SPEA2 [16] is a MOEA that uses a Pareto-based elitist ap-
proach but it is modified to eliminate the potential weaknesses
of SPEA. SPEA2 mainly differs from SPEA in three points:
• The fitness assignment scheme is modified to take into

account both the number of individuals that an individual
dominates and is dominated by. The problem appears in
SPEA when P e has only one non-dominated solution.
In that case, all the dominated solutions have the same
fitness and the algorithm behaves as a random search
algorithm.

• In order to avoid the grouping of the individuals of the
population (P and P e), a density estimation value is
introduced in the fitness function. This value assigns a
better fitness to those solutions that are far from other
solutions, thus enforcing an extended Pareto front.

• The management of the external population is modified.
In SPEA2, P e has fixed size and if the number of non-
dominated solutions is not enough to fill P e then the
best dominated solutions from P are copied to P e. On
the other hand, if the number of non-dominated solutions
exceeds the limit, a truncation operator is employed
instead of the clustering technique of SPEA.

The outline of the algorithm is shown in Figure 8. It starts
creating the initial random population P0. All the elements
are ranked according to the fitness assignment scheme, that in
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SPEA:
1) P=Initial Population
2) P e=Non-dominated solutions of P
3) While not achieved the termination condition

3.1 Assign a fitness value to the elements of P and P e

3.2 Select N individuals from (P ∪ P e) by binary tournament
3.3 Apply crossover and mutation
3.4 Copy the non-dominated solutions in P e and remove the dominated solutions
3.5 If |P e| > Ne then reduce P e using clustering

Fig. 6. SPEA procedure

SPEA Clustering:
1) Assign each element to a cluster
2) While |P e| > Ne do

2.1 For each pair of clusters
i) Calculate the distance between clusters, like the average distance among all their elements

Dij =
1

|c1| · |c2| ·
X

i1∈c1,i2∈c2

‖i1 − i2‖

2.2 Merge the two clusters with minimum distance between them
3) Choose a solution of each cluster, that with minimum average distance to the remaining cluster elements

Fig. 7. Clustering in SPEA

SPEA2:
1) Set t=0 and Pt=Initial Population.
2) Assign a fitness value to the elements of Pt

3) Copy all the non-dominated solutions of Pt in P e
t . If |P e

t | > Ne then reduce P e
t by means of the

truncation operator. If |P e
t | < Ne then fill P e

t with the best dominated individuals of Pt

4) If the termination condition is reached stop
5) Create a mating pool P m by binary tournament selection with replacement on P e

6) Use crossover and mutation operators to create the new population Pt+1.
7) Set t = t + 1 and go to step 2

Fig. 8. SPEA2 procedure

contrast to SPEA, is the same for all the elements in P and
P e.

The fitness value of an element ~xi is based on the sum of
two values, the raw fitness R(~xi) and a density estimation
D(~xi). The raw fitness (calculated using Equation 7) is de-
termined based on the strength of its dominators S(~xi). The
function S(~xi) is a strength value that indicates the number
of individuals that ~xi dominates as showed in Equation 8.

R(~xi) =
∑

~xj∈{Pt∪P e
t }∧ ~xj dominates ~xi

S(~xj) (7)

S(~xi) = |{~xj |~xj ∈ {Pt ∪ P e
t } ∧ ~xi dominates ~xj}| (8)

When most of the solutions are non-dominated, the raw
fitness might be the same for all of them and this value might
be useless. Therefore, a density estimator measure D(~xi) is
calculated using Equation 9. The value σk

i is the distance of
~xi to the k-th nearest neighbor in the objective space. D(~xi)
assigns a better fitness value to those individuals that are
isolated, thus enforcing an extended Pareto front.

D(~xi) =
1

σk
i + 2

(9)

A truncation operator is used to reduce the number of
non-dominated solutions in P e keeping the extent of the
Pareto front. The individual with the minimum distance to
other individual is the first selected for removal; if several
individuals are in the same situation, the second smallest
distance is considered and so forth.

C. NSGA-II

The NSGA-II MOEA [17] appears to solve the weaknesses
of its predecesor NSGA [47]. NSGA-II is a Pareto-based
evolutionay algorithm that employs an elitist approach (one
of the drawbacks of NSGA is that it does not use elitism). In
contrast to SPEA and SPEA2, NSGA-II does not mantain an
external population of non-dominated solutions but the new
population is comprised by the best individuals of the parent
and offspring populations (like CHC).

