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Abstract. Evolutionary algorithms has been recently used for proto-
type selection showing good results. An important problem in prototype
selection consist in increasing the size of data sets. This problem can be
harmful in evolutionary algorithms by deteriorating the convergence and
increasing the time complexity. In this paper, we offer a preliminary pro-
posal to solve these drawbacks. We propose an evolutionary algorithm
that incorporates knowledge about the prototype selection problem. This
study includes a comparison between our proposal and other evolutionary
and non-evolutionary prototype selection algorithms. The results show
that incorporating knowledge improves the performance of evolutionary
algorithms and considerably reduces time execution.

1 Introduction

Most machine learning methods use all examples from the training data set. How-
ever, data sets may contain noisy examples, that make the performance worse
of these methods, or they may contain great amount of examples, increasing
the complexity of computation. This fact is important especially for algorithms
such as the k-nearest neighbors (k-NN) [1]. Nearest neighbor classification is one
of the most well known classification methods in the literature. In its standard
formulation, all training patterns are used as reference patterns for classifying
new patterns.

Instance selection (IS) is a data reduction process applied as preprocessing in
data sets which are used as inputs for learning algorithms [2]. We consider data
as stored in a flat file and described by terms called attributes or features. Each
line in the file consists of attribute-values and forms an instance. By selecting
instances, we reduce the number of rows in the data set. When we use the
selected instances for direct classification with k-NN, then the IS process is
called Prototype Selection (PS).

Various approaches were proposed in order to carry out PS process in the lit-
erature, see [3] and [4] for review. Evolutionary Algorithms (EAs) have been used
to solve the PS problem with promising results [5,6]. These papers show that
EAs outperform the non-evolutionary ones obtaining better instance reduction
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rates and higher classification accuracy. However, the increasing of the size of
data is always present in PS. The Scaling Up problem produces excessive storage
requirement, increases times complexity and affects to generalization accuracy.

When we use EAs for selecting prototypes (we call it as Evolutionary Proto-
type Selection (EPS)), we have to add to these drawbacks the ones produced by
the chromosomes size associated to the representation of the PS solution. Large
chromosomes size increases the storage requirement and time execution and re-
duces significantly the convergence capabilities of the algorithm. A way of avoid
the drawbacks of this problem can be seen in [7], where data sets stratification
is used.

In order to improve the capacity of convergence and reduce time execution on
EPS, we propose an evolutionary model that incorporates knowledge through the
local improvement of chromosomes based on removing prototypes and adapting
chromosome evolution. The aim of this paper is to present our proposal model
and compare it with others PS algorithms studied in the literature. To address
this, we have carried out experiments with increasing complexity and size of data
sets.

To achieve this objective, this contribution is set out as follows. Section 2 sum-
marizes the main features of EPS. In Section 3, we explain how to incorporate
knowledge in EPS. Section 4, describes the methodology used in the experi-
ments and analyzes the results obtained. Finally, in Section 5, we point out our
conclusion.

2 Evolutionary Prototype Selection

EAs [8] are stochastic search methods that mimic the metaphor of natural bio-
logical evolution. All EAs rely on the concept of population of individuals (rep-
resenting search points in the space of potential solutions to a given problem),
which undergo probabilistic operators such as mutation, selection and recom-
bination. The fitness of an individual reflects its objective function value with
respect to particular objective function to be optimized. The mutation operator
introduces innovation into the population, the recombination operator performs
an information exchange between individuals from a population and the selection
operator imposes a driving force on the evolution process by preferring better
individuals to survive and reproduce.

PS problem can be considered as a search problem in which EAs can be
applied. To accomplish this, we take into account two important issues: the
specification of the representation of the solutions and the definition of the fitness
function.

– Representation: Let us assume a data set denoted TR with n instances.
The search space associated is constituted by all the subsets of TR. This is
accomplished by using a binary representation. A chromosome consists of n
genes (one for each instance in TR) with two possible states: 0 and 1. If the
gene is 1, its associated instance is included in the subset of TR represented
by the chromosome. If it is 0, this does not occur.
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– Fitness Function: Let S be a subset of instances of TR to evaluate and
be coded by a chromosome. We define a fitness function that combines two
values: the classification rate (clas rat) associated with S and the percentage
of reduction (perc red) of instances of S with regards to TR.

Fitness(S) = α · clas rat + (1 − α) · perc red. (1)

The 1-NN classifier is used for measuring the classification rate, clas rat,
associated with S. It denotes the percentage of correctly classified objects
from TR using only S to find the nearest neighbor. For each object y in
S, the nearest neighbor is searched for amongst those in the set S \ {y}.
Whereas, perc red is defined as

perc red = 100 · |TR| − |S|
|TR| . (2)

The objective of the EAs is to maximize the fitness function defined, i.e.,
maximize the classification rate and minimize the number of instances ob-
tained.

