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Abstract Different tasks in forensic anthropology
require the use of three-dimensional models of foren-
sic objects (skulls, bones, corpses, etc) captured by 3D
range scanners. Since a whole object cannot be com-
pletely scanned with a single image, multiple scans from
different views are needed to supply the information
to construct the 3D model. Range image registration
methods study the accurate integration of the differ-
ent views acquired by range scanners, with pair-wise
approaches progressively processing every adjacent pair
of scanned views until reconstructing the whole 3D
model of the object. Our proposal is based on the adap-
tation of our previous work (Cordon et al, IEEE
Conference on Evolutionary Computation, pp 2738–
2744, 2005 in Pattern Recognit Lett 27(11); 1191–1200,
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2006) in order to apply the scatter search evolutionary
algorithm to pair-wise image registration in forensic
anthropology applications. To measure the performance
of this adaptation, we design an experimental setup con-
sidering some of the most recent and accurate evolu-
tionary techniques for the problem, as well as one skull
from our Physical Anthropology Lab. Two additional
volumes, commonly used in other pair-wise range IR
contributions, have also been considered to complement
the comparison of results among the proposals.

1 Introduction

Forensic anthropology is best conceptualized more
broadly as a field of forensic assessment of human skele-
tonized remains and their environments (Iscan 1981a,b).
This assessment includes both the identification of the
victims’ physical characteristics and cause and manner of
death from the skeleton (Krogman and Iscan 1986). This
way, the most important application of forensic anthro-
pology is the identification of human beings from their
skeletal remains.

The most relevant information to be obtained for the
identification task is the “virtual model” of the physi-
cal object itself, so that it is an accurate model of the
real object we are trying to represent. Since a whole
object cannot be completely scanned with a single image,
multiple scans from different views are required to sup-
ply the information needed to construct the 3D model
(Fig. 1). Therefore, the more accurate the alignment of
the views the better the reconstruction of the object.

When dealing with forensic anthropology objects,
anthropologists do not usually know how to calibrate the
scanner or put into correspondence the different views
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Fig. 1 Arrangement of objects on a Konica-Minolta© rotary
stage by the team of the Physical Anthropology Lab

of the acquired object. An automatic model-building
method would be really helpful for them.

Image registration (IR) is the task that aims at find-
ing the optimal point/surface correspondence/overlap-
ping between two (or more) images, captured in a local
coordinate system by a specific acquisition procedure,
i.e. from different points of views (multiple views), at
different times, and by different sensors. Thus, the key
idea of the IR process is focused on achieving the trans-
formation (rotation, translation, etc.), noted as f, that
places different images in a common coordinate system
bringing the points as close together as possible by min-
imizing the error of a given metric of resemblance.

In Pair-wise range IR, the process starts by firstly reg-
istering two different views of the object, goes on with
the next pair, and so on until reconstructing the whole
3D model of the object. The most important issue is
to minimize the number of views to reduce error accu-
mulation in the 3D model and because data acquisition
is expensive (Ikeuchi and Sato 2001). Therefore, it is
fundamental to adopt a proper and robust technique to
align the views in a common coordinate frame, to avoid
model distortion in a subsequent surface reconstruction
stage (Silva et al. 2005), assuring a minimum overlaying
between adjacent views.

In this work, we try to adapt the scatter search (SS)
(Laguna and Martí 2003) evolutionary algorithm (EA)
to solve the 3D pair-wise IR problem related to the 3D
volume reconstruction in forensic anthropology applica-
tions. Unlike classical genetic algorithms (GAs)
(Michalewicz 1996), SS components are designed con-
sidering a deterministic non-randomized scenario,
encouraging a tradeoff between search intensification
and diversification. Hence, our intention is not only to
adapt SS to a specific scenario but also to provide a more

robust and more accurate technique than those in the
IR literature (Chow et al. 2004, Lomonosov et al. 2006).
A practical application of a complex 3D model recon-
struction of a skull from our Physical Anthropology Lab
will reveal its success. We will also consider two other ob-
jects commonly used in the area in order to complement
the comparison of results among the different propos-
als, although the complexity introduced by the skull is
significantly much higher than the rest of objects as we
will describe in Sect. 4.1.

