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Abstract

Genetic Algorithms have been seen as search procedures that can quickly locate high
performance regions of vast and complex search spaces, but they are not well suited
for fine-tuning solutions, which are very close to optimal ones. However, genetic al-
gorithms may be specifically designed to provide an effective local search as well. In
fact, several genetic algorithm models have recently been presented with this aim. In
this chapter, we call these algorithms Local Genetic Algorithms.

In this chapter, first, we review different instances of local genetic algorithms pre-
sented in the literature. Then, we focus on a recent proposal, the Binary-coded Lo-
cal Genetic Algorithm. It is a Steady-state Genetic Algorithm that applies a crowd-
ing replacement method in order to keep, in the population, groups of chromosomes
with high quality in different regions of the search space. In addition, it maintains
an external solution (leader chromosome) that is crossed over with individuals of the
population.These individuals are selected by using Positive AssortativeMating, which
ensures that these individuals are very similar to the leader chromosome. The main
objective is to orientate the search in the nearest regions to the leader chromosome.

We show an empirical study comparing a Multi-start Local Search based on the
binary-coded local genetic algorithmwith other instances of thismetaheuristic based
on local search procedures presented in the literature. The results show that, for
a wide range of problems, the multi-start local search based on the binary-coded
local genetic algorithm consistently outperforms multi-start local search instances
based on the other local search approaches.

Key words: Local Genetic Algorithms, Local Search Procedures, Multi-start Local
Search

1 Introduction

Local Search Procedures (LSPs) are optimisation methods that maintain a solution,
known as current solution, and explore the search space by steps within its neigh-
bourhood. They usually go from the current solution to a better close solution, which
is used, in the next iteration, as current solution. This process is repeated till a stop
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condition is fulfilled, e.g. there is no better solution within the neighbourhood of the
current solution.

Three important LSPs are:

• First Improvement Local Search []: Replaces the current solutionwith a randomly
chosen neighbouring solution with a better fitness value.

• Best Improvement Local Search []: Replaces the current solution with the best
among all the neighbouring solutions.

• Randomised K-opt LSP (RandK-LS) [, , ]: Looks for a better solution by
altering a variable number of k components of the current solution per iteration,
i.e. the dimension of the explored neighbourhood is variable.

The interest on LSPs comes from the fact that they may effectively and quickly ex-
plore the basin of attraction of optimal solutions, finding an optimum with a high
degree of accuracy and within a small number of iterations. In fact, these methods
are a key component ofmetaheuristics that are state-of-the-art for many optimisation
problems, such asMulti-Start Local Search (MSLS) [],Greedy Randomised Adaptive
Search Procedures (GRASP) [, ], Iterated Local Search (ILS) [], Variable Neigh-
bourhood Search (VNS) [], andMemetic Algorithms (MAs) [].

Genetic Algorithms (GAs) [, ] are optimisation techniques that use a popula-
tion of candidate solutions. They explore the search space by evolving the population
through four steps: parent selection, crossover, mutation, and replacement. GAs have
been seen as search procedures that can locate high performance regions of vast and
complex search spaces, but they are not well suited for fine-tuning solutions [, ].
However, the components of the GAs may be specifically designed and their param-
eters tuned, in order to provide an effective local search behaviour. In fact, several
GA models have recently been presented with this aim [, ]. In this chapter, these
algorithms are called Local Genetic Algorithms (LGAs).

LGAs have some advantages over classic LSPs. Most LSPs lack the ability to fol-
low the proper path to the optimum on complex search landscapes. This difficulty
becomes much more evident when the search space contains very narrow paths of
arbitrary direction, also known as ridges. That is because LSPs attempt successive
steps along orthogonal directions that do not necessarily coincide with the direction
of the ridge. However, it was observed that LGAs are capable of following ridges of
arbitrary direction in the search space regardless of their direction, width, or even,
discontinuities []. Thus, the study of LGAs is a promising way to design more ef-
fective metaheuristics based on LSPs [, , , , , ].

The aim of this chapter is to analyse LGAs in depth. In order to do this:

• First, we introduce the LGA concept and identify its main properties.
• Second, we review different LGA instances presented in the literature.
• Finally, we focus on a recent LGA example, the Binary-coded LGA (BLGA) [].

We describe an empirical study comparing a MSLS based on the BLGA with
other instances of this metaheuristic based on LSPs proposed in the literature.
The results show that, for a wide range of problems, the MSLS instance based on
the BLGA consistently outperforms the MSLS instances based on the other local
search approaches.
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The chapter is organised as follows. In Sect. , we outline three LSPs that have been
often considered in the literature to build metaheuristics based on LSPs. In Sect. ,
we introduce a brief overview about GAs. In Sect. , we inspect the LGA concept
and review several LGA instances found in the literature. In Sect. , we describe an
example of LGA, the BLGA. In Sect. , we show an empirical study comparing the
performance of theMSLS based on the BLGAwith other instances of theMSLS based
on LSPs presented in Sect. . Finally, in Sect. , we provide some conclusions and
future research directions.

2 Local Search Procedures in the Literature

LSPs are improvement heuristics that maintain a solution, known as current solution
(XC), and search its neighbourhood (N(XC)) for a better one. If a better solution
S � N(XC) is found, S becomes the new XC and the neighbourhood search starts
again. If no further improvement can be made, i.e. �. S � N(XC) such as S improves
XC , then, a local or global optimum has been found.

