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Abstract

In [R.R. Yager, D.P. Filev, Operations for granular computing: Mixing words and numbers, in: Proceedings of the
FUZZ-IEEE World Congress on Computational Intelligence, Anchorage, 1998, pp. 123–128] Yager and Filev introduced
the Induced Ordered Weighted Averaging (IOWA) operator. In this paper, we provide some IOWA operators to aggregate
fuzzy preference relations in group decision-making (GDM) problems. These IOWA operators when guided by fuzzy lin-
guistic quantifiers allow the introduction of some semantics or meaning in the aggregation, and therefore allow for a better
control over the aggregation stage developed in the resolution process of the GDM problems. In particular, we present the
Importance IOWA (I-IOWA) operator, which applies the ordering of the argument values based upon the importance of
the information sources; the Consistency IOWA (C-IOWA) operator, which applies the ordering of the argument values
based upon the consistency of the information sources; and the Preference IOWA (P-IOWA) operator, which applies the
ordering of the argument values based upon the relative preference values associated to each one of them. We provide a
procedure to deal with ‘ties’ in respect to the ordering induced by the application of one of these IOWA operators; it con-
sists of a sequential application of the above IOWA operators. We also present a selection process for GDM problems
based on the concept of fuzzy majority and the above three IOWA operators. Finally, we analyse the reciprocity and con-
sistency properties of the collective fuzzy preference relations obtained using IOWA operators.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There exist many opportunities to apply fuzzy sets theory in decision-making. For example, it can be used
either to translate imprecise and vague information in the problem specification into fuzzy relationships (fuzzy
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objectives, fuzzy constraints, fuzzy preferences, etc.) or to design fuzzy tools for decision processes to establish
preference orderings of alternatives. Several authors have provided interesting results on group decision-mak-
ing (GDM) or social choice theory and multi-criteria decision-making (MCDM) with the help of fuzzy sets
theory [7,9,12,14,18,19,31,32]. In all these decision-making problems, procedures have been established to
combine opinions about alternatives related to different points of view.

In this paper the context of GDM is considered. We suppose that we have a group of experts, E = {e1, . . . ,
em}, which provide preferences about a set of alternatives, X = {x1, . . . ,xn}, by means of the fuzzy preference
relations, fP 1; . . . ; P mg; P k ¼ ½pk

ij�; pk
ij 2 ½0; 1�, which are additive reciprocal, i.e., pk

ij þ pk
ji ¼ 1; 8i; j; k.

MCDM are normally solved applying two steps [7,19]: aggregation and exploitation. Clearly, both steps are
also applicable to GDM as has been shown in [1,12]. The aggregation step of a GDM problem consists in
combining the experts’ individual preferences into a group collective one in such a way that it summarizes
or reflects the properties contained in all the individual preferences. In the literature, we can find different
aggregation operators to aggregate preferences [7,29]. The exploitation phase transforms the global informa-
tion about the alternatives into a global ranking of them. This can be done in different ways, the most common
one being the use of a ranking method to obtain a score function.

GDM problems are roughly classified into two groups: homogeneous and heterogeneous [9,11]. A GDM
problem is classified as homogeneous when no explicit importance degrees are provided or associated to
the experts, in which case we say that all the experts are equally important, and is classified as heterogeneous
in another case. However, we make note that, even in the case that no explicit importance degrees are pro-
vided, many GDM problems which are classified as homogeneous should be treated as heterogeneous when
examined in depth. Indeed, in many cases an explicit presence of the importance degrees associated to the
experts is not necessary to be absolutely sure that all of them should not be treated as equally important. This
is specially true, for instance, once the experts have provided information on the particular matter to solve, in
which case this information can be used as a mean to discriminate them as not equally important. In these
cases, it may be reasonable to give more importance to the experts that provide the more consistent

information.
The general procedure for the inclusion of the importance degrees in the aggregation process involves the

transformation of the preference values under the importance degree to generate new values. This activity is
carried out by means of a transformation function. Examples of such a function used in these cases include the
minimum operator [9], the exponential function [20], or a t-norm operator [33]. An alternative way of imple-
menting these importance degrees in the resolution process of a GDM problem is by using them to induce the
ordering of the preference values prior to their aggregation, i.e. to use an Induced Ordered Weighted Averag-
ing (IOWA) operator.

In this paper, we propose this last use of the importance degrees and introduce three particular cases of
IOWA operators to aggregate fuzzy preference relations:

• The first one is the Importance IOWA (I-IOWA) operator, which applies the ordering of the argument val-
ues based upon the importance of the information sources. Obviously, the I-IOWA operator may be
applied just when the GDM problem is classified as heterogeneous.

• If the GDM problem is classified as homogeneous, in which case the I-IOWA can not be applied, once the
experts provide their preference relations we analyse the consistency of them and proceed to classify the
experts from most consistent to least consistent. Thus, in the case of homogeneous GDM problems we
define the Consistency IOWA (C-IOWA) operator, which applies the ordering of the argument values
based upon the consistency of the information sources.

• Finally, we define the Preference IOWA (P-IOWA) operator, which applies the ordering of the argument
values based upon the relative preference values associated to each one of them.

We also provide a different procedure to the one proposed by Yager and Filev in [27] for dealing with ‘ties’
in respect to the ordering induced by the application of one of these IOWA operators. This procedure consists
of a repeated application of the above IOWA operators. Finally, we show that, in general, IOWA operators
maintain the reciprocity property of fuzzy preference relations as well as the consistency property after aggre-
gation is carried out in the resolution process.
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In order to do this, this paper is set out as follows. In Section 2, we summarise the basic operators used in
this study: the OWA and IOWA operators. In Section 3, we define the three particular cases of IOWA oper-
ators to aggregate fuzzy preference relations in GDM problems: the I-IOWA, C-IOWA and P-IOWA oper-
ators. In Section 4, we present a selection process for GDM problems based on the concept of fuzzy majority
and the above three IOWA operators. Also, a procedure is proposed to deal with ‘ties’ that could appear in the
ordering induced by the application of one of the above IOWA operators in the aggregation of fuzzy prefer-
ence relations. In Section 5, we show that, in general, the collective preference relation obtained by applying
IOWA operators verifies the reciprocity property as well as the consistency property when the aggregated indi-
vidual preference ones do. Finally, in Section 6 we draw our conclusions.
2. Preliminaries: OWA and IOWA operators

In this section we start by providing a summary of the concepts of OWA and IOWA operators, which will
be used throughout the paper.