The paper structure is as follows. In Sect. 2 we give
some pair-wise IR basics. Section 3 describes our SS
proposal and its adaptation to tackle pair-wise IR for
3D model reconstruction in forensic applications, which
is tested in Section 4 over different objects, confronted
with some of the most accurate and recent evolutionary
proposals in the pair-wise IR literature (Chow et al.
2004, Lomonosov et al. 2006). Finally, in Sect. 5 we
present some conclusions and new open lines for future
works.

2 3D modeling by pair-wise IR methods

This section is devoted to expose different concepts on
3D modeling using pair-wise IR methods. Once we have
introduced 3D modeling basics in Sect. 2.1, we will de-
scribe the pair-wise range IR modality in Sect. 2.2.

2.1 3D modeling basics

Recently, the computer vision community has a growing
interest in techniques to build 3D models of real-world
objects and scenes without requiring humans to man-
ually produce these models using laborious and error-
prone CAD-based approaches, having a deep interest
in many practical applications, such as visual inspection,
reverse engineering, forensic identification, etc.

In range IR, several difficulties arise due to: (1) the
object shape acquisition regarding the illuminance con-
ditions (recovering noisy shapes); (2) the presence of
occlusion (region of the scanned object shape only pres-
ent in one of the two consecutive scanned images); (3)
the fact that the object to be scanned has either a glob-
ally symmetric shape or the symmetry appears along
the shape of two consecutive views; and (4) the ab-
sence of an a priori known transformation or, at least,
an approximated motion between consecutive scanned
images (mainly when the scanner’s rotary stage is not
present or cannot be used). In many cases when these
drawbacks arise, the reconstruction procedure is forced
to be performed by a manual and time consuming range
IR process without ensuring the best possible outcomes.
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Due to the latter, several approaches for the auto-
matic registration of the scanned views have been pro-
posed in the last few years. In pair-wise range IR, the
object modeling process starts by firstly registering two
adjacent views, goes on with the next pair, and so on,
building a partially reconstructed shape each time. Its
main drawback is that it iteratively accumulates a resid-
ual error along the registration process, however it does
not need all scans to be done to operate [as multi-view
range IR approaches (Blais and Levine 1995). Thus,
there is an increasing interest on new proposals improv-
ing pair-wise methods in the last few years.

2.2 Pair-wise IR

After acquiring a set of range images (scans), a pre-
alignment transformation or coarse alignment (a good
approximation of the real one) is generally known. Such
information is achieved either from some type of posi-
tional sensors (i.e. a rotary stage) or, if it is not possible,
via an IR algorithm as a global search method. Then, as a
fine-tuning step, a final refinement is applied, by means
of a local search process, typically by using the com-
monly known Iterative Closest Point (ICP) algorithm
(Besl and McKay 1992). Many variants of this method
proposing a better performance (Fusiello et al. 2002)
have been presented (Liu 2004, Masuda and Yokoya
1995, Okatani and Deguchi 2002, Zhang 1994).

Unfortunately, every of these fine-tuning registration
methods still assume the starting from an initial near-
optimal transformation and concentrate on improving it.
However, as said, this is not always the case. There have
been many proposals that can provide a good starting
point without requiring an initial guess, known as pre-
alignment IR algorithms and based on global search-
based methods. To do so, two different approaches to
the IR problem can be adopted (Cordón et al. 2005b,
Cordón and Damas 2006, Cordón et al. 2006a). On the
one hand, the search in the matching space approach
guides the process seeking the best correspondences of
common features previously extracted from the images
to be registered. On the other hand, when the search
is guided by the registration transformation parameters
(i.e. search in the transformation parameters space), the
best tuning of the parameters defining the transforma-
tion relating the images is wanted.