The interest in LSPs comes from the fact that they may effectively and quickly
explore the basin of attraction of optimal solutions, finding an optimum with a high
degree of accuracy and within a small number of iterations. The reasons for this high
exploitative behaviour are:
• LSPs usually keep as XC the best found solution so far, and
• N(XC) is composed of solutions with minimal differences from XC , i.e. LSPs

perform a local refinement on XC .
Three important LSPs are:
• First Improvement Local Search (First-LS) []: Works by comparing XC with

neighbouring solutions. When a neighbouring solution appears better, XC is re-
placed and the process starts again. If all the neighbouring solutions are worse
than XC , then, the algorithm stops. In First-LS, N(XC) is usually defined as the
set of solutions withminimal differences from XC , i.e. in binary-coded problems,
S differs from XC only in one bit, ∀S � N(XC).

• Best Improvement Local Search (Best-LS) []: Generates and evaluates all the
neighbouring solutions of XC .Then, the best one replaces XC if it is better. Other-
wise, the algorithm stops. In Best-LS, N(XC) is usually defined as in First-LS.

• Randomised K-opt LSP (RandK-LS) [, , ]: Is a variation of the K-opt LSP
presented in [].Thatwas specifically designed to tackle binary-coded problems.
Its basic idea is to find a solution by flipping a variable number of k bits in the
solution vector per iteration. In each step, n (n is the dimension of the problem)
solutions (X , X, . . . , Xn) are generated by flipping one bit of the previous so-
lution, i.e. solution Xi+ is obtained by flipping one bit of the solution Xi (X  is
generated from XC ). A candidate set is used to assure that each bit is flipped no
more than once.Then, the best solution in the sequence is accepted as XC for the
next iteration, if it is better, otherwise the algorithm stops and returns XC .

LSPs are a key component of many metaheuristics. In order to perform a global
search, these metaheuristics look for synergy between the exploitative behaviour of
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the LSP and explorative components. In this way, while the explorative components
ensure that different promising search zones are focused upon, the LSP obtains the
best possible accurate solutions within those regions. Examples of metaheuristics
based on LSPs are:

• MSLS []: Iteratively applies the LSP to random solutions.
• GRASP [,]: Generates randomised heuristic solutions to the specific problem,

and applies the LSP to them.
• ILS []: The LSP is initially applied to a random solution. In the following iter-

ations, the LSP is applied to solutions generated by altering previous ones.
• VNS []: The idea is similar to that of ILS. The main difference is that the solu-

tions are lightly or strongly altered depending on whether or not the new solu-
tions improve the best one so far.

• MAs []:They are evolutionary algorithms that apply LSPs in order to refine the
individuals of the population.

3 Genetic Algorithms

GAs are general purpose search algorithms that use principles inspired by natural
genetic populations to evolve solutions to problems [,].The basic idea is to main-
tain a population of chromosomes that represent candidate solutions to the concrete
problem. The GA evolves the population through a process of competition and con-
trolled variation. Each chromosome in the population has an associated fitness to
determine which ones are used to form new chromosomes in the competition pro-
cess, which is called parent selection.The new ones are created using genetic operators
such as crossover andmutation.

GAs have had a great measure of success in search and optimisation problems.
The reason for a great part of their success is their ability to exploit the information
accumulated about an initially unknown search space in order to bias subsequent
searches into useful subspaces. This is their key feature, particularly in large, com-
plex, and poorly understood search spaces, where classical search tools (enumera-
tive, heuristic, ...) are inappropriate, offering a valid approach to problems requiring
efficient and effective search techniques.

Two of the most important GA models are the Generational GA and the Steady-
state GA:
• The Generational GA [] creates new offspring from the members of an old

population, using the genetic operators, and places these individuals in a new
population that becomes the old population when the whole new population is
created.

• The Steady-state GA (SSGA) [,] is different from the generational model in
that there is typically one single new member inserted into the new population
at any one time. A replacement/deletion strategy defines which member in the
current population is forced to perish (or vacate a slot) in order to make room
for the new offspring to compete (or, occupy a slot) in the next iteration.The basic
algorithm step of the SSGA is shown in Fig. .
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SSGA()

initialise P;
evaluate P;

while (stop-condition is not fulfilled)
parents � select two chromosomes from P;
o f f spring � combine and mutate the chromosomes in parents;
evaluate o f f spring;
R � select an individual from P; //replacement strategy
decide if o f f spring should replace R;

Fig. 1 Structure of a SSGA.

4 Local Genetic Algorithms

There are two primary factors in the search carried out by a GA []:
• Selection pressure. In order to have an effective search there must be a search cri-

terion (the fitness function) and a selection pressure that gives individuals with
higher fitness a higher chance of being selected for reproduction, mutation, and
survival. Without selection pressure, the search process becomes random and
promising regions of the search space would not be favoured over non-promising
regions.

• Population diversity. This is crucial to a GA’s ability to continue fruitful explor-
ation of the search space.

Selection pressure and population diversity are inversely related:
• increasing selection pressure results in a faster loss of population diversity, while
• maintaining population diversity offsets the effect of increasing selection pres-

sure.
Traditionally, GA practitioners have carefully designed GAs in order to obtain a bal-
anced performance between selection pressure and population diversity. The main
objective was to obtain their beneficial advantages simultaneously: to allow the most
promising search space regions to be reached (reliability) and refined (accuracy).