The ranking scheme employed consists in sorting the indi-
viduals of a population in different Pareto fronts (or levels)
Fi. The first level (F1) is comprised by the non-dominated
individuals of the population. Once the individuals of the first
level have been found, they are temporarily removed. The
second level (F2) is comprised by the remaining nondomi-
nated individuals. This process is repeated until no individual
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NSGA-II:
1) P0=Initial Population.
2) Fast-nondominated-sorting(P0)
3) t = 0
4) While the termination condition is not reached

4.1 Use crossover and mutation operators to create the new population Qt

4.2 Rt = Pt

S
Qt

4.3 F=fast-nondominated-sorting(Rt)
4.4 Pt+1 = 0 and i = 1
4.5 While |Pt+1| 6= N

i) If |Pt+1|+ |Fi| < N add all the solutions from Fi into Pt+1

ii) Else Sort(Fi) and insert the first solutions of Fi into Pt+1 to fill it
iii) i = i + 1

4.6 t = t + 1

Fig. 9. NSGA-II procedure

remains in the population. This ranking scheme is also used
in its precedesor NSGA and is called Nondominated Sorting
(naming the algorithm). Nevertheless, the original proposal is
computionally inefficient (O(MN3)) and the authors provides
NSGA-II with a faster version called Fast Nondominated
Sorting. Once the different levels Fi have been found, their
individuals are ranked with a fitness according to the level
they belong to. The individuals from F1 are ranked with lower
values than the solutions of F2. Thus, minimization of fitness
is assumed.

In order to enforce spread Pareto fronts, a second sorting
mechanism is employed among the individuals of a level Fi.
For that purpose, NSGA-II uses a density estimation value to
assign a better ranking to those individuals that are far from
other solutions. For each individual in a level Fi, the mean
distance to the two nearest individuals is computed. The higher
this distance, the more isolated the individual and the lower
the density around it. Therefore, those individuals with lower
density value are better ranked within a level Fi.

In Figure 9 the algorithm is outlined. It starts creating an
initial random parent population Pt=0 (with N individuals)
that is ranked using the Fast Nondominated Sorting. Then, an
offspring population Qt (of size N ) is generated using the
mutation and crossover operators over the individuals of Pt

selected using binary tournament. The individuals of Pt and
Qt are merged into Rt and the Fast Nondominated Sorting is
performed. The next generation Pt+1 is comprised by the N
best individuals of Rt. Since Rt contains all the individuals
of Pt, elitism is ensured. If the first level of Rt (F1) has less
than N individuals, the best individuals of F2 are used to fill
Pt+1. If it is not possible to accomodate all the individuals of
a level Fi into Pt+1, the density estimation value is used to
select the best ones.

VI. CODING SCHEME, GENETIC OPERATORS AND
OBJECTIVE FUNCTIONS

In this section it is explained first how the fuzzy visual
system has been encoded to be adapted by the EAs. Then,
the basis of the genetic operators employed are introduced.
Finally, the objective functions used to measure the perfor-
mance of an individual are also described.

A. Coding Scheme

In our approach, the whole fuzzy visual system is repre-
sented using a single chromosome composed of the joining
of its membership function parameters. Each fuzzy variable
is encoded based on the crossing points of its membership
functions and the separation between them using a real coding
scheme.

We shall denote the set of m variables of the fuzzy visual
system as Z = {Zi | i = 0 . . . m} and let us denote the set
of membership functions of variable Zi as Li = {Lj

i | j =
0 . . . n + 1}, where Lj

i denotes the j − th label of the i −
th fuzzy variable. Notice that n + 1 indicates the number of
labels for the i − th variable and that this number can be
different for each variable. As our system is entirely composed
of trapezoidal functions, a membership function can be defined
by four parameters as in Equation 10, where [Lefti, Righti]
is the range of the input variable Zi.