Among the matching space pre-alignment proposals,
Chen et al. (1998) proposed the RANSAC method based
on finding the best three point correspondences between
two range images in order to obtain an estimation of the
transformation parameters (three points are the mini-
mum required pairs in order to compute the rigid mo-
tion between both views). This point-matching search

is iterated for several three points in the scene view in
order to obtain different trial transformations, until a
stop criterion is reached and the best overall solution
is returned. The outcomes of the method are of good
quality and, theoretically, the precision of the results
increase with the resolution of the image. A quite differ-
ent approach has been proposed in Jonhson and Hebert
(1999) that makes use of spin images, 2D images char-
acterizing a point using the information of the surface
near to it. That is, for a given point, a normal vector
is computed approximating the points of the local sur-
face with a plane. Then, two distances are computed in
order to determine the spin image and they are used to
construct a table where each cell contains the number of
points that belong to this region. When point correspon-
dences from spin images are found, false matchings are
removed using the mean and the variance of the errors.
The IR problem is solved by using the best correspon-
dences found.

Another matching-based approach to solve the IR
problem was proposed by us in Cordón and Damas
(2006), considering the use of the iterated local search
metaheuristic (Lourenço et al. 2003). To do so, IR is first
re-defined as a combinatorial optimization problem,
then the use of image-specific information to guide the
search in the form of an heuristic function is considered,
and finally an iterated local search procedure for the
feature matching problem is introduced.

The main problem of the previous IR methods is the
high computational cost to find correspondences, when
significant image data must be handled, and particu-
larly when features are extracted to be matched. To
solve this limitation, other pre-alignment IR algorithms
focused on the transformation search space approach
have been proposed. Specifically, the application of sev-
eral emerging EAs to the IR optimization process has
caused an outstanding interest in order to solve the latter
problems thanks to their global optimization techniques
nature (Chow et al. 2004, Cordón et al. 2006b, Garai and
Chaudhuri 2002, Han et al. 2001, He and Narayana 2002,
Lomonosov et al. 2006, Yamany et al. 1999).

In this work, we focus our attention to the evolution-
ary proposals devoted to pair-wise IR. Lomonosov et al.
(2006) the authors proposed an integer-coded GA where
each registration transformation parameter has to be
mapped by normalization onto a real-valued range for
evaluating the fitness function. Simple one-point cross-
over and both shift and replacement mutation opera-
tors were considered. The tournament-based selection
together with an elitist scheme was used. In order to im-
prove the efficiency of the algorithm, the proposal makes
a pre-processing step (before registration) by randomly
resampling both input images, maintaining 100 and 1,000
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image points, respectively. Meanwhile, the use of GAs
with more suitable components to the current EC frame-
work is considered in Chow et al. (2004), such as a real
coding scheme and a sophisticated restart mechanism
(“dynamic boundary”). In spite of these improvements,
there are some drawbacks in terms of accuracy, since
the authors work with a smaller, randomly selected data
set from images with a huge amount of data. Besides, al-
though the algorithm aims at getting a quick registration
estimation with the latter procedure, the efficiency could
be reduced since it needs to perform a sort operation for
each fitness function evaluation.

Hence, in this paper we will study the robustness
of the mentioned EC-based pre-alignment IR contri-
butions, as well as our SS-based IR proposal adapted to
range images, by evaluating the quality of their outcomes
as proper initial estimations for the subsequent refine-
ment step. Their performance for the final 3D model-
ing procedure will be evaluated in a complex forensic
anthropology scenario, as well as in two objects classi-
cally used in pair-wise IR contributions such as
(Lomonosov et al. 2006, Silva et al. 2005).

3 Scatter search for 3D pair-wise range IR

The aim of our proposal is finding a near-optimal geo-
metric transformation, competitive enough considering
both robustness and accuracy criteria, when comparing
to state-of-the-art methods. To do so, we will use an
efficient EA named SS (Laguna and Martí 2003) to first
achieve a coarse pair-wise IR estimation. In particular, if
the scanning device calibration is not known, this coarse
pre-alignment is mandatory. Then, we will carry out a
refinement step by using a local search I-ICP (Liu 2004)
algorithm.