Due to the flexibility of the GA architecture, it is possible to design GA models
specifically aimed to provide effective local search. In thisway, their unique objective is
to obtain accurate solutions. In this chapter, these algorithms are namedLocal Genetic
Algorithms.

LGAs present some advantages over classic LSPs. Most LSPs lack the ability to
follow the proper path to the optimum on complex search landscapes. This difficulty
becomesmuchmore evident when the search space contains very narrow paths of ar-
bitrary direction, also known as ridges. This is because LSPs attempt successive steps
along orthogonal directions that do not necessarily coincide with the direction of the
ridge. However, it was observed that LGAs are capable of following ridges of arbitrary
direction in the search space regardless of their direction, width, or even, discontinu-
ities []. Thus, the study of LGAs becomes a promising way to allow the design of
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more effective metaheuristics based on LSPs. In fact, some LGAs were considered for
this task [, , , , , ].

In the following sections, we explain the features of different LGA instances that
may be found in the literature. In addition, we cite the corresponding metaheuristic
models in which LGAs were integrated:
• μGAs [] (Section .).
• The Crossover Hill-climbing [] (Section .).
• LGAs based on female and male differentiation [] (Section .).
• LGAs as components of distributed GAs [, , ] (Section .).

4.1 μGAsWorking as LGAs

In [], a Micro-Genetic Algorithm (μGA) (GA with a small population and short
evolution) is used as LGA within a memetic algorithm. Its mission is to refine the
solutions given by the memetic algorithm. It evolves a population of perturbations
(Pi ), whose aptitude values depend on the solution given by the memetic algorithm.

Its main features are the following:
• It is an elitist Generational GA that uses roulette wheel parent selection, a ten-

point crossover, and bit mutation with adaptive probabilities. In addition, by
using a small population (five individuals), the μGA may achieve high selection
pressure levels, which allows accurate solutions to be reached.

• The perturbation space is defined in such a way that the μGA explores a small
region centred on the given solution. Thus, it offers local improvements to the
given solution.

Thememetic algorithmbased on the μGAwas tested against  different evolutionary
algorithm models, which include a simple GA and GAs with different hill-climbing
operators, on five hard constrained optimisation problems.The simulation results re-
vealed that this algorithm exhibits good performance, outperforming the competing
algorithms in all test cases in terms of solution accuracy, feasibility rate, and robust-
ness.

We should point out that μGAs have been considered as LGAs by other authors:

• Weicai et al. [] propose aMulti-agent GA that makes use of a μGA.
• Meloni et al. [] insert a μGA in a multi-objective evolutionary algorithm for

a class of sequencing problems in manufacturing environments.
• Papadakis et al. [] use a μGA within a GA-based fuzzy modelling approach to

generate TSK models.

4.2 A Real-coded LGA: Crossover Hill-climbing

Lozano et al. [] propose a Real-coded Memetic Algorithm that uses Crossover Hill-
climbing (XHC) as LGA. Its mission is to obtain the best possible accuracy levels to
lead the population towards the most promising search areas, producing an effective
refinement on them. In addition, an adaptive mechanism is employed to determine
the probability with which solutions are refined with XHC.
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The XHC is a Real-coded Steady-state LGA that maintains a pair of parents and
performs crossover repeatedly on this pair until some number of offspring, no f f , is
reached. Then, the best offspring is selected and replaces the worst parent, only if it
is better. The process iterates nit times and returns the two final current parents.

The XHC proposed may be conceived as a Micro Selecto-Recombinative Real-
coded LGA model that employs the minimal population size necessary to allow the
crossover to be applicable, i.e. two chromosomes. Although XHC can be instantiated
with any crossover operator, the authors used a self-adaptive real-parameter opera-
tor that generates offspring according to the current distribution of the parents. If
the parents are located close to each other, the offspring generated by the crossover
might be distributed densely around them. On the other hand, if the parents are lo-
cated far away from each other, then the offspring will be sparsely distributed.

Experimental results showed that, for a wide range of problems, the real-coded
memetic algorithm with XHC operator consistently outperformed other real-coded
memetic algorithms appearing in the literature.

Other studies have considered some variants of the XHC algorithm [, , ].

4.3 LGAs Based on Female andMale Differentiation

Parent-Centric Crossover Operators (PCCOs) is a family of real-parameter crossover
operators that use a probability distribution to create offspring in a restricted search
region marked by one of the parent, the female parent. The range of this probability
distribution depends on the distance among the female parent and the other parents
involved in the crossover, the male parents.

Traditionally, PCCO practitioners have assumed that every chromosome in the
population may become either a female parent or a male parent. However, it is
very important to emphasise that female and male parents have two differentiated
roles []:

• female parents point to the search areas that will receive sampling points, whereas
• male parents are used to determine the extent of these areas.

With this idea in mind, García-Martínez et al. [] propose applying a Female and
MaleDifferentiation (FMD) process before the application of a PCCO.TheFMDpro-
cess creates two different groups according to two tuneable parameters (NF and NM):

• GF with the NF best chromosomes in the population, which can be female par-
ents; and

• GM with the NM best individuals, which can be selected as male parents.