Lj
i = [aj

i bj
i cj

i dj
i ] / aj

i , b
j
i , c

j
i , d

j
i ∈ [Lefti, Righti] (10)

In order to reduce the search space, we limit the set of
possible configurations forcing the membership functions to
cross at level 0.5. This approach has been previously employed
in [48] with triangular membership functions. In our case, the
use of this constraint is forced to be accomplished by the
following restriction:

aj+1
i = cj

i ∧ bj+1
i = dj

i

Consequently, the crossing point P j
i of two consecutive

labels Lj
i and Lj+1

i is calculated as expressed in Equation
11:

P j
i =

cj
i + dj

i

2
=

aj+1
i + bj+1

i

2
(11)

Therefore, for each variable Zi, there is a set of n crossing
points Pi = {P j

i | j = 1 . . . n} that have to be learned by
the EA to obtain the maximum performance. The variable P j

i

refers to the j−th crossing points of the i−th variable of the
system. A range of allowed positions [Pleftji , P rightji ] is de-
fined for each crossing point P j

i instead of allowing EAs freely
select any value. This range is calculated using Equations 12
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Fig. 10. (a) Representation of a variable with 3 labels. (b) Representation of a variable for different values of sj
i

and 13 and it limits the definition interval of each crossing
point to an interval around its position in the initial fuzzy
system created by the expert. This restriction has two purposes.
On the one hand, it limits the search space of each crossing
point to a range that the expert considered appropriate when he
created the knowledge base. On the other hand, it avoids both
the relative displacement and the overlap of the membership
functions given by the initial system, thus preserving the initial
meaning given by the expert to each label. In Figure 10(a), it
can be seen an example of a fuzzy variable Zi with three
membership functions {L0

i , L
1
i , L

2
i }. The variable has two

crossing points {P 0
i , P 1

i }. As it can be seen, the search space
for each P j

i is independent, thus avoiding both the overlap and
the relative displacement between the membership functions.
The range of each crossing point is calculated at the start of
the process, with respect to the initial fuzzy partition values
(as usual in genetic tunning approaches [18]), and remains the
same during the whole evolution process.

Pleftji =

{
Lefti if j = 0
P j

i +P j−1
i

2 otherwise
(12)

Prightji =

{
Righti if j = n
P j

i +P j+1
i

2 otherwise
(13)

In order to increase the capability for adjusting the mem-
bership functions, a parameter that indicates the separation
between them is used. It represents the separation of the upper
points (cj

i and bj+1
i ) of two consecutive membership functions

Lj
i and Lj+1

i to its crossing point P j
i . We shall call this

parameter sj
i ∈ [0, 1] and it will be calculated as expressed

in Equation 14.

sj
i =

P j
i − cj

i

min{P j
i − Pleftji , P rightji − P j

i }
(14)

When sj
i = 0, there is no separation between cj

i and bj+1
i ,

i.e., cj
i = bj+1

i . On the other hand, if sj
i = 1, the separation

between cj
i and bj+1

i is the maximum allowed by the limits
[Pleftji , P rightji ] of the crossing point P j

i . To clarify the
utility of this parameter, Figure 10(b) shows the example
of a crossing point P 0

i and the corresponding membership
functions for two different values of s0

i . While the membership
functions represented by the solid lines correspond to s0

i =

0.5, the membership functions represented by dashed lines
correspond to s0

i = 0.25. This parameter can be viewed as
the degree of fuzzification, i.e., when the parameter sj

i is 0
it corresponds to an interval discretization with no fuzziness
at all [49]. Continuing the notation previously employed, the
subscript i refers the to i − th variable and the superscript j
to the j − th element into this variable.

Tuning of trapezoidal membership functions using real
coding was also performed in [19], but the approach explained
in this work reduces the number of parameters employed for
each variable and thus the search space for the EA.

A complete fuzzy visual system is represented by a chro-
mosome ~xi. It is encoded by joining the set of membership
function definition parameters and the three threshold values
{t1, t2, t3} ∈ [0, 1]. In our system, there is a total of 7
input variables and 4 four output ones. All of them produce
a total of 25 crossing points and their corresponding 25
parameters for estabilishing the degree of fuzzification sj

i .
These 50 parameters plus the 3 threshold values sum up a
total of 53 parameters that are required for encoding our fuzzy
visual system. We will denote the elements of each ~xi by
(xi

0, ...., x
i
52).

B. Genetic Operators
Both a crossover and a mutation operator are required to

apply the EAs selected for the tuning process. BLXα [50] has
been selected as crossover operator. This operator works by
generating a random real value in an extended range (given
by a parameter α) of the parents. Let us suppose that we
want to cross over two chromosomes ~xa = (xa

0 , ...., x
a
58) and

~xb = (xb
0, ...., x

b
58) to obtain an offspring ~xc = (xc

0, ...., x
c
58).