In this section, we start by introducing the pair-wise
IR framework where our SS-based proposal is located
(Sect. 3.1). Fundamentals of SS are described in Sect. 3.2.
The SS coding scheme and objective function are intro-
duced in Sect. 3.3. Finally, the composition of the five
methods related to any SS design is detailed in Sect. 3.4.

3.1 SS-based pair-wise IR

The pair-wise IR framework requires the four follow-
ing components: two adjacent Views of the 3D object,
V1 = {p1, p2, . . . , pN} and V2 = {p ′

1 , p ′
2 , . . . , p ′

M}, with
pi, p ′

j being the points from every view; a Registration
Transformation f , which is a parametric function relat-
ing both views; a Similarity metric function F, in order
to measure a qualitative value of closeness between the
views; and an Optimizer which looks for the optimal

transformation within the definition interval of each f
parameter.

Likewise, IR is the process of finding the optimal spa-
tial transformation achieving the best fitting (measured
using F) between the points in every view, F(f (pi), p ′

j ),
where (f (pi), p ′

j ) is a point matching. Such a transfor-
mation estimation is interpreted into an iterative opti-
mization process in order to properly explore the search
space (Fig. 2).

Note that, as we mentioned in Sect. 2.2, this is just
a pre-alignment process inside the whole pair-wise IR
framework. In order to perform a fine-tuning of the SS
results, we will apply a final step involving a local search
using I-ICP (Liu 2004) to achieve the final f estimation
(Fig. 3).

We can sort the different kinds of transformations f
according to the maintenance (or not) of an established
relation among the points before and after applying it,
i.e., if f is a rigid transformation, as the ones considered
in this paper, every edge is preserved after it is applied.
Hence, a rigid transformation can be split in two ones:
translation and rotation. Other examples of f transfor-
mations are the similarity, affine, projective, and elastic
ones (Brown 1992).

3.2 Basis of scatter search

Scalter search fundamentals were originally proposed
by Fred Glover in Glover (1977) and have been later
developed in some texts like (Laguna and Martí 2003).
The main idea of this technique is based on a systematic
combination between solutions (instead of a random-
ized one like that usually done in GAs) taken from a
considerably reduced evolved pool of solutions named
Reference set (between five and ten times lower than
usual GA population sizes). This way, an efficient and
accurate search process is encouraged thanks to the

Fig. 2 Image registration framework

Fig. 3 Pair-wise image registration framework
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latter and to other innovative components that we will
describe later. The general SS approach is graphically
shown in Fig. 4.

3.3 Coding scheme and objective function

As coding scheme, the 3D rigid transformation f is
determined fixing seven real-coded parameters which
will be the ones we will look for. That is: a rotation
R = (θ , Axisx, Axisy, Axisz) and a translation
t = (tx, ty, tz), where θ and Axis define the 3D rotation
given by an angle and an axis, respectively. Moreover,
for a more suitable rotation representation, we consider
quaternions instead of the three classical Euler matrices
representation that suffers from the problem of gimbal
lock (Shoemake 1985).

In this contribution, we consider the usual Similar-
ity metric found in the IR literature (Chow et al. 2004,
Lomonosov et al. 2006), i.e., the objective function
(noted as F) corresponds to a minimization problem,
as shown as follows:

F(f , Iv1 , Iv2) =
∑N

i=1 ‖ (Rpi + t) − p′
j ‖2

N
(1)

where Iv1 and Iv2 are two adjacent views of the 3D object;
f is the transformation encoded in the evaluated solu-
tion; pi is the ith 3D point from Iv1 and p ′

j is its corre-
sponding closest point in Iv2 , and N is the number of
points in view Iv1 .