Considering this issues, four models of EAs have been studied as EPS [6]. The
first two are the classical Genetic Algorithm (GA) models [9]; the generational
one and the steady-state one. The third one, heterogeneous recombinations and
cataclysmic mutation (CHC), is a classical model that introduces different fea-
tures to obtain a tradeoff between exploration and exploitation [10], and the
fourth one, PBIL [11], is a specific EA approach designed for binary spaces.

Our proposal of EA is a steady-state model with the following characteristics:

– The fitness function is calculated by the number of instances correctly clas-
sified, without obtain the reduction rate.

– Selection mechanism used is binary tournament.
– As genetic operators we use a crossover operator that randomly replace 20%

of first parent’s bits with second parent’s bits and vice versa, and standard
mutation of bit representation of chromosomes.

– Our proposal will use a replacement of the worst individuals of the population
in all cases.

3 Incorporating Knowledge in Prototype Selection

Incorporation of knowledge can help to improve the behavior of an algorithm for
a determined problem. We have designed a Local Search (LS) procedure based
on knowledge on the PS problem that will be applied to improve individuals of
a population of an EA. LS that incorporates knowledge procedure is an iterative
process that tries to enhance the accuracy classification of a chromosome repre-
sentation by using 1-NN method and to reduce the number of instances selected
in a solution.



Incorporating Knowledge in Evolutionary Prototype Selection 1361

To achieve this double objective, it considers neighborhood solutions with
m − 1 instances selected, being m equal to the number of instances selected in a
current solution (all positions with value 1 in the chromosome). In other words,
a neighbor is obtained by changing 1 to 0 in a gene. In this way, the number of
instances represented in a chromosome after the optimization always will be less
than or equal to the number of instances of the original chromosome.

Now we describe the local search. It has a standard behavior when we im-
prove the fitness, and a strategy for dealing with the problem against premature
convergence in the second half of the run. In the following, we describe them:

– Standard behavior : It starts from an initial assignment (a recently generated
offspring) and iteratively try to improve the current assignment by local
changes. If in the neighborhood of the current assignment, a better assign-
ment is found, it replaces the current assignment and it continues from the
new one. The selection of a neighbor is made randomly without repetition
among all solutions that belongs to the neighborhood. In order to consider an
assignment better than the current one, the accuracy of classification must
be better than or equal to the previous one, but in this last case, the number
of instances selected must be less than current assignment. The procedure
stops when there are not solutions considered better than the current one in
its neighborhood.

– Avoiding premature convergence: When the search process advances, a ten-
dency of the population to premature convergence toward a certain area of
the search space takes place. A local optimization promotes this behavior
when it considers solutions with better classification accuracy. In order to
prevent this conduct, LS proposed will accept worse solutions in the neigh-
borhood provided two conditions are carried out: the difference of fitness
between current and neighbor solution will be not greater than one unit and
a certain number of evaluations of EA in the execution have been reached
(we consider overcome the half of total number of them).

By using this strategy of local optimization of a chromosome, we can distin-
guish between Total evaluation and Partial evaluation.
– Total Evaluation: It consists in a standard evaluation of performance of a

chromosome in EPS, that bears to compute the nearest neighbor of each
instance belongs to subset selected and take the account of the instances
classified correctly.

– Partial Evaluation: It can take place when it accomplish on a neighbor solu-
tion of a current already evaluated and differs only in a bit position, which
have changed from value 1 to 0. If a total evaluation counts as one evaluation
in terms of taking account of number of evaluations for the stop condition,
a partial evaluation counts as:

Nnu

|TR| (3)

where Nnu is the number of neighbors updated when a determined instance is
removed by LS procedure and |TR| is the size of the original set of instances
(also is the size of the chromosome).
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If a structure U = {u1, u2, ..., un} is defined, where ui/i = 1, ..., n repre-
sents the identifier of the nearest instance to the instance i, considering only
instance subset selected by the chromosome, a reduction of time complexity can
be achieved. A partial evaluation can take advantage of U and of the divisible
nature of the PS problem when instances are removed. Note that if instances
are added (changes from 0 to 1 are allowed), the update of U is neither partial
nor an efficient process because all neighbors have to been computed again. In
this sense, the PS problem have characteristics of divisible nature.

An example is illustrated in figure 1, where a chromosome of 13 instances is
considered. LS procedure removes the instance number 3. Once removed, the
instance number 3 can not appears into U structure as nearest neighbor of
another instance. U must be updated at this moment obtaining the new nearest
neighbors for the instances that had instance number 3 as nearest neighbor.
Then, a relative fitness with respect original chromosome fitness is calculated
(instances 1, 5, 11 and 13).