The BLXα operator generates for each xc
i a random value

in a extended range [BLXi
Inf , BLXi

Sup] given by the parent
values xi

a and xi
b as shown in Figure 11. Nevertheless, in order

to keep the coherence in the values of the offspring, the range
[BLXi

Inf , BLXi
Sup] can not exceed the range imposed by the

coding scheme for each element xi
c. It means that if xi

c is either
an {t1, t2, t3} or a sj

k parameter then [BLXi
Inf , BLXi

Sup]
must not exceed the range [0, 1]. Similarly, if xi

c is a crossing
point P k

j then [BLXi
Inf , BLXi

Sup] must not exceed the range
[Pleftkj , P rightkj ]. This operator is applied twice in each pair
of parents to generate two offsprings.

The mutation operator has been implemented by randomly
selecting an element of ~xa and assigning a random number in
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Fig. 11. Operation mode of the BLXα operator.

the range of possible values. In the case of the CHC algorithm,
the perturbation operator has been implemented by randomly
altering the 35% of an individual.

C. Objective Functions

In order to evaluate the performance of the solutions gen-
erated, a set of validated patterns is required. These patterns
must be images of the enviroment where the system is going
to work, containing scenes with and without doors. Let us
denote by I = {I0, ..., In} the images in the image set I . For
each image, all the segments must be extracted and those that
belong to doorframes manually labeled. For that purpose we
have created a specific application that helps in this process.
Let us denote all the segments extracted from an image Ii by
ISi (Image Segments) and those that belong to doorframes by
DSi ∈ ISi (DoorFrame Segments). When ISi is passed to
a fuzzy visual system ~x, it returns only the set of segments
that considers belonging to a door. Let us denote them by SSi

(Solution Segments). If the system correctly classifies all the
segments, then SSi = DSi. Otherwise, there may be a subset
of SSi with segments that actually belong to the doorframe,
and there may be another subset of SSi with segments that
have been incorrectly considered as belonging to a doorframe.
Let us denote the former subset by CCi = {SSi

⋂
DSi}

(Correctly Classified) and the latter by ICi = {SSi −DSi}
(Incorrectly Classified).

In our problem there are two different objectives to be
optimized. As first objective, it is desired to achieve a maxi-
mum positive detection (TPF), i.e., we want to detect all the
segments that belong to doorframes. It can be measured using
the function f1(~x) ∈ [0, 1] defined in Equation 15 that is to be
maximized. This function is 1 when ~x correctly returns all the
segments of I that really belong to doorframes. On the other
hand, if it is 0, it means that ~x does not return any correct
segment at all.

f1(~x) =
1
n

n∑

i=0

|CCi|
|DSi| (15)

As second objective, it is desired that the fuzzy visual
system rejects all those segments that are in the image but
do not belong to doorframes (TNF). This can be measured
using the function f2(~x) ∈ [0, 1] defined in Equation 16. This
function is 1 when no incorrect segments are returned by ~x
and it is 0 in the opposite case.

f2(~x) =
1
n

n∑

i=0

(
1− |ICi|

|ISi −DSi|
)

(16)

When using single-objective approaches, we must combine
the two objective functions into a single escalar function.

Therefore, we employ Equation 17 that uses a parameter λ
to independently weight the importance of f1 and f2. The
use of λ directs the search towards a single direction of the
multiobjective space. This operation can be seen referred in
the literature as plain aggregating approach [11]. In order to
obtain a set of solutions with different trade-offs between their
objectives, it is necessary to run the single-objective algorithm
for different values of λ.

f(~x) = λf1(~x) + (1− λ)f2(~x) (17)

VII. EXPERIMENTAL RESULTS

The aim of our experimentation is to tune the fuzzy visual
system jointly optimizing the two goals previously explained,
f1 and f2. Therefore, we have employed two single-objective
EAs, GGA and CHC, and the three MOEAs, SPEA, SPEA2
and NSGA-II. A large set of images I with and without
doors, taken from different angles and distances at the fixed
height of our camera, has been created. The set contains
436 images with doors and 186 images without doors. The
number of images without doors is inferior because we have
experimented in the manual tuning performed in [8] that
images with doors are more relevant to achieve a proper
tuning.

The validated data set has been split into two subsets. The
first one is to be used in the evolution process to evaluate the
individuals generated (training set) that contains the 80% of
the whole patterns. The other set (test set) has the rest of the
patterns and is used to test the final solutions generated by the
algorithms.