3.4 SS-based pair-wise IR implementation

The fact that the mechanisms within SS are not restricted
to a single uniform design allows the exploration of stra-
tegic possibilities that may prove effective in a particular

Fig. 4 The control diagram of SS

implementation. Of the five methods in the SS method-
ology, only four are strictly required. The Improvement
Method is usually needed if high quality outcomes are
desired, but a SS procedure can be implemented with-
out it. Next, we will briefly describe the specific design
of each component of our SS-based pair-wise IR pre-
alignment method outlined in Fig. 5, where P denotes
the initial set of solutions generated with the Diversifica-
tion Generation Method (with Psize being the size of P),
the reference set is noted as RefSet (with b being its size,
usually significantly lower than Psize), and Pool is the
set of trial solutions constructed with the Combination
and Improvement Methods each iteration.

Diversification generation method: This method
makes use of a controlled randomization based on fre-
quency memory to generate an initial set P of Psize di-
verse solutions (Glover et al. 2003). We carry out this by
dividing the range of each variable (in our case, each one
of the seven rigid transformation parameters) into four
sub-ranges of equal size. A solution will be constructed
in two steps. First, a sub-range is randomly selected for
each variable, where the probability of choosing a sub-
range is inversely proportional to its frequency count.
Initially, the frequency count for each variable subrange
is set to one and the number of times a sub-range j
has been chosen to generate a value for variable i in a
solution is accumulated in frequency_count(i, j). Then,
as second step, a value is randomly generated within the
selected sub-range. Finally, the Improvement Method is
applied on the Psize solutions generated and the best b
of them compose the initial RefSet.

Improvement method: The Improvement Method is
based on Solis and Wets’ optimization algorithm
(Solis and Wets 1981), which has the advantage of not
requiring to compute the gradient direction in order to
operate. This classical local search algorithm uses fixed
variances which are initially and uniformly one. These
variances are used for probabilistically determining the
change to be applied on a particular state variable. They
are either doubled or halved during the run, depending
on the number of consecutive failed or successful moves.

Subset generation method: This method generates a
collection of solution subsets (noted as Subsets in Fig. 5)
of the reference set as a basis for creating new combined
solutions. In our implementation, the subsets are com-
posed of all the possible pairs of solutions in RefSet, so
b·(b−1)

2 different subsets are generated.
Solution combination method: It is based on the use

of the BLX-α crossover operator (Eshelman 1993), com-
monly used in real-coded GAs. This mechanism for com-
bination obtains a trial solution, x = (h1, . . . , hk, . . . , hl)

(with l = 7) being the number of parameters of the
rigid transformation and hk a given value for such kth
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Fig. 5 Pseudocode of the SS-based 3D IR optimizer

variable) from the two parent solutions x1 = (c1
1, . . . , c1

l )

and x2 = (c2
1, . . . , c2

l ), composing a given subset s (see
Fig. 5), by uniformly generating a random value for
each variable hk in the interval [cmin − I · α , cmax +
I · α], with cmax = max(c1

k, c2
k), cmin = min(c1

k, c2
k), and

I = cmax − cmin. Hence, the parameter α allows us to
make this crossover as disruptive as desired. Such com-
bination method was successfully incorporated to SS
in Herrera et al. (2006).

The solution obtained by the BLX-α is then selec-
tively optimized by the Improvement Method and
included in the Pool, as shown in Fig. 5.

Reference set update method: RefSet is updated to be
composed of the b best solutions in RefSet ∪ Pool fol-
lowing a static strategy (first, the Pool set is built and
then the updating is made) (Laguna and Martí 2003).

4 Experiments

We present a number of experiments to study the perfor-
mance of our proposal. As a benchmark, the results ob-
tained by our SS algorithm for the pair-wise IR problem
will be compared against those obtained by two other
evolutionary approaches: the fast real-coded dynamic
GA (DGA) introduced by in Chow et al. (2004), and
the proposal of Lomonosov et al. (2006) that considers
the integration of a GA with the trimmed iterated clos-
est point algorithm (GA–TrICP). The three algorithms
maintain their original form and just for the refinement
step the improved iterated closest point method (I-ICP)
(Liu 2004)1 is used in all of them in order to allow a fair
comparison of results.