An important feature of this FMD process is that it has a strong influence on the
degree of selection pressure kept by the GA:

• On the one hand, when NF is low, high selection pressure degrees are achieved,
because the search process is very focused in the best regions.

• On the other hand, if NF is high, the selection pressure is softened, providing
extensive sampling on the search areas represented in the current population.
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The authors argue that the two parameters associated with the FMD process, NF and
NM , may be adequately adjusted in order to design Local Real-coded GAs that reach
accurate solutions:
• On the one hand, with low NF values (NF = 5), the GA keeps the best solutions

found so far in a similar way to which LSPs keep the best solution found so far in
XC .

• On the other hand, PCCOs sample the neighbourhood of the NF best solutions
as LSPs sample the neighbourhood of XC , i.e. PCCOs perform a local refinement
on the NF best solutions.

In addition, the authors argue thatGlobal Real-CodedGAs can also be obtained by ad-
equately adjusting NF and NM . Global Real-coded GAs offer reliable solutions when
they tackle multimodal and complex problems.

Finally, with the aim of achieving robust operation, García-Martínez et al. fol-
lowed a simple hybridisation technique to put together a Global Real-coded GA and
a Local Real-coded GA.

Empirical studies confirmed that this hybridisation was very competive with
state-of-the-art on metaheuristics for continuous optimisation.

4.4 LGAs as Components of Distributed GAs

Distributed GAs keep in parallel, several independent subpopulations that are pro-
cessed by a GA []. Periodically, a migration mechanism produces a chromosome
exchange between the subpopulations. Making distinctions between the subpopula-
tions by applying GAs with different configurations, we obtain Heterogeneous Dis-
tributed Genetic Algorithms (HDGAs). These algorithms represent a promising way
for introducing correct exploration/exploitation balance in order to avoid premature
convergence and reach accurate final solutions.

Next, we describe three HDGAmodels that assign to every subpopulation a dif-
ferent exploration or exploitation role. In this case, the exploitative subpopulations
are LGAs whose mission is to refine the solutions that have been migrated from ex-
plorative subpopulations:
• Gradual Distributed Real-coded GAs [] (Sect. ..).
• GA Based on Migration and Artificial Selection [] (Sect. ..).
• Real Coded GA with an Explorer and an Exploiter Population [] (Sect. ..).

4.4.1 Gradual Distributed Real-coded GAs
The availability of crossover operators for real-coded GAs [, ] that generate
different exploration or exploitation degrees makes the design of Heterogeneous
Distributed Real-coded GAs based on these operators feasible. Herrera et al. []
propose Gradual Distributed Real-coded GAs (GD-RCGAs) that apply a different
crossover operator to each subpopulation. These operators are differentiated ac-
cording to their associated exploration and exploitation properties and the degree
thereof. The effect achieved is a parallel multiresolution with regard to the action of
the crossover operators. Furthermore, subpopulations are suitably connected to ex-
ploit this multiresolution in a gradual way.
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GD-RCGAs are based on a hypercube topology with three dimensions (Fig. ).
There are two important sides to be differentiated:
• The front side is devoted to exploration. It is made up of four subpopulations

E1 , . . . , E4, to which exploratory crossover are applied. The exploration degree
increases clockwise, starting at the lowest E1, and ending at the highest E4.

• The rear side is for exploitation. It is composed of subpopulations e1, . . . , e4
that undergo exploitative crossover operators. The exploitation degree increases
clockwise, starting at the lowest e1, and finishing at the highest e4. Notice that the
e1, . . . , e4 populations are LGAs that achieve different exploitation levels.

The connectivity of the GD-RCGA allows a gradual refinement when migrations are
produced from an exploratory subpopulation toward an exploitative one, i.e., from
Ei to ei , or between two exploitative subpopulations from a lower degree to a higher
one, i.e. from ei to ei+1.

Experimental results showed that the GD-RCGA consistently outperformed se-
quential real-coded GAs and homogeneous distributed real-coded GAs, which are
equivalent to them, and other real-coded evolutionary algorithms reported in the
literature.

4.4.2 GA Based onMigration and Artificial Selection
In [], a distributedGA, calledGAMAS,was proposed.GAMASuses four subpopu-
lations, denoted as species I–IV, which supply different exploration or exploitation
levels by using different mutation probabilities:

• Species II is a subpopulation used for exploration. For this purpose, it uses a high
mutation probability (pm = 0.05).

• Species IV is a subpopulation used for exploitation. This way, its mutation prob-
ability is low (pm = 0.003). Species IV is an LGA that attempts to achieve high
exploitation by using a low mutation probability.

• Species III is an exploration and exploitation subpopulation with pm = 0.005.

GAMAS selects the best individuals from species II–IV, and introduces them into
species I whenever those are better than the elements in this subpopulation. Themis-

Fig. 2 Structure of a GD-RCGA
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sion of species I is to preserve the best chromosomes appearing in the other species.
At predetermined generations, its chromosomes are reintroduced into species IV by
replacing all of the current elements in this species.

Experimental results showed that GAMAS consistently outperforms simple GAs
and alleviates the problem of premature convergence.

4.4.3 Real-coded Genetic Algorithmwith an Explorer and an Exploiter Population
Tsutsui et al. [] propose a GA with two populations whose missions are well dif-
ferentiated: one is aimed to explore the search space, whereas the other is an LGA
that searches the neighbourhood of the best solution obtained so far. Both of them
are generational GAs. However, the LGA uses a fine-grained mutation and a popula-
tion of half the size of the explorer population. This way, the LGA performs a high
exploitation over the best solution so far.