2.1. The OWA operator

In [1] Chiclana et al. considered GDM problems where the information about the alternatives was repre-
sented using fuzzy preference relations and a fuzzy majority guided choice scheme was designed. This choice
scheme is based on the OWA operator [22] and follows two steps to achieve a final decision from the synthesis
of preference intensity degrees of the majority of experts: (i) aggregation and (ii) exploitation.

Definition 1. An OWA operator of dimension n is a function / : Rn ! R, that has associated a set of weights
or weighting vector W = (w1, . . . ,wn) to it, so that wi 2 [0, 1] and

Pn
i¼1wi ¼ 1, and is defined to aggregate a list

of values {p1, . . . ,pn} according to the following expression:
/ðp1; . . . ; pnÞ ¼
Xn

i¼1

wi � prðiÞ;
being r : {1, . . . ,n}! {1, . . . ,n} a permutation such that pr(i) P pr(i+1), "i = 1, . . . ,n � 1, i.e., pr(i) is the ith
highest value in the set {p1, . . . ,pn}.

An issue in the definition of the OWA operator is how to obtain the associated weighting vector. In [22],
Yager proposed two ways to obtain it. The first approach is to use some kind of learning mechanism using
some sample data; and the second approach is to try to give some semantics or meaning to the weights.
The latter allowed applications in the area of quantifier guided aggregations [21].

In the process of quantifier guided aggregation, given a collection of n criteria represented as fuzzy subsets
of the alternatives X, the OWA operator has been used to implement the concept of fuzzy majority in the
aggregation phase by means of a fuzzy linguistic quantifier [30] which indicates the proportion of satisfied cri-
teria ‘necessary for a good solution’ [23]. This implementation is done by using the quantifier to calculate the
OWA weights.

Given a function Q : [0,1]! [0,1] such that Q(0) = 0, Q(1) = 1 and if x > y then Q(x) P Q(y), an OWA
aggregation guided by this function can be obtained as [22]:
/Qðp1; . . . ; pnÞ ¼
Xn

i¼1

wi � prðiÞ;
being r : {1, . . . ,n}! {1, . . . ,n} a permutation such that pr(i) P pr(i+1), "i = 1, . . . ,n � 1, i.e., pr(i) is the ith
largest value in the set {p1, . . . ,pn}; and
wi ¼ Q
i
n

� �
� Q

i� 1

n

� �
; i ¼ 1; . . . ; n: ð1Þ
These function are called Basic Unit-interval Monotone (BUM) functions in [26] and ‘are particularly useful
in situations in which the imperative guiding the OWA aggregation is expressed linguistically by a quantifier’.
We make note that in [23] BUM functions are called Regular Increasing Monotone (RIM) quantifiers.
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Example 1. Suppose three experts provide the following fuzzy preference relations on a set of three
alternatives
P 1 ¼
0:5 0:75 0:87

0:25 0:5 0:66

0:13 0:34 0:5

0
B@

1
CA; P 2 ¼

0:5 0:66 0:94

0:34 0:5 0:87

0:06 0:13 0:5

0
B@

1
CA; P 3 ¼

0:5 0:66 0:75

0:34 0:5 0:66

0:25 0:34 0:5

0
B@

1
CA:
Following the choice scheme defined in [1], if we aggregate them by using an OWA operator guided by the
fuzzy linguistic quantifier ‘‘most of’’ defined by Q(r) = r1/2 [23], whose corresponding weighting vector using
(1) is (0.58, 0.24,0.18), then we have the following collective preference relation:
P c ¼ /mostðP 1; P 2; P 3Þ ¼
0:5 0:71 0:89

0:32 0:5 0:78

0:19 0:3 0:5

0
B@

1
CA;
whose elements can be interpreted as the preference degree of one alternative over another for most of the
experts.

We make note that this type of aggregation ‘is very strongly dependent upon the weighting vector used’
[23], and consequently also upon the function expression used to represent the fuzzy linguistic quantifier.
The particular RIM function used in this example guarantees that all the experts contribute to the final aggre-
gated value because it is a strictly increasing function. Moreover, the higher the ranking of a value, the higher
the weighting value associated to it. Therefore, this RIM function seems to be adequate for those decision-
making problems where the importance or consistency degrees of the experts are used to induce the order
of the values to be aggregated.

2.2. The IOWA operator

In [15] Mitchell and Estrakh described a modified OWA operator in which the input arguments are not re-
arranged according to their values but rather using a function of the arguments. Inspired by this work, Yager
and Filev introduced in [27] a more general type of OWA operator, which they named the Induced Ordered
Weighted Averaging (IOWA) operator:

Definition 2. An IOWA operator of dimension n is a function UW : ðR� RÞn ! R, to which a set of weights or
weighting vector is associated, W = (w1, . . . ,wn), such that wi 2 [0,1] and Riwi = 1, and it is defined to aggregate
the set of second arguments of a list of n 2-tuples {hu1,p1i, . . . , hun,pni} according to the following expression:
UW hu1; p1i; . . . ; hun; pnið Þ ¼
Xn

i¼1

wi � prðiÞ;
being r : {1, . . . ,n}! {1, . . . ,n} a permutation such that ur(i) P ur(i+1), "i = 1, . . . ,n � 1, i.e., hur(i),pr(i)i is the
2-tuple with ur(i) the ith highest value in the set {u1, . . . ,un}.

In the above definition the reordering of the set of values to aggregate, {p1, . . . ,pn}, is induced by the reor-
dering of the set of values {u1, . . . ,un} associated to them, which is based upon their magnitude. Due to this use
of the set of values {u1, . . . ,un}, Yager and Filev called them the values of an order inducing variable and
{p1, . . . ,pn} the values of the argument variable [27,28,24,26]. As we have mentioned, the main difference
between the OWA operator and the IOWA operator resides in the reordering step of the argument variable.
In the case of OWA operator this reordering is based upon the magnitude of the values to be aggregated, while
in the case of IOWA operator an order inducing variable is used as the criterion to induce that reordering.
Obviously, an immediate consequence of Definition 2 is that if the order inducing variable is the argument
variable then the IOWA operator is reduced to the OWA operator.

Another important distinction between OWA and IOWA aggregation processes arises when there is a tie in
the ordering operation. Ties in the arguments to be aggregated do not present a problem in OWA aggregation
processes; the same result is obtained no matter the order in which the tied arguments are placed. This is not the
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case for IOWA aggregation processes, as the following example illustrates. Consider the aggregation of the
objects {h5,1i, h3,0.5 i, h8,0.6i, h5,0.4i} using the weighting vector W = (0.4,0.3, 0.2,0.1). There is a tie between
h5,1i and h5,0.4i with respect to the order inducing variable. If the tie is broken by selecting h5,1i ahead of
h5,0.4i then the result would be different to the one obtained if h5,0.4i is put ahead of h5,1i. Yager and Filev’s
approach to the case of ties in the order inducing process is to replace the arguments of all the tied pairs by their
average [27]. Using this policy, in the above example both arguments 1 and 0.4 would be replaced by 0.7.