In order to be able to compare the solutions of the different
algorithms, we have set almost the same conditions for the
execution of all them. The same initial fuzzy system (~x0) has
been used for all the algorithms. Its labels have been uniformly
distributed covering the whole range of the fuzzy variables.
The individual ~x0 has the following fitness values f1(~x0) =
0.841 and f2(~x0) = 0.884.

Both GGA and CHC have been run 10 times using the
fitness function showed in Equation 17 for the values λ =
[0, 0.11, 0.22, .., 0.88, 1] in order to emulate the behavior of the
MOEAs. The size of the population has been set to 100 and the
number of iterations to 300. For the GGA, the percentage of
individuals employed for the selection, crossover and mutation
operators are 0.4, 0.5 and 0.1, respectively. In CHC, the
Decrement factor has been experimentally set to 0.08.

SPEA, SPEA2 and NSGA-II have been run 10 times using
a population of 100 individuals. For SPEA and SPEA2, the
number of individuals of the elitist population P e has been
set to 25. The total number of iterations employed for the
three algorithms are 300 and the objective functions showed
in Equations 15 and 16 have been used.

All the algorithms uses BLXα with α = 0.3 as crossover
operator and the random mutation operator.

We have used five different metrics for the comparison of
the algorithms: four individual metrics, #p, M∗

2 , M∗
3, and

S; and one comparison metric, C (see Appendix B for furhter
details about the metrics employed). Metric #p is the number
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Algorithm #p σ#p M∗
2 σM∗

2
M∗

3 σM∗
3

S σS
GGA 3 - 0 - 0.227 - 0.9971 -
CHC 5 - 2 - 0.910 - 0.9624 -
SPEA 19.1 2.26 2.635 0.795 0.503 0.053 0.9930 0.0071
SPEA2 17.4 2.80 3.066 0.783 0.516 0.070 0.9871 0.0120
NSGA-II 29.9 3.46 4.259 1.878 0.514 0.038 0.9972 0.0029

TABLE III
QUALITY METRICS VALUES OF THE PARETO FRONTS OBTAINED BY GGA, CHC, SPEA, SPEA2 AND NSGA-II

GGA

CHC

SPEA

SPEA2

NSGA−II

Fig. 12. C metric values for the different runs of GGA, CHC, SPEA, SPEA2, and NSGA-II

of non-dominated solutions in the final Pareto front. M∗
2 is the

generational distance, i.e., the distribution of non-dominated
solutions. M∗

3 is the extreme spread that measures the extent
of the Pareto front. The reason of using M∗

2 and M∗
3 (instead

of M2 and M3) comes from the fact that we are interested
in that the fuzzy visual systems learned are well distributed in
the objective space, to be able to obtain several fuzzy visual
systems with different TPF-TNF trade-offs. Please notice that
the metric M∗

1 can not be applied because the true Pareto-
optimal front is not known in our problem. S is the hyper-
volume covered by the Pareto front. Finally, the comparison
metric C measures the dominance of the solutions of a Pareto
front over those of another.

Notice that, as our problem is composed of just two objec-
tives, M∗

3 corresponds to the distance between the objective
vectors of the two outer solutions (hence, the maximum
possible value is

√
2 = 1.4142).

These metrics are appropriate to measure the quality of
the generated Pareto fronts. Nevetheless, they can not be
applied to the results of the single-objective EAs. Since it
is of our interest to compare all the algorithms, the single
10 solutions obtained from the independent 10 runs of each
single-objective EA have been gathered to create an aggregated
Pareto front for each one of the latter two algorithms. The
four metrics previously indicated are also applied to these
aggregated Pareto sets.

Table III shows the metrics results for the 10 runs of the
three MOEAs and for the aggregated Pareto fronts of GGA
and CHC. From left to right, the columns show the average
values of the abovementioned metrics in the 10 runs of the
MOEAs, and their corresponding standard deviations. In the
case of GGA and CHC, as there is a single Pareto front for
the independent 10 runs of each algorith (a total of two Pareto
fronts: one for GGA and another one for CHC), the standard
deviations can not be calculated. Parameter σ∗ of M∗

2 has been
set to 0.1

√
2, i.e., the ten percent of the maximum possible

distance. Figure 12 graphically shows as box-plots the values
of the C metric for the different Pareto sets obtained in the 10
runs.