Theproposed technique exhibited performance significantly superior to standard
GAs on two complex highly multimodal problems.

5 Binary-coded Local Genetic Algorithm
In this section, we describe a recent LGA example, the Binary-coded LGA (BLGA)
[] that may be used to design metaheuristics based on LSPs. The aim of BLGA is
two-fold:
• On the one hand, BLGA has been specifically designed to perform an effective

local search in a similar way to LSPs. BLGA optimises locally the solutions given
by the metaheuristic, by steps within their neighbourhoods.

• On the other hand, while BLGA performs the local search, its population (P)
acquires information about the location of the best search regions. Then, BLGA
can make use of the knowledge in P in order to guide the search. This kind of
information cannot be used by LSPs.

BLGA is a SSGA (Sect. ) that uses a crowding replacement method (restricted tour-
nament selection []) that favours the formation of niches (groups of chromosomes
of high quality located in different and scattered regions of the search space) in P.
In addition, BLGAmaintains an external chromosome, the leader chromosome (CL),
which plays the same role as XC in classical LSPs:

Fig. 3 Niches considered to guide the local search
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• BLGA samples new solutions within the neighbourhood of CL in a similar way
to LSPs with XC , by means of amulti-parent version of the uniform crossover op-
erator []. In addition, BLGAdirects the sampling operation towards the closest
niches to CL (Fig. ) by selecting parents with positive assortative mating [].

• BLGA keeps the best sampled solution in CL just as LSPs keep the best solution
obtained so far in XC .

5.1 General Scheme of the BLGA

Let’s suppose that a particular metaheuristic applies the BLGA as LSP. When the
metaheuristic calls the BLGA to refine a particular solution, the BLGA considers this
solution asCL .Then, the following steps are carried out during each iteration (Fig. ):

. Mate selection.m chromosomes (Y  ,Y , ...,Ym) are selected from the population
by applying the positive assortative mating m times (Sect. .).

. Crossover. CL is crossed over with Y  ,Y , ...,Ym by applying the multi-parent
uniform crossover operator, generating an offspring Z (Sect. .).

. To update the leader chromosome and replacement. If Z is better than CL , then
CL is inserted into the population using the restricted tournament selection
(Sect. .) and Z becomes the new CL . Otherwise, Z is inserted in the popu-
lation using this replacement scheme.

All these steps are repeated until a termination condition is achieved (Sect. .).

5.2 Positive Assortative Mating

Assortativemating is the natural occurrence ofmating between individuals of similar
phenotype more or less often than expected by chance. Mating between individuals
with similar phenotypemore often is called positive assortative mating and less often
is called negative assortative mating. Fernandes et al. [] implement these ideas to
design two mating selection mechanisms. A first parent is selected by the roulette
wheel method and nass chromosomes are selected with the same method (in BLGA
all the candidates are selected at random).Then, the similarity between each of these

Fig. 4 Model of the BLGA
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chromosomes and the first parent (CL in the BLGA) is computed (similarity between
two binary-coded chromosomes is defined as the Hamming distance between them).
If assortative mating is negative, then the one with less similarity is chosen. If it is
positive, the genomemore similar to the first parent is chosen to be the second parent.
In the case of BLGA, the first parent is CL and the method is repeated m times, in
order to obtain m parents.

Since positive assortative mating selects similar individuals to CL , it helps BLGA
to achieve the two main objectives:
• Positive assortative mating helps BLGA to perform a local refinement on CL be-

cause similar parents make the crossover operator to sample near to CL .
• Positive assortative mating probabilistically guides the search according to the

information kept in P, because it probabilistically selects chromosomes from the
nearest niches to CL (see Fig. ).

5.3 Multi-parent Uniform Crossover Operator

Since the main aim of the BLGA is to fine-tune CL , it should sample new points near
it. Uniform crossover (UX) [] creates an offspring from two parents by choosing
the genes of the first parent with the probability p f . If it uses a high p f value, it will
generate the offspring near to the first parent. The BLGA uses amulti-parent UX that
will be defined below.

During application of the crossover operator, the BLGAuses a short termmemory
mechanism to avoid the generation of any offspring previously created. It remembers
the genes of CL that have been flipped when generating an offspring Zk . Then, it
avoids flipping those genes of CL , in order to prevent the creation of Zk once again.
In order to do that, this mechanism maintains a mask, M = (M1 , . . . ,Mn), where
Mi = 1 indicates that the ith gene of CL (CL

i ) cannot be flipped in order to create
a new offspring. Initially, and when CL is updated with a better solution, any gene
can be flipped, soMi is set to  for all i � �1, . . . , n	.

The pseudocode of the crossover operator with short term memory is shown in
Fig. , where U(0, 1) is a random number in [0, 1], RI(1,m) is a random integer
in �1, 2, . . . ,m	, and p f is the probability of choosing genes from CL . It creates the
offspring Z as follows:
• Zi is set to CL

i for all i = 1, . . . , n with Mi = 1.
• IfMi = 0, then Zi is set to CL

i with probability p f . Otherwise, Zi is set to the ith
gene of a randomly chosen parent Y j . Themask is updated if Zi is different from
CL
i .