In the following result we summarise some of the properties that IOWA operators verify:

Proposition 1. The IOWA operator satisfies the following properties:

1. It is commutative:
UW ðhur1ð1Þ; pr1ð1Þi; . . . ; hur1ðnÞ; pr1ðnÞiÞ ¼ UW ðhu1; p1i; . . . ; hun; pniÞ;
being r1 a permutation of the set {1, . . . , n} and ðhur1ð1Þ; pr1ð1Þi; . . . ; hur1ðnÞ; pr1ðnÞiÞ a reordering of the set of 2-
tuples (hu1,p1i, . . . , hun,pni).

2. It is an or–and operator, i.e., it is located between the minimum and the maximum of the arguments to be

aggregated:
min
i
fpig 6 UW ðhu1; p1i; . . . ; hun; pniÞ 6 max

i
fpig:
3. It is idempotent with respect to the argument variable:
UW ðhu1; pi; . . . ; hun; piÞ ¼ p:
4. It is increasingly monotonous with respect to the argument variable when the order inducing values are
unchanged:
UW ðhu1; p1i; . . . ; hun; pniÞ 6 UW ðhu1; q1i; . . . ; hun; qniÞ if pi 6 qi 8i:

5. The IOWA operator is reduced to the Average or Arithmetic Mean (AM) operator when wi ¼ 1

n ; 8i.
6. The IOWA operator is reduced to the Weighted Averaging (WA) operator when the 2-tuples have the following

expression hf(n � i + 1),aii, being f a strictly increasing function.

7. The IOWA operator is reduced to the OWA operator when the 2-tuples have the following expression hf(pi), pii,
being f a strictly increasing function.
Additionally, we have the two following cases:

• If W* = (1,0, . . . , 0) the IOWA operator is reduced to the maximum operator:
UW � ðhf ðp1Þ; p1i; . . . ; hf ðpnÞ; pniÞ ¼ max
i
fpig:

• If W* = (0, . . . , 0,1) the IOWA operator is reduced to the minimum operator:

UW � ðhf ðp1Þ; p1i; . . . ; hf ðpnÞ; pniÞ ¼ min
i
fpig:
For a detailed proof of the above list of properties and uses of the IOWA operators the reader should con-
sult [16,24–28].

Note 1. In this paper we will focus on the aggregation of numerical preferences, which is why we assume that
the nature of the first argument of the IOWA operators is also numeric, although it could be linguistic [25–28].
Note 2. In the case of using an IOWA operator in the aggregation phase of a GDM problem, the concept of
fuzzy majority can also be implemented by means of the fuzzy linguistic quantifiers [30]. When a fuzzy linguis-
tic quantifier Q is used to compute the weights of the IOWA operator U, then it is symbolized by UQ.

Example 2. If we want to aggregate the set of 2-tuples {h0.65,0.87i, h0.13,0.94i, h0.22, 0.75i}, using again the
fuzzy linguistic quantifier ‘‘most of’’ of Example 1, then we obtain
Umostðh0:65; 0:87i; h0:13; 0:94i; h0:22; 0:75iÞ ¼ 0:58 � 0:87þ 0:24 � 0:75þ 0:18 � 0:94 ¼ 0:85:
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3. Some IOWA operators to aggregate fuzzy preference relations

In [1] we designed a fuzzy majority guided choice scheme to achieve a final decision from the synthesis of
preference intensity degrees of the majority of experts. This choice scheme is based on the quantifier guided
aggregation operator, the OWA operator [22], which implements the concept of fuzzy majority in the aggre-
gation phase by means of the fuzzy quantifiers [30] used to calculate its weighting vector.

A fundamental aspect of the OWA operators is the reordering of the arguments to be aggregated, based
upon the magnitude of their respective values, which allows us to give importance to values in opposition
to the Weighted Average (WA) operators which compute an aggregate value taking into account the reliability
of the sources of information [29]. However, it is clear that a set of values can be reordered in a different way to
the one used by the OWA operators. To do this, a criterion has to be defined to induce a specific ordering of
the arguments to be aggregated before a WA operator can be applied. This is the idea upon which Yager and
Filev based the definition of the IOWA operator [27]. While the OWA operators order the arguments by their
value, the IOWA operators induce their ordering by using an additional variable or criterion, called the order
inducing variable. In fact, the OWA operator as well as the WA operator are included in the more general
class of IOWA operators [28]. This means that the IOWA operators allow us to take control of the aggrega-
tion stage of any GDM problem in the sense that importance can be given to the magnitude of the values to be
aggregated as the OWA operators do or to the information sources as the WA operators do.

In this section we present three special cases of IOWA operators for GDM problems with fuzzy preference
relations. These IOWA operators when guided by fuzzy quantifiers allow the introduction of some semantics
or meaning in the aggregation, and therefore allow for better control over the aggregation stage:

• The first two (I-IOWA and C-IOWA) act as the WA operator because the aggregation is based upon the
reliability of the information sources, while

• the third one (P-OWA) acts as the OWA operator because the ordering of the argument values is based
upon a relative magnitude associated to each one of them.

The first one is proposed to be used in heterogeneous GDM problems, while the other two can be applied
both in homogeneous and heterogeneous GDM problems.
3.1. The importance induced ordered weighted averaging (I-IOWA) operator

In many cases, each expert ek 2 E is assigned an importance degree to him/her. We can assume without loss
of generality that ui 2 [0, 1] "i, and that there is some i such that ui = 1. We can always obtain these two con-
ditions by dividing all importance degrees by their maximum. Thus, importance degree can be interpreted as a
fuzzy set membership function, lI : E! [0, 1], in such a way that lI(ek) = uk 2 [0,1] denotes the importance
degree of the opinion provided by the expert ek. When this is the case, we call this a heterogeneous GDM
problem [3,5,4,8,9,11,17].