Class Instances
A {1,2,3,4,5,6,7}
B {8,9,10,11,12,13}

Current Solution → Neighbor Solution
Representation 0110110100010 → 0100110100010
U structure {3, 5, 8, 8, 3, 2, 6, 2, 8, 8, 3, 2, 3} → {12, 5, 8, 8, 2, 2, 6, 2, 8, 8, 8, 2, 8}
Fitness {1,1,0,0,1,1,1,0,1,1,0,0,0} → {-1,*,*,*,0,*,*,*,*,*,+1,*,+1}

7 → 7 − 1 + 1 + 1
Partial evaluation account: Nnu

|T | = 4
13

Neighbor Fitness: 8

Fig. 1. Example of a move in LS procedure and a partial evaluation

4 Experiments and Results

In this section, the behavior of the EPS proposed is analyzed using 13 data sets
taken from the UCI Machine Learning Database Repository [12] and compared
with others non-evolutionary PS algorithms, such as ENN [13], CNN [14], RNN
[15], IB3 [16], DROP3 [3] and RMHC [17] (brief descriptions can be found in
[3]). The main characteristics of these data sets are summarized in Table 1.

The data sets considered are partitioned using the ten fold cross-validation
(10-fcv) procedure. Whether either small or medium data sets are evaluated, the
parameters used are the same, see Table 2. The scale of size of data sets and
parameters for the algorithms follow the instructions given in [6].

Tables 3 and 4 show us the average of the results offered by each algorithm
for small data sets and medium data sets, respectively. Each column shows:

– The first column shows the name of the algorithm. Our proposal of Incor-
porating Knowledge in a Genetic Algorithm for PS problem will be labeled
by IKGA and will be followed by the number of evaluations executed to
reach the stop condition. It has been executed considering 5000 and 10000
evaluations in order to check its behavior.



Incorporating Knowledge in Evolutionary Prototype Selection 1363

Table 1. A brief summary of the experimental data sets

Name N. Instances N. Features. N. Classes. Size
Bupa 345 7 2 small
Cleveland 297 13 5 small
Glass 294 9 7 small
Iris 150 4 3 small
Led7Digit 500 7 10 small
Lymphography 148 18 4 small
Monks 432 6 2 small
Pima 768 8 2 small
Wine 178 13 3 small
Wisconsin 683 9 2 small
Pen-Based 10992 16 10 medium
Satimage 6435 36 7 medium
Thyroid 7200 21 3 medium

Table 2. Parameters considered for the algorithms

Algorithm Parameters
CHC Pop = 50, Eval = 10000, α = 0.5
IB3 Acept.Level = 0.9, DropLevel = 0.7
IKGA Pop = 10, Eval = [5000|10000], pm = 0.01, pc = 1
PBIL LR = 0.1, Mutshift = 0.05, pm = 0.02, Pop = 50

NegativeLR = 0.075, Eval = 10000
RMHC S = 90%, Eval = 10000

– The second column contains the average execution time associated to each
algorithm. The algorithms have been run in a Pentium 4, 3 GHz, 1 Gb RAM.

– The third column shows the average reduction percentage from the initial
training sets.

– Fourth and Fifth columns contains the training accuracy when using the
training set selected Si from the initial set TRi and the test accuracy of Si

over the test data set TSi, respectively.

In the third, fourth and fifth columns, the best result per column are shown in
bold.

By studying the tables 3 and 4, two drawbacks can be appreciated:

– The evaluation of just the mean classification accuracy over all the data sets
hides important information due to a better/worse behavior of an algorithm
associated to a determined data set.

– Each data set represents a different classification problem and different data
sets have many different degrees of difficulty.

To avoid these drawbacks, we have included a second type of table accom-
plishing a statistical comparison of methods over multiple data sets. Demšar
[18] recommends a set of simple, safe and robust non-parametric tests for sta-
tistical comparisons of classifiers. One of them is Wilcoxon Signed-Ranks Test
[19,20]. Table 5 collects results of applying Wilcoxon test between our proposed
methods and rest of PS algorithm studied in this paper over the 13 data sets
considered. This table is divided in three parts: In the first part, we accomplish
Wilcoxon test by using as performance measure only the reduction of the train-
ing set; in the second part, the measure of performance used is the accuracy
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Table 3. Average results for small data sets

Algorithm Time(s) Reduction Ac. Train Ac. Test
1NN 0.02 - 73.52 72.52
CHC 8.67 97.45 79.91 74.14
CNN 0.03 65.70 64.76 68.35
DROP3 0.17 83.53 73.50 67.90
ENN 0.02 25.21 77.68 73.44
IB3 0.02 69.17 64.17 69.90
PBIL 31.05 93.99 81.55 73.96
IKGA 5000 Ev. 6.20 98.43 74.77 76.37
IKGA 10000 Ev. 13.49 98.46 74.71 75.97
RMHC 17.50 90.18 83.80 74.98
RNN 4.63 92.43 74.59 73.37