• Finally, if the Z obtained is equal to CL , then a gene i with Mi = 0 chosen at
random, is flipped and the mask is updated.

Tabu Search [] also uses a short term memory. Tabu search stores in that memory
the last movements that were used to generate the current solution. It forbides those
movements in order to avoid sampling previous solutions. In tabu search, each for-
bidden movement in the short termmemory has a tabu tenure that indicates when it
should be removed from the memory. When the tabu tenure expires, the movement
is permitted again.
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multiparent_UX(CL, Y , . . . , Ym, M, p f )

For (i = 1, ..., n)

If (Mi = 1 OR U(0, 1) < p f ) //short term memory mechanism
Zi � CL

i ;

Else
k � RI(1,m);
Zi � Yk

i ;

If (Zi � CL
i )

Mi � 1 ; //update the mask

If (Z = CL)
j � RI(1, n) such as Mi = 0;
Mi � 1 ; //update the mask
Zi � 1 − Zi;

Return Z;

Fig. 5 Pseudocode of the Multi-parent Uniform Crossover Operator with short termmemory

5.4 Restricted Tournament Selection

BLGA considers Restricted Tournament Selection (RTS) [] as its crowding replace-
ment method. The application of RTS together with the use of high population size
may favour the creation of groups of chromosomes with high quality in P, which be-
come located in different and scattered regions of the search space (niches). In this
way, the population of the BLGA acquires knowledge about the location of the best
regions of the search space. The aim of the BLGA is to use this information to guide
future searches.

The pseudocode of the RTS is shown in Fig. . Its main idea is to replace the
closest chromosome R to the one being inserted in the population, from a set of nT
randomly selected ones.

RTS(Population, solution)

GT � Select randomly nT individuals from Population;
R � Choose from GT the most similar

chromosome to solution;

If (solution is better than R)
replace R with solution;

Fig. 6 Pseudocode of restricted tournament selection
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5.5 Stop Condition

It is important to notice that when every component of the mask of the short term
memory (Sect. .) is equal to , then, CL will not be further improved, because the
crossover operator will create new solutions exactly equal to CL .Thus, this condition
will be used as the stop condition for the BLGA, and the BLGA will return CL to the
metaheuristic.

6 Experiments: Comparison with Other LSPs

This section reports on an empirical comparative study between the BLGA method
and other LSPs for binary-coded problems presented in the literature: First-LS [];
Best-LS []; and RandK-LS [, , ].

The study compares four instances of the simplest LSP based metaheuristic, the
Multi-start Local Search [], each one with a different LSP. The pseudocode of the
MSLS metaheuristic is shown in Fig. .

The four MSLS instances are defined as follows:

• MS-First-LS: MSLS with the First-LS.
• MS-Best-LS: MSLS with the Best-LS.
• MS-RandK-LS: MSLS with the RandK-LS.
• MS-BLGA: MSLS with the BLGA.

We have chosen theMSLSmetaheuristic in order to avoid possible synergies between
themetaheuristic and the LSP. In this way, comparisons among the LSPs are fairer. All
the algorithms were executed  times, each with amaximum of 100,000 evaluations.

The BLGA uses  individuals as the population size, p f = 0.95 and m = 10
mates for the crossover operator, nass = 5 for the positive assortative mating, and

multistart_LS (LSP)

Sbest
� generate random solution;

While (stop-condition is not fulfilled)
S � generate a random solution;
S′ � perform LSP on S;

If (S′ is better than Sbest)
Sbest

� S′;

Return Sbest;

Fig. 7 Pseudocode of the MSLS metaheuristic
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nT = 15 for restricted tournament selection (parameter values from []). The pop-
ulation of the BLGA does not undergo initialisation after the iterations of the MSLS,
i.e. the initial population of the BLGA at the jth iteration of the MS-BLGA is the last
population of the ( j − 1)th iteration. On the other hand, the leader chromosome is
given by the MSLS, i.e. it is generated at random, at the beginning of the iterations of
the metaheuristic.

We used the  test functions described in Appendix A. Table  indicates their
name, dimension, optimisation criteria, and optimal fitness value.

The results for all the algorithms are included in Table .The performance meas-
ure is the average of the best fitness function found over  executions. In addition,
a two-sided t-test at 0.05 level of significance was applied in order to ascertain if the
differences in performance of the MS-BLGA are significant when compared with
those for the other algorithms. We denote the direction of any significant differences
as follows:

Table 1 Test problems

Name Dimension Criterion f �

Onemax() 400 minimisation 0
Deceptive() 39 minimisation 0
Deceptive() 402 minimisation 0
Trap() 36 maximisation 220
Trap() 144 maximisation 880
Maxcut(G) 800 maximisation 572.71

Maxcut(G) 800 maximisation 6212

Maxcut(G) 800 maximisation Not known
Maxcut(G) 800 maximisation 1063.41

Maxcut(G) 1000 maximisation 70272

M-Sat(,,) 100 maximisation 13

M-Sat(,,) 100 maximisation 13

NkLand(,) 48 maximisation 13

NkLand(,) 48 maximisation 13

BQP(‘gka’) 50 maximisation 34144

BQP() 50 maximisation 20984

BQP() 100 maximisation 79704

BQP() 250 maximisation 45,6074

BQP() 500 maximisation 116,5864

1 Upper bounds presented in [].
2 Upper bounds presented in [].
3  is the maximum possible fitness value, however an opti-
mal solution with that fitness value may not exist, depending
on the current problem instance.
4 Best known values presented in [].
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Table 2 Comparison of the MS-BLGA with other MSLS instances
MS-First-LS MS-Best-LS MS-RandK-LS MS-BLGA