The general procedure for the inclusion of importance weight values in the aggregation process involves the
transformation of the preference values, pk

ij, under the importance degree uk to generate a new value, �pk
ij; and

then aggregate these new values using an aggregation operator. Obviously, the form of transformation func-
tion depends on the characteristic of the aggregation operator. When using the average operator, the approach
for including importance degrees is to use the weighted average, i.e., gðpk

ij; ukÞ ¼ n
SðnÞ � uk � pk

ij; with
SðnÞ ¼

Pn
l¼1ul [3,17]. When using the min-type aggregation operator, the function gðpk

ij; ukÞ ¼ maxðpk
ij; ukÞ

was proposed to limit the right of veto [5]. Yager in [27] notes that ‘‘when calculating the min, it is the lower
scores that play the more significant role’’, and he proposes to use the transformation function
gðpk

ij; ukÞ ¼ maxðpk
ij; 1� ukÞ; as in [6]. In general, in this case the use of a t-conorm s is suggested, i.e.,

gðpk
ij; ukÞ ¼ sðpk

ij; 1� ukÞ: A different method for including importance degrees in the min-type aggregation
not included in the preceding class is the use of the exponential function gðpk

ij; ukÞ ¼ ðpk
ijÞ

uk , suggested by Yager
in [20]. On the other hand, when using a max-type aggregation, importance degrees are included by using a t-
norm, for example gðpk

ij; ukÞ ¼ minðpk
ij; ukÞ [5]. An alternative approach not following the t-norm function to
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include importance degrees when using the max-type aggregation is the use of the transformation function
g(x,y) = 1 � (1 � x)y, which was also proposed by Yager [20].

In the area of quantifier guided aggregations, Yager in [23] presents a procedure to evaluate the overall sat-
isfaction of Q important criteria (experts) by the alternative xi. In this procedure, once the satisfaction values
to be aggregated have been ordered, the weighting vector associated to an OWA operator using a linguistic
quantifier Q is calculated following the expression:
wk ¼ Q
SðkÞ
SðnÞ

� �
� Q

Sðk � 1Þ
SðnÞ

� �
; ð2Þ
being SðkÞ ¼
Pk

l¼1urðlÞ, and r the permutation used to produce the ordering of the values to be aggregated.
This approach for the inclusion of importance degrees associates a zero weight to those experts with zero
importance degree.

This procedure was extended by Yager to the case of induced aggregation [26]. In this case, each component
in the aggregation consists of a triple ðpk

ij; uk; vkÞ : pk
ij is the argument value to aggregate, uk is the importance

weight value associated to pk
ij, and vk is the order inducing value. In this case the aggregation is
UQðp1
ij; . . . ; pn

ijÞ ¼
Xn

k¼1

wk � prðkÞ
ij ;
with
wk ¼ Q
SðkÞ
SðnÞ

� �
� Q

Sðk � 1Þ
SðnÞ

� �
; ð3Þ
where SðkÞ ¼
Pk

l¼1urðlÞ, and r is the permutation such that vr(k) in ðprðkÞ
ij ; urðkÞ; vrðkÞÞ is the kth largest value in

the set {v1, . . . ,vn}.
In our case, we propose to use the importance degrees associated to each one of the experts both as a weight

associated to the argument to aggregate and as the order inducing values (vi = ui). Thus, the ordering of the
preference values is first induced by the ordering of the experts from most to least important one, and the
weights of the IOWA operator is obtained by applying the above Eq. (3), which reduces to:
wk ¼ Q
SðkÞ
SðnÞ

� �
� Q

Sðk � 1Þ
SðnÞ

� �
; ð4Þ
where SðkÞ ¼
Pk

l¼1urðlÞ; and r is the permutation such that ur(k) in ðprðkÞ
ij ; urðkÞÞ is the kth largest value in the set

{u1, . . . ,un}. We call this importance degree based IOWA operator as the Importance IOWA (I-IOWA) oper-
ator and denote it as UI

W .

Definition 3. If a set of experts, E = {e1, . . . ,em}, provide preferences about a set of alternatives,
X = {x1, . . . ,xn}, by means of the fuzzy preference relations, {P1, . . . ,Pm}, and each expert ek has an
importance degree, lI(ek) 2 [0,1], associated to him or her, then an I-IOWA operator of dimension n, UI

W , is
an IOWA operator whose set of order inducing values is the set of importance degrees.

Example 3. Suppose that the importance degrees of the set of three experts of Example 1 are the following
I = (2.12,1.01,1.37). Using the fuzzy linguistic quantifier ‘‘most of’’ and expression (4), the collective fuzzy
preference relation is
P c ¼ UI
most h2:12; P 1i; h1:01; P 2i; h1:37; P 3i
� �

¼ 0:69 � P 1 þ 0:19 � P 3 þ 0:12 � P 2 ¼
0:5 0:72 0:86

0:28 0:5 0:69

0:14 0:31 0:5

0
B@

1
CA;
whose elements can be considered as the preference of one alternative over another for most of the more
important experts.

Note 3. It is worth noting that our approach to the importance weight treatment using formula (4) via the I-
IOWA operator is computationally more efficient than the original OWA based approach. In our approach
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the weights are computed once for the whole aggregation process while in the latter case the weights have to be
computed for each cell of the resulting fuzzy preference relation.

Note 4. We consider that the importance degrees should be implemented in an aggregation process in such a
way that the effect from those experts who are less important is reduced or mitigated. We also propose the
importance degrees to be used to induce the order of the experts prior to the aggregation, and therefore
the above is obtained if the linguistic quantifier Q verifies that the higher the importance of an expert the
higher the weighting value of that expert in the aggregation, i.e.:
urð1Þ P urð2Þ P � � �P urðnÞ P 0) w1 P w2 P � � �P wn P 0: ð5Þ
Yager in [23] considers the parameterized family of RIM quantifiers
QðrÞ ¼ ra; a P 0
and the particular function with a = 2 to represent the fuzzy linguistic quantifier ‘‘most of’’. This strictly
increasing and convex function does not verify the above as the following example shows. If we had the fol-
lowing importance degrees (0.9,0.75, 0.3,0.25, 0.2,0.15, 0.1) then formula (2) with Q(r) = r2 leads to the
weighting vector (0.12, 0.26,0.16, 0.14, 0.13,0.11, 0.08).

For simplicity we will drop the r symbol in what follows. Assuming u1 P u2 P � � �P un P 0, we have the
following equivalence:
wi P wiþ1 () QðT iÞ � QðT i�1ÞP QðT iþ1Þ � QðT iÞ () QðT iÞP
QðT i�1Þ þ QðT iþ1Þ

2
;

where T i ¼ SðiÞ
SðnÞ, and SðiÞ ¼

Pi
l¼1ul; Sð0Þ ¼ 0. Also, it is true that
Si�1 þ Siþ1 ¼
Xi�1

l¼1

ul þ
Xiþ1

l¼1

ul ¼ 2 �
Xi�1

l¼1

ul þ ui þ uiþ1 6 2 �
Xi�1

l¼1

ul þ ui þ ui ¼ 2 � Si
and therefore
T i P
T i�1 þ T iþ1

2
:

Clearly, in our case any increasing concave linguistic quantifier Q will verify (5). Indeed, for being Q increasing
we have first
QðT iÞP Q
T i�1 þ T iþ1

2

� �
:

Concavity of Q implies that
Q
T i�1 þ T iþ1

2

� �
P

QðT i�1Þ þ QðT iþ1Þ
2

:

For the parameterized family of RIM quantifiers Q(r) = ra, a P 0, if a 2 [0,1] then function Q(x) = xa is
concave and fit for our purpose. Also, for a 2 [0,1] the computed weighting vector presents an orness measure
ornessðW Þ ¼ 1

1þa P 0:5, and consequently, the lower a the closer the IOWA aggregation guided by Q will be to
the maximum aggregation operator.