As usually done in the experimental comparison of MOEAs
in the specialized literature (see, for example, [51]), we have
created a global Pareto front for each MOEA by aggregating
the Pareto sets found in each of the independent 10 runs
performed, and removing the dominated solutions. Figure
13(a) shows the non-dominated solutions found by SPEA in
the different runs. Similarly, Figures 13(b) and 14(a) show
these non-dominated solutions found by SPEA2 and NSGA-
II. Finally, Figure 14(a) depicts the aggregated Pareto front
from the independent 10 runs of GGA (that used to calculate
the metrics) and Figure 14(b) for the CHC algorithm. Note
that in Figure 14(b) the range of the graph is different from
the ranges of the other three graphs in order to represent all
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Fig. 13. Aggregated Pareto fronts obtained by (a) SPEA and (b) SPEA2
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Fig. 14. Aggregated Pareto fronts obtained by (a) NSGA-II and GGA (b) CHC

Algorithm #p M∗
2 M∗

3 S
SPEA 33 3 0.4567 0.9998
SPEA2 28 4.9629 0.4565 0.9998
NSGA-II 40 3.3333 0.4486 0.9998

TABLE IV
METRICS FOR THE AGGREGATED PARETO FRONTS OF THE MOEA’S (FIGURES 13 AND 14)

the solutions. Table IV shows the metrics #p, M∗
2, M∗

3 and S
for each one of the aggregated Pareto fronts of the MOEAs.
We should remind that, for the case of the single-objective
EAs, these metrics were shown in the first two rows of Table
III.

In view of the results obtained, several conclusions can be
drawn. On the one hand, it can be seen how the three MOEAs
clearly outperform the two single-objective EAs considered.
As expected, the direct application of a MOEA seems to
be a most promising technique to obtain a Pareto set of
non dominated solutions for our tuning problem than the
consideration of repeated runs of a single-objective EA with
different weights for the aggregated fitness function. The direct
comparison between both single-objective approaches, GGA
and CHC, shows better results of the latter in three of the four
individual metrics: the number of solutions #p, the distribution

metric M∗
2, and the extension metric M∗

3 (see Table III).
However, the results associated to the M∗

3 metric can be
confusing if analyzed in isolation. Notice that CHC gets the
best value of the five algorithms considered in this metric,
with a significant difference (almost the double) with respect
to the remainder. If we have a look to Figure 14, we recognize
that the reason why the Pareto fronts generated by CHC are
so spread in the problem space is because they have not
converged properly to the real non dominated solutions, which
are actually obtained by the remaining algorithms. Besides,
GGA outperforms CHC in the remaining individual metric, the
area S, and in the comparison metric C. Notice from the top
left part of Figure 12 that, while no solution of CHC dominates
the GGA ones in any case, the Pareto sets generated by GGA
dominate CHC ones to a high degree.

Focusing the analysis on the three MOEAs, it can be first
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Algorithm min(f1) min(f2) max(f1) max(f2) µf1 µf2 σf1 σf2

GGA 0.9834 0.9865 1 0.9961 0.9944 0.9897 0.0073 0.0042
CHC 0.7107 0.8962 0.9834 1 0.9245 0.9615 0.0855 0.0305
SPEA 0.9049 0.9837 1 1 0.9826 0.9949 0.0138 0.0035
SPEA2 0.9132 0.9879 1 1 0.9836 0.9954 0.0146 0.0028
NSGA-II 0.9132 0.9900 1 1 0.9898 0.9955 0.0133 0.0027

TABLE V
RESULTS OF THE BEST INDIVIDUALS OF THE ALGORITHMS OVER THE TEST SET

noticed how SPEA and SPEA2 perform in a similar way,
although SPEA seems to be a little bit more adapted to our
fuzzy visual system tuning problem than its improved version
SPEA2. While the latter only outperforms the former in the
distribution metricM∗

2 (3.066 versus 2.635) and also, although
very slightly, in the extension metric M∗

3 (0.516 versus 0.503)
(see Table III), SPEA gets better values in the remaining three
metrics. It founds more non dominated solutions (19.1 versus
17.4 in average), gets a slightly better value in the area metric
S (0.9930 versus 0.9871), and the solutions in its Pareto sets
clearly dominate those in SPEA2 ones in view of the boxplots
of Figure 12.