Onemax() 0 � 0 � 0 � 0
Deceptive() 8.68 � 3.36− 14.32+ 8.68
Deceptive() 177.6− 128.4− 201.6+ 185.84
Trap() 213.12+ 219.1 � 201.86+ 218.38
Trap() 790.08+ 828.92+ 781.78+ 869.3
Maxcut(G) 437.36+ 349.6+ 441+ 506.64
Maxcut(G) 425.6+ 335.16+ 431.32+ 497.36
Maxcut(G) 2920.82+ 2824.66+ 2946.58+ 2975.7
Maxcut(G) 849.86+ 628.32+ 873.82+ 898.08
Maxcut(G) 6427.44+ 5735.84+ 6463.1 � 6463.18
M-Sat(,,) 0.9551+ 0.9526+ 0.9563 � 0.9566
M-Sat(,,) 0.9332 � 0.9314+ 0.9335 � 0.9338
NkLand(,) 0.7660+ 0.7647+ 0.7694+ 0.7750
NkLand(,) 0.7456 � 0.7442 � 0.7493 � 0.7468
BQP(“gka”) 3414 � 3414 � 3414 � 3414
BQP() 2098 � 2094.08 � 2096.72 � 2098
BQP() 7890.56+ 7831.7+ 7881.52+ 7927.56
BQP() 45,557.16 � 45,171.38+ 45,504.22+ 45,510.96
BQP() 115,176.88 � 108,588.26+ 115,335.34 � 115,256.3

• A plus sign (+): the performance of MS-BLGA is better than that of the corres-
ponding algorithm.

• A minus sign (−): the algorithm improves the performance of MS-BLGA.
• An approximate sign (�): no significant differences.
We have introduced Fig.  in order to facilitate the analysis of these results. It shows
the percentage improvements, reductions, and non-differences, according to the
t-test, obtained when comparing MS-BLGA with the other algorithms on all the test
problems.

From Fig. , we can say that MS-BLGA performs better than all the other algo-
rithms for more than the 50% of the test problems, and better than or equivalent to

Fig. 8 Comparison of MS-BLGA with other algorithms
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almost 90%.Thus, wemay conclude that the BLGA is a very promising algorithm for
dealing with binary-coded optimisation problems.

On the other hand, Fig.  shows the percentage improvements, reductions and
non-differences obtained when using MS-BLGA for each test problem (with regard
to the other algorithms). Two remarks are worth mentioning regarding Fig. :

• MS-BLGA is one of the best algorithms for almost 90% of the test functions.
Specifically, MS-BLGA achieves better or equivalent results to those of the other
algorithms for all functions, except the two Deceptive ones.

• MS-BLGA returns the best results on four of the five Max-Cut problems.

To sumup,wemay conclude that the BLGA,workingwithin theMSLSmetaheuristic,
is very competitive with classic LSPs, because it obtains better or equivalent results
for almost all the test problems considered in this study.

7 Conclusions

In this chapter, we have shown that GAs may be specifically designed with the aim
of performing an effective local search: we called these GAs Local GAs. First, we sur-
veyed different LGA instances appearing in the literature. Then, we focused on the
BLGA, a recent LGA proposal. BLGA incorporates a specific mate selection mech-
anism, the crossover operator, and a replacement strategy to direct the local search
towards promising search regions represented in the proper BLGA population.

An experimental study, including  binary-coded test problems, has shown that
when we incorporate the BLGA into a MSLS metaheuristic, this metaheuristic im-
proves results compared with the use of other LSPs that are frequently used to im-
plement it. The good performance of the LGAs reviewed and the satisfactory results

Fig. 9 Performance of MS-BLGA on each test problem
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given by theBLGA indicate that further study of theseGAs is a topic ofmajor interest.
We currently intend to:

• analyse the behaviour of LGAs when they are used by different metaheuristics
based on LSPs [, , , , , ]. Specifically, we are interested in the BLGA.

• extend our investigation to different test-suites (other coding schemes) and real-
world problems.

Acknowledgement. This research has been supported by the Spanish MEC project TIN-
-C-.

A Appendix. Test Suite

The test suite used for the experiments consists of  binary-coded test problems (n
is the dimension of the problem). They are described in the following sections.

A.1 Onemax Problem

This is a minimisation problem that applies the following formula:

f (X) = n −
n

!
i=1

Xi ()

We have denoted as Onemax(n) an instance of the Onemax problemwith n decision
variables: we used Onemax().

A.2 Deceptive Problem

In deceptive problems [] there are certain schemata that guide the search towards
a solution that is not globally competitive. It is due to, the schemata that have the
global optimum do not bear significance and so, they may not proliferate during the
genetic process. The deceptive problem used consists of the concatenation of k sub-
problems of length .The fitness for each -bit section of the string is given in Table .
The overall fitness is the sum of the fitnesses of these deceptive subproblems. To ob-
tain an individual’s fitness, the value of this function is subtracted from themaximum
value (30k). Therefore, the optimum has a fitness of zero.

