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Summary. Heating, Ventilating and Air Conditioning (HVAC) Systems are equip-
ments usually implemented for maintaining satisfactory comfort conditions in build-
ings. The design of Fuzzy Logic Controllers (FLCs) for HVAC Systems is usually
based on the operator’s experience. However, an initial rule set drawn from the ex-
pert’s experience sometimes fail to obtain satisfactory results, since inefficient or
redundant rules are usually found in the final Rule Base. Moreover, in our case,
the system being controlled is too complex and an optimal controller behavior is
required.

Rule selection methods directly obtain a subset of rules from a given fuzzy rule
set, removing inefficient and redundant rules and, thereby, enhancing the controller
interpretability, robustness, flexibility and control capability. On the other hand,
different parameter optimization techniques could be applied to improve the system
accuracy by inducing a better cooperation among the rules composing the final Rule
Base.

In this chapter, we present a study of how several tuning approaches can be
applied and combined with a rule selection method to obtain more compact and
accurate FLCs concerning energy performance and indoor comfort requirements of
a HVAC system. This study has been performed considering a physical modelization
of a real test environment.

Keywords: HVAC systems; Fuzzy logic controller; tuning approaches ; rule
selection methods; parameter optimization techniques.

1 Introduction

HVAC Systems are equipments usually implemented for maintaining satis-
factory comfort conditions in buildings. The energy consumption as well as
indoor comfort aspects of ventilated and air conditioned buildings are highly
dependent on the design, performance and control of their HVAC systems and
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equipments. Therefore, the use of appropriate automatic control strategies, as
FLCs [18, 38, 39], for HVAC systems control could result in important energy
savings when compared to manual control, specially when they explicitly try
to minimize the energy consumption [1, 5, 31, 43].

In current systems [5, 7, 22, 31, 37, 43, 44, 51, 52], several criteria are
individually considered, thermal regulation, energy consumption or comfort
improvement (the next section includes a deeper explanation of these works).
However, different criteria must be considered jointly in order to reduce the
energy consumption maintaining a desired comfort level. In our case, five
criteria will be optimized and 17 variables are considered by the FLC. Fur-
thermore, control systems in buildings are often designed using rules of thumb
not always compatible with the controlled equipment requirements and energy
performance. Therefore, the different involved criteria should be optimized for
a good performance of the HVAC system.

A way to solve these problems is removing rules that degrade the system
behavior [32, 33, 36] (rule selection methods). Other technique that improves
the FLC performance is the tuning of parameters. Two different tuning ap-
proaches could be considered:

• The classical tuning: This approach consists of a tuning of the parameters
that define the linguistic labels [24, 28, 34, 35, 40]. In this way, considering
triangular-shaped membership functions three parameters are optimized.

• The lateral tuning: This technique was presented in [4], to reduce the size
of the search space in complex problems, since the 3 parameters considered
per label are reduced to only one symbolic translation parameter.

The smart combination of rule selection with tuning techniques can im-
prove even more the system behavior [3, 23]. In this work, we present a study
of how these tuning approaches can be applied and combined with a rule se-
lection method to obtain more compact and accurate FLCs concerning energy
performance and indoor comfort requirements of a HVAC system.

This contribution is arranged as follows. In the next section, the basics of
the HVAC systems control problem are presented, studying how FLCs can be
applied to it. In Section 3, the proposed real test site and the control objectives
are introduced, establishing the concrete problem that will be solved. Section 4
introduces the rule selection, the classical and the lateral tuning. Section 5
describes the different evolutionary post-processing algorithms. Experimental
results are shown in Section 6. Finally, Section 7 points out some conclusions.

2 Heating, Ventilating, and Air Conditioning Systems

A HVAC system is comprised by all the components of the appliance used to
condition the indoor air of a building. The HVAC system is needed to provide
the occupants with a comfortable and productive working environment which



Fuzzy Rule Reduction and Tuning of Fuzzy Logic Controllers.. 91

satisfies their physiological needs. Therefore, in a quiet and energy-efficient
way at low life-cycle cost, a HVAC system should achieve two main tasks:

• To dilute and remove emission from people, equipment and activities and
to supply clean air (Indoor Air Quality).

• To maintain a good thermal quality (Thermal Climate).

There are no statistical data collected on types and sizes of HVAC systems
delivered to each type of building in different European countries. Therefore,
to provide a HVAC system compatible with the ambiance is a task of the
Building Energy Management System (BEMS) designer depending on its own
experience. In Figure 1, a typical office building HVAC system is presented.
This system consists of a set of components to be able to raise and lower the
temperature and relative humidity of the supply air.

A - This module mixes the return and the outside air to provide supply air, and also closes
outside air damper and opens return air damper when fan stops. B - It is a filter to reduce the
outside air emissions to supply air. C - The preheater/heat recovery unit preheats the supply
air and recovers energy from the exhaust air. D - A humidifier raising the relative humidity
in winter. E - This is a cooler to reduce the supply air temperature and/or humidity. F - An
after-heater unit to raise the supply air temperature after humidifier or to raise the supply air
temperature after latent cooling (dehumidifier). G - The supply air fan. H - The dampers to
demand controlled supply air flow to rooms. I - It is a heat recovery unit for energy recovery
from exhaust air. J - The exhaust air fan.