The global best choice seems to be NSGA-II. Although the
C metric show that the Pareto sets generated by this MOEA
are of similar quality to those of SPEA, the former ones
get the best results in every individual metric but in M∗

2, in
which CHC obtains the (false) best value as mentioned before.
Besides, NSGA-II takes advantage of applying elitism in the
main population, without needing an external one, to generate
the largest Pareto sets with an average of 29.9 solutions. In
Figure 14, it can be seen how this fact results in a significantly
better distributed aggregated Pareto front, with a lesser number
of gaps than SPEA and SPEA2 ones.

Finally, in order to verify that the solutions generated do
not overfit the training data, we have evaluated their accuracy
on the images of the test set. The solutions evaluated are those
depicted in the Pareto fronts of Figures 13 and 14. Table V
shows in columns for all the algorithms, from left to right: the
minimum, maximum, average and standard deviation of the
objective functions over the patterns of the test set. As it can
be noticed, the results show that the solutions generated are
valid and do not overfit the training data.

VIII. CONCLUSIONS

In this paper, an evolutionary methodology to tune an
hierarchical fuzzy visual system for door detection has been
proposed with the aim of adapting the system structure to the
specific characteristics of the environment where the mobile
robot using the system is located. Since the system accuracy
is measured by two different, conflicting criteria, the positive
and negative rates of door detection, the tuning task becomes
a multiobjective problem. Two different single-objective and
three different multiobjective EAs have been considered for the
problem solving, showing the better performance of the latter
over the former by means of a sound experimental study.
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“Door-detection using artificial vision and fuzzy logic,” WSEAS Trans-
actions on Systems, vol. 10, pp. 3047–3052, 2004.
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APPENDIX

A. Evolutionary Multiobjective Optimization

Generally speaking, multiobjective problems can be formu-
lated as: “finding the best solution ~x = [x1, ..., xn]T to a
problem achieving the maximum value of the objective function
~f(~x) = [f1, ..., fn]T ” . The term ~x refers to a vector solution,
~f(~x) refers to the objective function that evaluates ~x according
to some criteria and let us denote the set of objectives to
evaluate by O.

When using single-objective algorithms to solve the prob-
lem, it is usual to transform the different objectives functions
into an real scalar value (plain-aggregating approach [11]) in
the following way:

~f(~x) = β1f1 + β2f2 + · · ·+ βnfn

where ∑

i=1..n

βi = 1

The different βi values independently weight one objective
against the others. This approach, from the multiobjective
point of view, consist in directing the search process to only
one direction of the multiobjective space.

Nevertheless, it is also possible to employ a Pareto-based
approach to solve the problem. In that approach, the goal
of the optimization process is to find the ideal vector ~xi

that optimizes all the elements of the objective function. The
optimization concept depends on the way the problem is for-
mulated. It could be either a minimization or a maximization
of ~f(~x). If the optimization process is a maximization one, a
solution ~xi of the set of found solutions F dominates another
solution ~xj if:

∀k∈Ofk(~xi) ≥ fk(~xj) ∧ ∃k : fk(~xi) > fk(~xj)

The set of non-dominated solutions found is denominated
Pareto set. Hence, Pareto-based techniques allow us to find a
set of non-dominated solutions, each one with a different trade-
off of the objectives, thus avoiding to use an importance factor
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βi for each objective. Once a set of non-dominated solutions
is given by the multiobjective technique, they can be analyzed
and it is possible to select a unique solution with the most
suitable trade-off at the light of the results.

EAs have been employed to solve multiobjective problems
using plain-aggregating approaches as well as both population-
based non-Pareto approaches and Pareto-based approaches.
This framework has been referred in the literature by the term
EMO (Evolutionary Multiobjective Optimization) and much
work has been done since then to the Pareto-optimum.

Pareto-based approaches can be divided into two different
groups: first and second generation [12]. The difference be-
tween them is in the use of elitism. First generation algorithms
are non-elitist multiobjective algorithms like Niched Pareto
Genetic Algorithm (NPGA), Non-dominated Sorting Genetic
Algorithm (NSGA) and Multiple-Objective Genetic Algorithm
(MOGA). On the other hand, second-generation algorithms
employ elitist approaches in order to speed up the performance
of the algorithm. Examples of this group are Strength Pareto
Evolutionary Algorithm (SPEA) and SPEA2, NSGA-II and
NPGA2. For more information about all these algorithms, the
interested reader is referred to [11], [12].