We denoted as Deceptive(k) an instance of the Deceptive problem with k sub-
problems of length . We used two instances: Deceptive() and Deceptive().

Table 3 Deceptive order- problem

Chromosomes        
Fitness        
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A.3 Trap Problem

Trap problem [] consists of misleading subfunctions of different lengths. Specif-
ically, the fitness function f (X) is constructed by adding subfunctions of length 
(F1),  (F2), and  (F3). Each subfunction has two optima: the optimal fitness value
is obtained for an all-ones string, while the all-zeroes string represents a local opti-
mum. The fitness of all other strings in the subfunction is determined by the num-
ber of zeroes: the more zeroes the higher the fitness value. This causes a large basin
of attraction towards the local optimum. The fitness values for the subfunctions are
specified in Table , where the columns indicate the number of ones in the subfunc-
tions F1, F2, and F3. The fitness function f (X) is composed of four subfunctions F3,
six subfunctions F2, and 12 subfunctions F1.The overall length of the problem is thus
. f (X) has 210 optima of which only one is the global optimum: the string with all
ones having a fitness value of .

f (X) =
3

!
i=0

F3(X[3i 
3i+2]) +
5

!
i=0

F2(X[2i+12
2i+13]) +
11

!
i=0

F1(X24+i) ()

We used two instances of the Trap problem:

• Trap(), which coincides exactly with the previous description. And,
• Trap(), which applyies Trap() to a chromosome with four groups of  genes.

Each group is evaluated with Trap(), and the overall fitness of the chromosomes
is the sum of the fitnesses of each group.

A.4 Max-Sat Problem

The satisfiability problem in propositional logic (SAT) [] is the task of deciding
whether a given propositional formula has a model. More formally, given a set of m
clauses �C1 , . . . ,Cm	 involving n Boolean variables X1 , . . . , Xn the SAT problem is
to decide whether an assignment of values to variables exists such that all clauses are
simultaneously satisfied.

Max-Sat is the optimisation variant of SAT and can be seen as a generalisation of
the SAT problem: given a propositional formula in conjunctive normal form (CNF),
theMax-Sat problem then is to find a variable assignment thatmaximises the number
of satisfied clauses. It returns the percentage of satisfied clauses.

We used two sets of instances of the Max-Sat problem with  variables, three
variables by clause, and  and  clauses, respectively.Theywere obtained using

Table 4 Fitness values of the subfunctions Fi of length i; the columns represent the number of
bits in the subfunction that are equal to one

   
F3    
F2   
F1  
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the random generator in [] ( []). They are denoted as M-Sat(n, m, l , seed), where
l indicates the number of variables involved in each clause, and seed is a parameter
needed to randomly generate theMax-Sat instance. Each execution of each algorithm
used a different seed, i.e. the ith execution of every algorithm used the same seedi ,
whereas the jth execution used seedj .

A.5 NK-Landscapes

In the NK model [], N represents the number of genes in a haploid chromosome
and K represents the number of linkages each gene has to other genes in the same
chromosome. To compute the fitness of the entire chromosome, the fitness contribu-
tion from each locus is averaged as follows:

f (X) =
1
N

N

!
i=1

f (locusi) ()

where the fitness contribution of each locus, f (locusi), is determined by using the
(binary) value of gene i together with values of the K interacting genes as an index
into a table Ti of size 2K+1 of randomly generated numbers uniformly distributed
over the interval [0, 1]. For a given gene i, the set of K linked genes may be randomly
selected or consists of the immediately adjacent genes.

We used two sets of instances of the NK-Landscape problem: one with N = 48
and K = 4, and another with N = 48 and K = 12. They are denoted as NKLand (N ,
K, seed), where seed is a parameter needed to randomly generate the NK-Landscape
instance. They were obtained using the code offered in [] ( []). Each execution of
each algorithm used a different seed, i.e. the ith executions of all the algorithms used
the same seedi , whereas the jth executions used seedj .

A.6 Max-Cut Problem

The Max-Cut problem [] is defined as follows: let an undirected and connected
graph G = (V , E), where V = �1, 2, . . . , n	 and E ⊂ �(i, j) � 1 � i < j � n	, be
given. Let the edge weights wi j = wji be given such that wi j = 0 ∀(i, j) �� E, and in
particular, let wii = 0. TheMax-Cut problem is to find a bipartition (V1 ,V2) of V so
that the sum of the weights of the edges between V1 and V2 is maximised.

We used five instances of the Max-Cut problem (G, G, G, G, G), ob-
tained by means of the code in [] ( []).

A.7 Unconstrained Binary Quadratic Programming Problem

The objective of the Unconstrained Binary Quadratic Programming (BQP) [, ] is
to find, given a symmetric rational n
 nmatrix Q = (Qi j), a binary vector of length
n that maximises the following quantity:

f (X) = XtQX =
n

!
i=1

n

!
j=1
qi jXi X j , Xi � �0, 1	 ()
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We used five instances with different values for n. They were taken from the OR-
Library []. They are the first instances of the BQP problems in the files ‘bqpgka’,
‘bqp’, ‘bqp’, ‘bqp’, ‘bqp’.They are called BQP(‘gka’), BQP(), BQP(),
BQP(), and BQP(), respectively.
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