Fig. 1. Generic structure of an office building HVAC system

2.1 The HVAC System Control Problem

Temperature and relative humidity are essential factors in meeting physiologi-
cal requirements. When temperature is above or below the comfort range, the
environment disrupts person’s metabolic processes and disturbs his activities.

Therefore, a HVAC system is essential to a building in order to keep occu-
pants comfortable. A well-designed operated, and maintained HVAC system
is essential for a habitable and functional building environment. Outdated,
inappropriate, or misapplied systems result in comfort complaints, indoor air
quality issues, control problems, and exorbitant utility costs. Moreover, many
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HVAC systems do not maintain an uniform temperature throughout the struc-
ture because those systems employ unsophisticated control algorithms. In a
modern intelligent building, a sophisticated control system should provide
excellent environmental control [5].

Within this framework (building automation), the objective of a global con-
troller is to maintain the indoor environment within the desired (or stipulated)
limits. In our case, to maintain environmental conditions within the comfort
zone and to control the indoor air quality. Furthermore, other important ob-
jectives are usually required, e.g, energy savings (our main objective), system
stability, etc. In any case, numerous factors have to be considered in order to
achieve these objectives. It makes the system being controlled very complex
and present a strong non linearity.

To obtain an optimal controller, control and controlled parameters 2 have
to be chosen regarding the control strategy being implemented, the technical
feasibility of the measurements as well as economic considerations. Fortu-
nately, the BEMS designer is usually able to determine these parameters.

In the following subsections, the most usually used control and controlled
parameters are presented. The specific parameters considered in the test site
(building) presented in this work will be selected among them in Section 3,
where this site is introduced.

Control or explicit parameters: Controller’s variables

To identify the FLC’s variables, various (control or explicit) parameters may
be considered depending on the HVAC system, sensors and actuators. Usually,
these parameters are selected among the following ones:

• Predicted Mean Vote (PMV) index for thermal comfort: Instead of only
using air temperature as a thermal comfort index, we could consider the
more global PMV index selected by international standard organization
ISO 7730 (http://www.iso.org/iso/en/ISOOnline.frontpage), incorporat-
ing relative humidity and mean radiant temperature.

• Difference between supply and room temperatures: Possible disturbances
can be related to the difference between supply and mean air temperature.
When ventilation systems are used for air conditioning, such a criterion
can be important.

• CO2 concentration: Indoor air quality was found to be critical. As CO2

concentration is a reliable index of the pollution emitted by occupants, it
can be selected as indoor air quality index. It is therefore supposed that

2 Control or explicit parameters are variables which may be used as inputs or
outputs for a control strategy (controller’s variables), whilst controlled or implicit
parameters are variables which are affected by the action of a controlled device,
and may be considered in order to evaluate the performance of such controller
(problem’s objectives).
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both the building and the HVAC system have been properly designed and
that occupants actually are the main source of pollution.

• Outdoor temperature: Outdoor temperature also needs to be accounted for,
since during mid-season periods (or even mornings in summer periods) its
cooling (or heating) potential through ventilation can be important and
can reduce the necessity of applying mechanical cooling (or heating).

• HVAC system actuators: They directly depends on the concrete HVAC
system, e.g., valve positions, operating modes, fan speeds, etc.

Controlled or implicit parameters: Problem’s objectives

To identify global indices for assessment of the indoor building environment,
various (controlled or implicit) parameters may be measured depending on the
objectives of the control strategy. In these kinds of problems, these parameters
could be selected among:

• Thermal comfort parameters: Indoor climate control is one of the most
important goals of intelligent buildings. Among indoor climate character-
istics, thermal comfort is of major importance. This might include both
global and local comfort parameters.

• Indoor air quality parameters: Indoor air quality is also of major concern
in modern buildings. It is controlled either at the design stage by reduc-
ing possible pollutants in the room and during operation thanks to the
ventilation system. As our work is dedicated to HVAC systems, indoor air
quality is also an important parameter to account for.

• Energy consumption: If appropriate indoor air quality and thermal comfort
levels have to be guaranteed in offices, this has to be achieved at a minimum
energy cost. Therefore, energy consumption parameters would need to be
incorporated.

• HVAC system status: A stable operation of the controlled equipments is
necessary in order to increase life cycle and thus reduce the maintenance
cost. Information of the status of the equipments at the decision time step
or on a longer period must thus be considered.

• Outdoor climate parameters: Indoor conditions are influenced by outdoor
conditions (air temperature, solar radiation, wind). Moreover, in an air
distribution HVAC system, the power required to raise or lower the supply
temperature is a function of outdoor temperature and humidity. Some of
these parameters would thus need to be selected.