1 I-ICP was improved by using a KD-tree data structure (Zhang
1994) in order to speed up the closest point computation.

4.1 Image registration problems considered

The most important problem tackled in this contribution
is the one considering a skull object (named “Skull”)
scanned in our Physical Anthropology Lab by using a
Konica-Minolta© 3D Lasserscanner VI-910 laser scan-
ner. Such importance is related to both the topic of our
proposal and the complexity of the problem. The diffi-
culty relies on different reasons:

– The high resolution of the scanner. Three differ-
ent views of the “Skull” volume have been con-
sidered: two lateral and a frontal one (see Fig. 6),
composed of 40,886, 42,515 and 40,255 points,
respectively. Considering around forty thousands
points is a challenge in terms of speed and accuracy
with respect to other pair-wise IR contributions. In
particular, this is important because our SS-based
pair-wise IR proposal does not discard any of these
points. As said, DGA and GA–TrICP randomly se-
lect a certain (small) amount of points and discard
the rest (Sect. 2.2).

– The reduced number of views. Following the indi-
cations in Ikeuchi and Sato (2001), Silva et al. (2005)
(see Sect. 1), we are considering a few views of
the object, in order to avoid error accumulation in
the 3D model reconstruction process. Nevertheless,
this leads us to tackle scenarios where the percent-
age of overlapping (considering both “Skulllateral1 ”
vs. “Skullfrontal” and “Skullfrontal” vs. “Skulllateral2 ”
IR problems) is minimum, thus raising the problem
complexity.

– The symmetry present in the scanned views. The
particular characteristics of the “Skull” object make
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Fig. 6 From left to right: “Skulllateral1 ”, “Skullfrontal” and
“Skulllateral2 ” views of the “Skull” forensic object

Fig. 7 Two views of the “Bird” object differing 20◦, inputs to
every pair-wise IR method

it a hard problem to face. The symmetry degree in
every pair of adjacent views is really high and it
causes that every pair-wise IR method tackling this
object is prone to fall in search space local minima.

Two other 3D objects, named “Bird” and “Angel”,
have also been considered2 in order to ease the com-
parison of our proposal since they are classically used
in many contributions to the topic such as (Lomonosov
et al. 2006, Silva et al. 2005). These objects have been
acquired with another Konica-Minolta© 3D Lassers-
canner VI-700 laser scanner. Specifically, two views of
the “Bird” object differing 20◦ have been considered
(Fig. 7), composed of 9,115 and 7,190 points, respec-
tively. Meanwhile, two views of the “Angel” object have
been used (differing 40◦) (see Fig. 8), comprised by
14,812 and 10,632 points, respectively.

Therefore, every EA will tackle four different pair-
wise IR problems: “Skulllateral1 ” versus “Skullfrontal”,
“Skullfrontal” versus “Skulllateral2 ”, “Bird” versus
“Bird20◦”, and “Angel” versus “Angel40◦”.

2 These objects are free accesible at http://sampl.ece.ohio-
state.edu/data/3DDB/RID/minolta/

Fig. 8 Two views of the “Angel” object differing 40◦, inputs to
every pair-wise IR method

4.2 Parameter settings

All the methods are run on a PC with an Intel Pen-
tium IV 2.6 MHz. processor. In order to avoid execution
dependence, one hundred different runs of each pair-
wise IR algorithm have been performed. Both DGA and
GA–TrICP use three Euler angles for their rotation rep-
resentation. Hence, every random rotation of DGA and
GA–TrICP is initialized considering a range [0◦, 360◦]
for the (X,Y,Z) axes. Meanwhile, the rotation of our
SS-based proposal is encoded using quaternions which
store both the rotation axis and angle and they have
demonstrated to be a more suitable rotation representa-
tion (Sect. 3.3). On the other hand, translation is initial-
ized considering the range [−10, 10], for all the methods.
The I-ICP refinement step is applied with the parameter
k set to 1.0.

For SS, the initial set P comprises Psize = 20 solu-
tions and the RefSet is composed of the b = 8 best of
them. BLX-α is applied with α = 0.3, while the Improve-
ment Method is selectively applied during 100 evalua-
tions each time.