Note 5. The following example shows that formula (1) for calculating the I-IOWA weights does not capture
the majority concept ‘‘most of the important’’, while formula (4) does. Suppose that we want to aggregate the
first arguments of the following list of 2-tuples
fh0:2; 0:3i; h0:75; 0:7i; h0:3; 0:1i; h0:2; 0:15i; h0:3; 0:25i; h0:7; 0:9i; h0:2; 0:2ig;

where the second arguments are importance degrees that induce the following ordering:
rð1Þ ¼ 6 rð2Þ ¼ 2 rð3Þ ¼ 1 rð4Þ ¼ 5 rð5Þ ¼ 7 rð6Þ ¼ 4 rð7Þ ¼ 3:
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Using formula (4) with Q(r) = r1/2 we get the following weights:
w1 ¼ 0:378 w2 ¼ 0:157 w3 ¼ 0:12 w4 ¼ 0:101 w5 ¼ 0:089 w6 ¼ 0:081 w7 ¼ 0:074;
while using formula (1) with Q(r) = r1/2 we get the following weights:
w1 ¼ 0:588 w2 ¼ 0:196 w3 ¼ 0:07 w4 ¼ 0:055 w5 ¼ 0:041 w6 ¼ 0:03 w7 ¼ 0:019:
In both cases the higher the importance degree the higher the weight, as a consequence of the linguistic quan-
tifier being concave. However, it is apparent that this effect is magnified in the second case as a result of taking
into account the importance degrees not just for inducing the order but for computing the aggregation weights
as well. Indeed, using formula (1) the same weights would have been obtained if for example the importance
values had been
u1 ¼ 0:3 u2 ¼ 0:7 u3 ¼ 0:01 u4 ¼ 0:015 u5 ¼ 0:025 u6 ¼ 0:9 u7 ¼ 0:02:
This is not the case when using formula (4), where the new weights
w1 ¼ 0:686 w2 ¼ 0:225 w3 ¼ 0:081 w4 ¼ 0:006 w5 ¼ 0:005 w6 ¼ 0:004 w7 ¼ 0:003
reflect the change in the importance degrees. This effect is also reflected in the aggregated value: using formula
(1) we get 0.493 in both cases, while the values we get using formula (4) are 0.609 and 0.663 respectively, which
reflect better the values of the most important experts.
3.2. The consistency induced ordered weighted averaging (C-IOWA) operator

When the experts have equal importance, i.e., in a homogeneous GDM problem, the I-IOWA operator is
reduced to the Average Mean (AM) operator. However, in a homogeneous situation, each expert can always
have a consistency index value associated to him or her. Usually, for each expert this consistency index value is
obtained by analysing his or her fuzzy preference relation, and then, we can use it as the order inducing var-
iable in the aggregation of preferences by means of IOWA operators.

In decision-making problems based on fuzzy preference relations, the study of consistency is associated with
the study of the transitivity property. In [10], Herrera-Viedma et al. gave a characterization of the consistency
property defined by the additive transitivity property of a fuzzy preference relation P k ¼ ðpk

ijÞ:
pk
ij þ pk

jl þ pk
li ¼

3

2
; 8i; j; l 2 f1; . . . ; ng:
Using this characterization method, a procedure was given to construct a consistent fuzzy preference relationeP k from a non-consistent fuzzy preference relation Pk.
Summarising, the method to construct a consistent reciprocal fuzzy preference relation eP on

X = {x1, . . . ,xn, n P 2} from n � 1 preference values {p12,p23, . . . ,pn�1n} presents the following steps:

1. bP ¼ ðbpijÞ such that:
bpij ¼
pij if i 6 j 6 iþ 1;

piiþ1 þ piþ1iþ2 . . .þ pj�1j

� �
� j�ðiþ1Þ

2
if j > iþ 1;

1� bpji; if j < i:

8><
>:
We make note that the matrix bP could have entries not in the interval [0,1], but in an interval [�a, 1 + a],
being a ¼ jminfbpij; bpij 2 bP gj. In such a case, we would need to transform the values obtained via a trans-
formation function which preserves reciprocity and additive consistency, that is a function
f : ½�a; 1þ a� ! ½0; 1�, verifying
(a) f(�a) = 0
(b) f(1 + a) = 1
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(c) f(x) + f(1 � x) = 1, "x 2 [�a, 1 + a]
(d) f ðxÞ þ f ðyÞ þ f ðzÞ ¼ 3

2
; 8x; y; z 2 ½�a; 1þ a� such that xþ y þ z ¼ 3

2
.

A simple function verifying 1 and 2 takes the form f(x) = u Æ x + b, being u; b 2 R. This function is
f ðxÞ ¼ 1

1þ 2a
� xþ a

1þ 2a
¼ xþ a

1þ 2a
;

which verifies (c)
f ðxÞ þ f ð1� xÞ ¼ xþ a
1þ 2a

þ 1� xþ a
1þ 2a

¼ xþ aþ 1� xþ a
1þ 2a

¼ 1
and when xþ y þ z ¼ 3
2

f ðxÞ þ f ðyÞ þ f ðzÞ ¼ xþ a
1þ 2a

þ y þ a
1þ 2a

þ zþ a
1þ 2a

¼ xþ y þ zþ 3a
1þ 2a

¼ 3=2þ 3a
1þ 2a

¼ 3

2

verifies (d).
2. The consistent fuzzy preference relation eP is obtained as eP ¼ f ðbP Þ.

We make note that this method depends on the labelling of the alternatives and therefore, the resulting con-
sistent fuzzy preference relation is not unique.

Let feP 1; . . . ; eP n!g be the set of all possible consistent matrixes that can be obtained for a given matrix P

according to the above method and eP their average.
The distance between Pk and eP k can be used as a measure of the consistency of matrix Pk and hence of the

expert who provided it:
CIk ¼ dðP k; eP kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Xn

j¼1

ðpk
ij � epk

ijÞ
2

vuut :
The closer 1 � CIk is to 1 the more consistent the information provided by the expert ek, and thus more impor-
tance should be placed on that information. In other words, we could use these values to define the ordering of
the argument values to be aggregated, in which case we would be implementing the concept of consistency in
the aggregation process of our decision-making. This kind of aggregation process defines an IOWA operator
that we call the Consistency IOWA (C-IOWA) operator and denote it as UC

W .