Table 4. Average results for medium data sets

Algorithm Time(s) Reduction Ac. Train Ac. Test
1NN 31.56 - 94.19 94.18
CHC 8945.91 99.55 93.02 92.45
CNN 2.31 88.80 88.86 90.58
DROP3 186.82 94.62 89.17 87.71
ENN 10.78 5.88 95.11 94.41
IB3 5.48 73.02 91.87 92.80
PBIL 51165.29 83.82 94.79 93.80
IKGA 5000 Ev. 2394.07 99.29 94.84 93.81
IKGA 10000 Ev. 4996.26 99.34 94.95 93.74
RMHC 8098.15 90.00 96.35 94.06
RNN 23822.91 96.57 94.22 92.81

Table 5. Wilcoxon test

Reduction Performance
IKGA 5000 Ev. IKGA 10000 Ev. CHC CNN DROP3 ENN IB3 PBIL RMHC RNN

IKGA 5000 Ev. = = + + + + + + + +
IKGA 10000 Ev. = = + + + + + + + +

Accuracy in Test Performance
IKGA 5000 Ev. IKGA 10000 Ev. CHC CNN DROP3 ENN IB3 PBIL RMHC RNN

IKGA 5000 Ev. = = + + + = + = = =
IKGA 10000 Ev. = = + + + = + = = =

Accuracy in Test ∗ 0.5 + Reduction ∗ 0.5
IKGA 5000 Ev. IKGA 10000 Ev. CHC CNN DROP3 ENN IB3 PBIL RMHC RNN

IKGA 5000 Ev. = = + + + + + + + +
IKGA 10000 Ev. = = + + + + + + + +

classification in test set; in third part, a combination of reduction an classifica-
tion accuracy is used for performance measure. This combination corresponds to
0.5 ·clas rat+0.5 ·perc red. Each part of this table contains two rows, represent-
ing our proposed methods, and N columns where N is the number of algorithms
considered in this study. In each one of the cells can appear two symbols: + or =.
They represent that the algorithm situated in that row outperforms (+) or is sim-
ilar (=) in performance that the algorithm which appear in the column (Table 5).

The following analysis seeing this results can be made:

– IKGA presents the best reduction and test accuracy rates in Table 3.
– In Table 4, IKGA offers a good test accuracy rate and maintains a high

reduction rate.
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– When the problem scales up to medium data sets, IKGA avoids premature
convergence observed in CHC and reach similar test accuracy than PBIL,
but provides more reduction rate.

– Time execution over small and medium data sets decreases considerately by
using IKGA with respect the remaining EAs.

– IKGA executed with 5000 evaluations and 10000 evaluations have similar
behavior. This indicates that this algorithm carries out a good trade-off
between exploitation and exploration over the search space.

– In Table 5, IKGA outperforms all methods considering that both objec-
tives (reduction and test accuracy) have the same importance. Furthermore,
Wilcoxon accuracy test considers it equal to classical algorithms such as
ENN, RNN or RMHC, but these algorithms don’t reach its reduction rate.

5 Concluding Remarks

In this paper, we have presented an Evolutionary Algorithm that incorporates
knowledge on the Prototype Selection problem. The results shows that incorpo-
rating knowledge can obtain an improvement on accuracy and a better reduction
of data. Furthermore, a decrement of time complexity is got with respect others
Evolutionary Prototype Selection algorithms studied in the literature.
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TIN2005-08386-C05-03.
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1366 S. Garćıa, J.R. Cano, and F. Herrera

10. Eshelman, L.J.: The CHC adaptative search algorithm: How to safe search when
engaging in nontraditional genetic recombination. In: FOGA. (1990) 265–283

11. Baluja, S.: Population-based incremental learning: A method for integrating genetic
search based function optimization and competitive learning. Technical report,
Pittsburgh, PA, USA (1994)

12. Newman, D.J., Hettich, S., Merz, C.B.: UCI repository of machine learning
databases (1998)

13. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man and Cybernetics 2 (1972) 408–421

14. Hart, P.E.: The condensed nearest neighbour rule. IEEE Transactions on Informa-
tion Theory 18 (1968) 515–516

15. Gates, G.W.: The reduced nearest neighbour rule. IEEE Transactions on Informa-
tion Theory 18 (1972) 431–433

16. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine
Learning 7 (1991) 37–66

17. Skalak, D.B.: Prototype and feature selection by sampling and random mutation
hill climbing algorithms. In: ICML. (1994) 293–301
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