In order to perform the experiments as fairly as pos-
sible, every EA considers the same objective function
(see Eq. 1), since we want to analyze the behavior of
the proposals under the same conditions. When dealing
with the “Bird” and “Angel” objects, the execution time
for all the EAs is set to 30 s, while the I-ICP maximum
number of iterations is 50. On the other hand, when con-
sidering the significantly more complex “Skull” foren-
sic object, the execution time for all the EAs is set to
80 s, while the I-ICP maximum number of iterations
is 150.
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4.3 Analysis of results

All the statistics in this section are based on a typical
error measure in the IR field, the Mean Square Error
(MSE), given by:

MSE =
∑N

i=1 ‖f (pi) − p ′
j ‖2

N

where f is the estimated registration function, pi are
the View1 points, and p ′

j are the View2 points matching
the scene ones (the closest to the formers), and N is the
number of points in view Iv1 .

Tables 1, 2 and 3 and Figs. 9, 10 and 11 show the
performance of the different pair-wise IR algorithms
applied, respect to the four pair-wise IR problems for
the three test objects considered.

In view of the results obtained, we can see how our
SS-based proposal achieves the most accurate results in
the minimum, maximum, mean and standard deviation
values. Although GA–TrICP and DGA obtain similar
results as regards the minimum values for the “Bird”
and “Angel” objects, as far as the problem complexity
is much higher with the “Skull” object (see Sect. 4.1),
SS outperforms them also with respect to the minimum
results. Moreover, our approach is significantly better
in terms of the really smaller mean values. The robust-
ness of the SS algorithm is shown by the lowest standard
deviation, which allows us to highlight its quick conver-
gence to high quality solutions in all the one hundred
runs performed.

When analyzing the reasons behind these good
results, we have to highlight other improvements intro-
duced in our proposal respect to the aforementioned
methods apart from the clear differences in design. Since
one of the most time consuming tasks in the IR process is

Table 1 MSE of the 100 runs corresponding to the “Bird” object

“Bird”

Min. Max. Mean SDev.

SS 0.186 11.359 0.302 1.111
GA–TrICP 0.186 11.455 0.441 1.455
DGA 0.186 11.572 0.715 2.262

Table 2 MSE of the 100 runs corresponding to the “Angel” object

“Angel”

Min. Max. Mean SDev.

SS 1.312 31.911 1.626 3.043
GA–TrICP 1.312 43.277 7.066 11.796
DGA 1.312 49.034 6.848 12.496

the closest point computation (from every transformed
point in the first view of the 3D object to its correspond-
ing one in the second view) it is worth analyzing the
way this task is performed. On the one hand, SS takes
advantage of a distance map data structure to speed up
the closest point computation (Yamany et al. 1999). Such
data structure consists of superimposing a 3D fine grid
on the 3D space such that the two views of the object
lie inside the grid. Each cell holds an index of its closest
point in the model set and they are filled in only once
at the beginning of the registration process. Hence, for
the N closest point computations to be performed cor-
responding to the N points in Iv1 , the worst-case search
time is O(N) since the time is constant for each individ-
ual closest point computation.

Meanwhile, both DGA and GA–TrICP use a slower
KD-tree data structure (Zhang 1994), which is a gen-
eralization of bisection in one dimension to k dimen-
sions. In our case, k = 3 and a 3-D tree is constructed.
The worst-case search time to find a point in a binary
tree is known to be O(log(N)). Nevertheless, as dem-
onstrated in Preparata and Shamos (1986) (pp. 77), the
worst-case search time of every closest-point compu-
tation is O(N2/3) for a 3-D tree. Therefore, for the N
closest point computations to be carried out it becomes
O(N · N2/3) = O(N5/3).

Thus, our proposal outperforms the rest in terms of
search time. However, this is not of course the only rea-
son explaining our proposal best performance. Notice
that, opposite to the other two approaches, SS uses all
the points in every image, there is not a need of previ-
ously selecting a certain amount of points, taking advan-
tage of the whole available information and avoiding the
randomness introduced in the selection process applied
by the other approaches. Hence, it is clear how the good
choice of the evolutionary components of our SS-based
pair-wise IR proposal is what allows us to process this
large amount of information in so little time that it is
possible to achieve high quality results.