Definition 4. If a set of experts, E = {e1, . . . ,em}, provides preferences about a set of alternatives,
X = {x1, . . . ,xn}, by means of the fuzzy preference relations, {P1, . . . ,Pm}, then a C-IOWA operator of
dimension n, UC

W , is an IOWA operator whose set of order inducing values is the set of consistency index

values, {1 � CI1, . . . ,1 � CIm}, associated to the set of experts.
Example 4 [13]. Suppose a set of four alternatives X = {x1,x2,x3,x4} and a set of four experts
E = {e1,e2,e3,e4}, whose fuzzy preference relations on X are:
P 1 ¼

0:5 0:3 0:7 0:1

0:7 0:5 0:6 0:6

0:3 0:4 0:5 0:2

0:9 0:4 0:8 0:5

0
BBBB@

1
CCCCA; P 2 ¼

0:5 0:4 0:6 0:2

0:6 0:5 0:7 0:4

0:4 0:3 0:5 0:1

0:8 0:6 0:9 0:5

0
BBBB@

1
CCCCA;

P 3 ¼

0:5 0:5 0:7 0

0:5 0:5 0:8 0:4

0:3 0:2 0:5 0:2

1 0:6 0:8 0:5

0
BBBB@

1
CCCCA; P 4 ¼

0:5 0:4 0:7 0:8

0:6 0:5 0:4 0:3

0:3 0:6 0:5 0:1

0:2 0:7 0:9 0:5

0
BBBB@

1
CCCCA:
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To compute the consistency indexes, for simplicity, we are going to obtain only one consistent matrix in each
case, assuming the initial ordering of the alternatives. The corresponding consistent fuzzy preference relations
obtained by applying the above procedure are:
eP 1 ¼

0:5 0:3 0:4 0:1

0:7 0:5 0:6 0:3

0:6 0:4 0:5 0:2

0:9 0:7 0:8 0:5

0
BBB@

1
CCCA; eP 2 ¼

0:5 0:4 0:6 0:2

0:6 0:5 0:7 0:3

0:4 0:3 0:5 0:1

0:8 0:7 0:9 0:5

0
BBB@

1
CCCA;

eP 3 ¼

0:5 0:5 0:8 0:5

0:5 0:5 0:8 0:5

0:2 0:2 0:5 0:2

0:5 0:5 0:8 0:5

0
BBB@

1
CCCA; eP 4 ¼

0:5 5=12 1=3 0

7=12 0:5 5=12 1=12

2=3 7=12 0:5 1=6

1 11=12 5=6 0:5

0
BBB@

1
CCCA:
To obtain the elements of eP 4 is necessary to apply function f(x) = (x + 0.1)/1.2 because a ¼ jbp4
14j ¼ j � 0:1j.

The consistency indexes associated to the experts are 1 � CI = (0.4,0.86,0.27, 0.23). The collective fuzzy
preference relation obtained by using a C-IOWA operator guided by the same fuzzy linguistic quantifier ‘‘most

of’’, with weighting vector (0.7,0.15, 0.08,0.07) calculated using the expression (4), is
P c ¼ UC
mostðh0:4; P 1i; h0:86; P 2i; h0:27; P 3i; h0:23; P 4iÞ ¼

0:5 0:39 0:63 0:21

0:61 0:5 0:67 0:42

0:37 0:33 0:5 0:12

0:79 0:58 0:88 0:5

0
BBB@

1
CCCA;
whose elements can be considered as the preference of one alternative over another for most of the more con-
sistent experts.

Note 6. The additive transitivity property used does not include the ordinary transitivity for crisp preference
relations. A modification of the definition of the additive transitivity will be studied in a future paper. Further-
more, we should point out that we use the additivity transitivity as just an example of the consistency notion to
compute consistency index values. Therefore, any other consistency property that allows to obtain consistency
indexes would be equally valid.
3.3. The preference induced ordered weighted averaging (P-IOWA) operator

If P k ¼ ðpk
ijÞ is a fuzzy preference relation on the set of alternatives {x1, . . . ,xn} then the total sum of the

elements of each row i, �pk
i ¼

P
jp

k
ij, can be interpreted as the total preference of the alternative xi. The resulting

value obtained by dividing an element of that row, pk
ir, by �pk

i , �pk
ir ¼

pk
irP
j
pk

ij

, can be interpreted as the relative pref-

erence contribution of that particular element to the total preference of the alternative xi.
These relative preference values can be used as the order inducing values of an IOWA operator to aggregate

a set of fuzzy preference relations. We call this a Preference IOWA (P-IOWA) operator and denote it as UP
W .

Definition 5. If a set of experts, E = {e1, . . . ,em}, provides preferences about a set of alternatives,
X = {x1, . . . ,xn}, by means of the fuzzy preference relations, {P1, . . . ,Pm} then a P-IOWA operator of
dimension n, UP

W , is an IOWA operator whose set of order inducing values is the set of relative preference
values associated to each one of the arguments to aggregate.

If a set of experts, E = {e1, . . . ,em}, provides preferences about a set of alternatives, X = {x1, . . . ,xn}, by
means of the fuzzy preference relations, {P1, . . . ,Pm} then a P-IOWA operator of dimension n, UP

W , is an
IOWA operator whose set of order inducing values is the set of relative preferences matrices,
fP k ¼ ð�pk

ijÞ; k ¼ 1; . . . ;mg.
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Example 5. Using the same data as in Example 4, the corresponding relative preference matrices, P k, are:
P 1 ¼

0:31 0:19 0:44 0:06

0:29 0:21 0:25 0:25

0:21 0:29 0:36 0:14

0:35 0:15 0:31 0:19

0
BBBB@

1
CCCCA; P 2 ¼

0:29 0:24 0:35 0:12

0:27 0:23 0:32 0:18

0:31 0:23 0:38 0:08

0:29 0:21 0:32 0:18

0
BBBB@

1
CCCCA;

P 3 ¼

0:29 0:29 0:42 0

0:23 0:23 0:36 0:18

0:25 0:17 0:41 0:17

0:34 0:21 0:28 0:17

0
BBBB@

1
CCCCA; P 4 ¼

0:21 0:17 0:29 0:33

0:33 0:28 0:22 0:17

0:2 0:4 0:33 0:07

0:09 0:3 0:39 0:22

0
BBBB@

1
CCCCA:
The collective fuzzy preference relation obtained by using the P-IOWA operator guided by the same fuzzy lin-
guistic quantifier ‘‘most of’’, and the expression (4) applied to the relative preference contribution of the values
to be aggregated, is
P c ¼

0:5 0:45 0:69 0:68

0:61 0:5 0:71 0:5

0:36 0:49 0:5 0:18

0:88 0:64 0:88 0:5

0
BBB@

1
CCCA:
Note 7. The collective preference relation obtained by the application of the P-IOWA operator does not verify
the reciprocity property. This is due to the fact that this P-IOWA operator behaves as an OWA operator
which normally does not maintain the reciprocity property [2].