MOEAs are able to optimize ~f(~x) ranking each individual
according to its proximity to the Pareto front, i.e., non-
dominated solutions have the highest rank and the rest of
the solutions are ranked according to some criteria. In Figure
15, there is depicted a typical situation in a multiobjective
optimization search. The filled circles represent the individuals
of the population that belong to the Pareto set and the empty
circles represent dominated solutions of the discovered space
F . The numbers under each solution represent a possible
ranking employed by a MOEA. While the elements of the
Pareto set are ranked with the lowest values, the rest of
solutions are ranked with higher values

B. Measuring the performance of MOEAs: EMO metrics
In multiobjective optimization, the definition of quality is

more complex than for single-objective optimization problems.
The multiobjective optimization process involves several ob-
jectives itself:
• The distance of the resulting Pareto front to the Pareto-

optimal front must be minimized.

• A good distribution of the solutions found is desirable.
The assessment of this criterion might be based on a
certain distance metric.

• The extent of the obtained Pareto front must be maxi-
mized.

Several quantitative metrics have been proposed in the
literature to formalize the above definition (or parts of it) [11],
[12], [51]. Those employed in this paper are defined below.

Given a set of pairwise non-dominated decision vectors
X ′ ⊆ X , a neighborhood parameter σ > 0 (to be chosen
appropriately), and a distance metric ‖ · ‖:

1) The function M1 gives the average distance to the
Pareto-optimal set (X̄) ⊆ X:

M1(X ′) :=
1
|X ′|

∑

a′∈X′
min{‖a′ − ā‖; ā ∈ X̄} (18)

2) The function M2 takes the distribution in combination
with the number of non-dominated solutions found into
account:

M2(X ′) :=
1

|X ′ − 1|
∑

a′∈X′
|{b′ ∈ X ′; ‖a′ − b′‖ > σ}|

(19)
3) The function M3 considers the extent of the front

described by X ′:

M3(X ′) :=

√√√√
m∑

i=1

max{‖a′i − b′i‖; a′, b′ ∈ X ′} (20)

Analogously, [51] defines three metrics M∗
1, M∗

2, and M∗
3

on the objective space. Let Y ′, Ȳ ⊆ Y be the sets of objective
vectors that correspond to X ′ and X̄ , respectively, and σ∗ > 0
and ‖·‖∗ as before:

M∗
1(Y

′) :=
1
|Y ′|

∑

p′∈Y ′
min{‖p′ − p̄‖∗; p̄ ∈ Ȳ } (21)

M∗
2(Y

′) :=
1

|Y ′ − 1|
∑

p′∈Y ′
|{q′ ∈ Y ′; ‖p′−q′‖∗ > σ∗}| (22)

M∗
3(Y

′) :=

√√√√
n∑

i=1

max{‖p′i − q′i‖∗; p′, q′ ∈ Y ′} (23)
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Additionally to the latter, in [15] Zitzler et al. proposed
the metric S(Y ′), also called size of the space covered, that
measures the volume enclosed by the Pareto front Y ′. In a
maximization problem where the optimal objective values are
equal to 1, S(Y ′) = 1 means that the algorithm has reached
the optimal solution and lower values for this metric indicates
a lower quality of the Pareto front. In our case, as there are
only two objectives, S(Y ′) measures the area covered by the
Pareto front by adding the areas covered by each individual
point. In Figure 16, the areas covered by two possible Pareto
fronts are shown. It can be noticed that the outer Pareto front
(Y ′′) dominates all the solutions of the inner one (Y ′), thus
the area S(Y ′′) > S(Y ′).

Finally, the C metric [15] is introduced in order to evaluate
the dominance of one Pareto set over another. This metric
is used to evaluate the degree in which the solutions of a
Pareto set cover the solutions of another. Given two Pareto sets
Y ′ and Y ′′, the function C can be calculated using Equation
24. When C(Y ′, Y ′′) = 1 it means that all solutions in Y ′′

are dominated by solutions in Y ′. The value C(Y ′, Y ′′) = 0
means that none of the solutions of Y ′′ are dominated by
the set Y ′. It is important to point out that this function is
not conmutative, therefore it is neccessary to calculate both
C(Y ′, Y ′′) and C(Y ′′, Y ′).

C(Y ′, Y ′′) =
|{p′′ ∈ Y ′′; ∃ p′ ∈ Y ′ : p′ dominates p′′}|

|Y ′′|
(24)