Therefore, we are achieving one of the aims of our
proposal, i.e. not only to adapt SS to a specific scenario
but also to provide a more robust and more accurate
technique than those in the literature (Sect. 1). Never-
theless, note that the mean value corresponding to our
SS-based proposal is more than ten times higher when
tackling the last pair-wise IR problem (“Skullfrontal” vs.
“Skulllateral2 ”). This means that we are obtaining a really
good approximation to the global optimum in certain
runs, but there are still others where the MSE value is
not so good.

Finally, in order to highlight the usefulness of our
proposal in forensic anthropology, we present the recon-
struction results of the “Skull” object in Fig. 12. We can



A scatter search-based technique 827

Table 3 MSE of the 100 runs corresponding to the “Skull” object

“Skull” “SkullV1 ” vs. “SkullV2 ” “SkullV3 ” vs. “SkullV2 ”

Min. Max. Mean SDev. Min. Max. Mean SDev.

SS 5.671 428.567 99.218 146.526 60.799 1322.898 1217.931 251.333
GA–TrICP 199.322 3404.503 1195.494 647.260 184.379 8436.275 2305.035 1518.636
DGA 97.298 9246.161 1394.964 1405.463 300.572 8370.180 2564.305 1659.237

Fig. 9 From left to right: best alignment results of the “Bird”
object achieved by SS, GA–TrICP and DGA

Fig. 10 From left to right: best alignment results of the “Angel”
object achieved by SS, GA–TrICP and DGA

Fig. 11 From left to right: best alignment results of the “Skull” ob-
ject achieved by SS, GA–TrICP and DGA. First row corresponds
to the “Skulllateral1 ” vs. “Skullfrontal” first pair-wise problem. Sec-
ond row corresponds to the “Skullfrontal” versus. “Skulllateral2 ”
second pair-wise problem

Fig. 12 From left to right: best reconstruction results of the
“Skull” object from SS, GA–TrICP and DGA

see that SS clearly outperforms the latter evolutionary
approaches, since the appearance of the 3D skull model
obtained applying SS to the pair-wise IR reconstruction
is more accurate than those from GA–TrICP and DGA.
We find different reasons for such behavior:

– DGA and GA–TrICP are based on weak EA designs
(Cordón et al. 2006a). If the overall EA framework
is not the best, the results (specially in complex sce-
narios) may be not the most appropriate.

– As said, DGA and GA–TrICP are based on a ran-
dom selection of points, which means that not all
the data is been used. If the selected points corre-
spond to a small region, local optima will be likely
achieved.

5 Concluding remarks and future works

In this paper, we have adapted the use of a novel evolu-
tionary framework, SS, to the pair-wise IR problem han-
dling objects both from the literature and from forensic
anthropology applications. Having in mind the inter-
esting properties and the recent successful outcomes
achieved by the former strategy in other IR problems
(Cordón et al. 2005a, Cordón et al. 2006a), our aim was
at adapting the methodology to the pair-wise IR frame-
work. Beyond this basic objective, we provided a more
robust and more accurate technique than those in the
literature. To do so, state-of-the-art proposals (Chow
et al. 2004, Lomonosov et al. 2006 were considered as a
benchmark of ours which has demonstrated its accuracy
and robustness in the different experiments performed.
Such good global behavior for the 100 runs performed
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leads us to try to extend our approach to the IR problem
in other real computational environments. Nevertheless,
we realize there are still different shortcomings in the
SS-based 3D model reconstruction. We aim at solving
them if SS is able to take advantage of heuristic infor-
mation previously extracted from the different views of
the object (Cordón et al. 2005b). Other open lines are
the improvement of the similarity metric to be used. In
particular, it would be interesting to incorporate that
from Silva et al. (2005) to our proposal.
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