Note 8. The P-IOWA operator when applied to a set of fuzzy preference relations may be seen as a family of
IOWA operators, each one of them using a set of the elements from the same cell of a particular fuzzy pref-
erence relation as its order inducing values. However, if the P-IOWA operator is applied to just one fuzzy pref-
erence relation, as it may be the case of deriving a choice degree for each alternative as done in [1], gives the
same result that the OWA operator. Indeed, in this case the aggregation values are calculated row by row and
therefore, as was pointed out in Proposition 1, the relative preference values are related to the preference val-
ues by the increasing function f ðpirÞ ¼

pir
Ci

where Ci is the total sum of the elements of row i, Ci ¼
P

jpij.
4. A selection process for GDM problems based on fuzzy majority and IOWA operators

Following the choice scheme proposed in [1], i.e., aggregation followed by exploitation, we design a selection
process for GDM problems based on fuzzy majority and the IOWA operators presented in this paper.

As we aforementioned, when aggregating a set of 2-tuples using IOWA operators, ties may appear among
the values of the ordering variable and the aggregated values could be different according to the procedure
applied. This was not a problem when using OWA operators where ties do not affect the aggregated values.
In the case of aggregating fuzzy preference relations, when using IOWA operators, we propose a sequential
procedure for GDM problems, different to the one proposed by Yager and Filev in [27].

4.1. A procedure to deal with ties using IOWA operators

The procedure is applied in three steps, as follows:

1. If the GDM problem is heterogeneous then the I-IOWA operator is applied; if not the C-IOWA operator is
applied.

2. If an I-IOWA operator has been applied in 1 then the ordering of the equally important information is
induced based upon their respective consistency index values (C-IOWA). If a C-IOWA operator has been
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applied in 1 then the ordering of the equally consistent information is induced based upon their respective
relative preference values (P-IOWA).

3. Finally, if ties are still present then the ordering is induced based upon the values of the argument variable,
i.e., the usual OWA operator is applied.
4.2. Selection process

We suppose that we have a group of experts, E = {e1, . . . ,em}, which provide preferences about a set of
alternatives, X = {x1, . . . ,xn}, by means of the fuzzy preference relations, fP 1; . . . ; P mg; P k ¼
½pk

ij�; pk
ij 2 ½0; 1�, which are additive reciprocal, i.e., pk

ij þ pk
ji ¼ 1; 8i; j; k.

1. Aggregation phase: Obtaining a collective fuzzy preference relation.
From the set of m individual fuzzy preference relation {P1, . . . ,Pm} we derive the collective preference rela-
tion P c ¼ ðpc

ijÞ. Each value pc
ij is calculated as follows:

(a) If the GDM problem is heterogeneous then
pc
ij ¼ UI

QðhlIðe1Þ; p1
iji; . . . ; hlIðemÞ; pm

ijiÞ:

(b) If the GDM problem is homogeneous then

pc
ij ¼ UC

Qðh1� CI1; p1
iji; . . . ; h1� CIm; pm

ijiÞ:

The IOWA operator reflects the fuzzy majority calculating its weights by means of the fuzzy linguistic
quantifier Q.
If ties appear then the above procedure is applied.
These collective preference values represent the preference of one alternative over another for the majority
(Q) of the more important or (and) consistent experts.

2. Exploitation Phase: Choosing the best alternative(s).
At this point, in order to select the alternative(s) ‘‘best’’ acceptable for the majority (Q) of the experts we
apply to the collective preference relation the quantifier guided dominance choice degree and obtain for
every alternative, xi, a value, QGDDi, that quantify the dominance that one alternative has over all the oth-
ers in a fuzzy majority sense (Q 0):
QGDDi ¼ UP
Q 0 ðh�pc

i1; p
c
i1i; . . . ; h�pc

in; p
c
iniÞ;

using the notation as in Definition 5.
3. Finally, the solution set of alternatives of the GDM problem is
X sol ¼ fxijxi 2 X ; QGDDi ¼ max
j

QGDDjg:
Example 6. Suppose the same set of experts and alternatives of Example 4. Suppose that the importance
degrees of these four experts are I = (2.4,2.4,1.1, 2.1), showing a tie between the experts e1 and e2. Using their
respective consistency index values, 1 � CI1 = 0.4 and 1 � CI2 = 0.86 respectively, we get the final induced
ordering of the four experts {e2,e1,e4,e3}. We call this aggregation operator as the importance consistency
induced weighted averaging (IC-IOWA) operator.

1. The collective preference relation obtained using the fuzzy linguistic quantifier ‘‘most of’’ is
P c ¼ 0:55 � P 2 þ 0:23 � P 1 þ 0:15 � P 4 þ 0:07 � P 3 ¼

0:5 0:38 0:65 0:26

0:62 0:5 0:64 0:43

0:35 0:36 0:5 0:13

0:74 0:56 0:87 0:5

0
BBBBBB@

1
CCCCCCA;
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whose elements represent the preference of one alternative over another for ‘‘most of’’ the more important
and consistent experts.

2. The dominance guided choice degrees obtained using the fuzzy linguistic quantifier ‘‘most of’’, with the cor-
responding weighting vector (0.5,0.21,0.16, 0.13), are:
QGDD ¼ ð0:52; 0:58; 0:4; 0:77Þ:

These values represent the dominance of one alternative over ‘‘most of’’ the rest, for ‘‘most of’’ the more
important and consistent experts.

3. Clearly, the solution set is: Xsol = {x4}.
Note 9. Although the P-IOWA operator when applied to just one fuzzy preference relation gives the same
result that the regular OWA operator, this is not the case when applied to a set of fuzzy preference relations.
The following exemplifies the differences between both operators:

Suppose two equally important experts provide the following preference relations:
P 1 ¼

0:5 0:6 0:35 0:8

0:4 0:5 0:25 0:7

0:65 0:75 0:5 0:95

0:2 0:3 0:05 0:5

0
BBB@

1
CCCA; P 2 ¼

0:5 0:4 0:2 0:15

0:6 0:5 0:3 0:25

0:8 0:7 0:5 0:45

0:85 0:75 0:55 0:5

0
BBB@

1
CCCA;
which have the same consistency index. If we aggregate them using the regular OWA operator we have the
collective preference relation
P c
OWA ¼

0:5 0:555 0:32 0:746

0:555 0:5 0:287 0:636

0:761 0:736 0:5 0:862

0:785 0:68 0:529 0:5

0
BBB@

1
CCCA;
while if we aggregate them using the P-IOWA operator then we get:
P 1 ¼

0:222 0:267 0:156 0:356

0:216 0:27 0:135 0:378

0:228 0:263 0:175 0:333

0:19 0:286 0:048 0:476

0
BBBB@

1
CCCCA; P 2 ¼

0:4 0:32 0:16 0:12

0:364 0:303 0:182 0:152

0:327 0:286 0:204 0:184

0:321 0:283 0:208 0:189

0
BBBB@

1
CCCCA;

P c
P-IOWA ¼

0:5 0:452 0:243 0:712

0:558 0:5 0:288 0:63

0:765 0:714 0:5 0:851

0:715 0:431 0:501 0:5

0
BBBB@

1
CCCCA:
We observe that the results are different. For example, the collective value pc
12 with the regular OWA

aggregation
pc
12 ¼ w1 � p1

12 þ w2 � p2
12 ¼ 0:77 � 0:6þ 0:23 � 0:4 ¼ 0:56
is closer to the value provided by the first expert which is in first place in the ordering used in the aggregation;
while in the P-IOWA aggregation
pc
12 ¼ w1 � p2

12 þ w2 � p1
12 ¼ 0:74 � 0:4þ 0:26 � 0:6 ¼ 0:45
is closer to the value provided by the second expert, which is now in first place in the ordering induce by the
relative preference values associated to each one of the preference values to aggregate. Although 0.6 is greater
than 0.4, 0.4 is the greatest value in its corresponding row and have a higher relative preference contribution to
the total preference of the alternative x1 for the second expert than 0.6 has for the first expert. Therefore, the
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use of the P-IOWA operator can be very useful in tie situations when we have equally important and equally
consistent information.
5. Reciprocity and consistency properties of the collective fuzzy preference relation

In GDM models we normally assume that the fuzzy preference relations are reciprocal. However, it is well
known that reciprocity is not generally preserved after aggregation is carried out in the resolution process [2].
In Example 3 the collective fuzzy preference relation obtained, using the I-IOWA operator, was reciprocal and
the one obtained in Example 4, using the C-IOWA operator, was also reciprocal. However, the one obtained
in Example 5 by applying the P-IOWA was not reciprocal.

In what follows, we will show that IOWA operators acting as WA operators maintain both the reciprocity
and the consistency properties. On the other hand, the IOWA operators acting as OWA operators do not gen-
erally maintain these properties as shown by Example 5 and in [2], where we proved that the subclass of OWA
operators do not generally maintain, in the aggregation process, the reciprocity and consistency properties.

5.1. Reciprocity property

If a group of experts, E = {e1, . . . ,em}, provides preferences about the alternatives, X = {x1, . . . ,xn}, by
means of reciprocal fuzzy preference relations, {P1, . . . ,Pm}, pk

ij þ pk
ji ¼ 1; 8i; j; k, and if {u1, . . . ,um} is a set

of order inducing (importance, consistency) values associated to the set of experts, then the collective prefer-
ence relation, P c ¼ ðpc

ijÞ obtained by using an IOWA operator UQ guided by a fuzzy linguistic quantifier Q is
also reciprocal.

Indeed, on the one hand,
pc
ij ¼ UQðhu1; p1

iji; . . . ; hun; pm
ijiÞ ¼

Xm

k¼1

wk � prðkÞ
ij ;
being r : f1; . . . ; ng ! f1; . . . ; ng a permutation such that ur(k) P ur(k+1), " k = 1, . . . ,n � 1. On the other
hand, it is clear that
pc
ji ¼ UQðhu1; p1

jii; . . . ; hun; pm
jiiÞ ¼

Xm

k¼1

wk � prðkÞ
ji ¼

Xm

k¼1

wk � ð1� prðkÞ
ij Þ ¼ 1�

Xm

k¼1

wk � prðkÞ
ij ¼ 1� pc

ij
and thus Pc verifies the reciprocity property.

5.2. Consistency property

If the set of fuzzy preference relations are additive consistent [10], i.e.,
pk
ij þ pk

jl þ pk
li ¼

3

2
; 8i; j; l 2 f1; . . . ; ng; k 2 f1; . . . ;mg
and Pc = UQ(hu1,P1i, . . . ,hun,Pmi), then
pc
ij þ pc

jl þ pc
li ¼

Xm

k¼1

wk � prðkÞ
ij þ

Xm

k¼1

wk � prðkÞ
jl þ

Xm

k¼1

wk � prðkÞ
li ¼

Xm

k¼1

wk � prðkÞ
ij þ prðkÞ

jl þ prðkÞ
li

� �

¼
Xm

k¼1

wk �
3

2
¼ 3

2
;

which proves the additive consistency of Pc.

Note 10. The above proof of reciprocity and consistency of the collective fuzzy preference relation is based
upon the assumption that the order inducing values are unchanged.
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6. Concluding remarks

In this paper we have studied the use of the IOWA operators in the aggregation of fuzzy preference rela-
tions in GDM problems. We have defined three IOWA operators: the I-IOWA operator, which applies the
ordering of the argument values based upon the importance of the information sources; the C-IOWA opera-
tor, which applies the ordering of the argument values based upon the consistency of the information sources;
and the P-IOWA operator, which applies the ordering of the arguments based upon the relative preference
associated to each one of them. We have also given a sequential procedure to deal with ties in respect to
the ordering induced by the application of one of these IOWA operators, that consists of a sequential appli-
cation of the above IOWA operators. The application of this sequential procedure induces an ordering of the
arguments to aggregate without ties, or in the extreme case of their presence these do not affect the aggregated
result. A Selection Process for GDM Problems Based on Fuzzy Majority and IOWA Operators was presented.
Finally, we have shown that the collective fuzzy preference relation verifies the reciprocity and consistency
properties under the assumption that the order inducing values are unchanged.

The main advantage of this proposal is the inclusion of particular orderings of fuzzy preference relations in
the aggregation phase of heterogeneous and/or homogeneous GDM problems. In this way, we can take into
consideration the reliability of the sources of information (experts) according to either their importance
degrees (heterogeneous context) or consistency levels (homogeneous context) using IOWA operators.
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