2.2 Fuzzy Control of HVAC Systems

Nowadays, there is a lot of real-world applications of FLCs like intelligent sus-
pension systems, mobile robot navigation, wind energy converter control, air
conditioning controllers, video and photograph camera autofocus and imag-
ing stabilizer, anti-sway control for cranes, and many industrial automation
applications [30].
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In these kinds of problems (HVAC system controller design), various cri-
teria are considered independently, thermal regulation, maintaining a tem-
perature setpoint or range, which only considers implicit energy savings
[5, 22, 31, 44, 51, 52]. In [7], the more global PMV is used to control ther-
mal comfort (incorporating relative humidity and mean radiant temperature),
but again it does not explicitly optimize the energy consumption, the system
stability or the indoor air quality (CO2 concentration). In [37], an adaptive
neuro-fuzzy inference system (ANFIS) is employed to optimization of the sys-
tem energy consuption by the control in-building section of HVAC system
(indoor air loop and chilled water loop). In [43], a FLC involving 7 variables
(5 inputs and 2 outputs) is optimized by means of an evolutionary algorithm
to decrement the energy consumption and to maintain a temperature setpoint,
which also set aside some important criteria.

However, in this work, various different criteria must be considered in order
to reduce the energy consumption maintaining a desired comfort level. There-
fore, many variables have to be considered from the controlled system, which
makes the problem very complex. In our case, five criteria will be optimized
and 17 variables are considered by the FLC.

In current systems, the Knowledge Base (KB) is usually constructed based
on the operator’s experience. However, FLCs sometimes fail to obtain satisfac-
tory results with the initial rule set drawn from the expert’s experience [31].
Moreover, in our case the system being controlled is too complex and optimal
FLCs are required. Therefore, this approach needs of a modification of the
initial KB to obtain an optimal controller with an improved performance.

Many different possibilities to improve Linguistic Fuzzy Modeling have
been considered in the specialized literature [8]. They can also be applied to
the framework of fuzzy control (e.g., a tuning on the semantics of a FLC previ-
ously obtained from human experience could be performed by modification of
the Data Base components [1, 2]). All of these approaches share the common
idea of improving the way in which the linguistic fuzzy model/controller per-
forms the interpolative reasoning by inducing a better cooperation between
the rules in the KB.

There are two of these approaches presenting complementary characteris-
tics, the parameter tuning and the rule selection. In this work, we combines
the tuning methods (classical and lateral tuning) with rule selection, which
present a positive synergy, reducing the search space, easing the system read-
ability and even improving the system accuracy.

On the other hand, to evaluate the FLC performance a physical mod-
elization of the controlled buildings and equipments is usually needed. These
models have been developed by BEMS designers using building simulation
tools, and they are able to account for all the parameters considered in the
control process. Thus, we will have the chance to evaluate the FLCs designed
in the simulated system with the desired environmental conditions. In the
same way, these system models can be used by the experts to validate the



Fuzzy Rule Reduction and Tuning of Fuzzy Logic Controllers.. 95

initial KB before the automatic optimization process. Besides, it is of major
importance to assess the fitness function in this process.

3 The GENESYS Test Cell

Within the framework of the JOULE-THERMIE programme under the GENE-
SYS 3 project, a real test site (building) provided by a French private enter-
prise —whose name must remain anonymous— was available for experimen-
tation. From now on, this site will be called the GENESYS test site.

Located in France, this test environment consists of seven single zone test
cells. Around the walls of these cells, an artificial climate can be created at
any time (winter conditions can be simulated in summer and viceversa). The
cells considered are medium weight constructions. Figure 2 illustrates this en-
vironment and presents its main characteristics. Two adjacent twin cells were
available for our experiments, the cells number four and five. Both test cells
were equipped with all sensors required according to the selected control and
controlled parameters. The HVAC system tested was a fan coil unit supplied
by a reverse-cycle heat pump, and a variable fan speed mechanical extract for
ventilation.

Fig. 2. Representation and main characteristics of the GENESYS test cells

The first task was to develop the thermal model of this test site. The main
achievement was the development of a full monozone building model. This
model was built from scratch within the Matlab-Simulink environment, being
developed as a general purpose model which could be used for any other con-
ditions, projects or applications in the future. However, in order to improve
its performance, it was later customized to suit the GENESYS test site. The
thermal simulation was based on finite-differences methods for the conduction

3 GENESYS Project: Fuzzy controllers and smart tuning techniques for energy ef-
ficiency and overall performance of HVAC systems in buildings, European Com-
mission, Directorate-General XII for Energy (contract JOE-CT98-0090).
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model. The maximum value for the time-step of the simulation was calculated
using the stability condition according to the discretization scheme. Simula-
tion time step could be reduced to 60 seconds. Due to the relatively small
thickness and large thermal conductivity of windows, the heat conduction
model for the windows was considered constant. Convective heat exchanges
were based on constant heat convection coefficients. Radiant temperature was
calculated as a function of surface temperature, weighted by their relative
area. The HVAC system model was based on manufacturers data and mod-
ules developed in the frame of IEA (International Energy Agency) task 22
provided by the Royal Technical Institute of Stockholm.

Data were available and used for model calibration. The main problems
in the calibration concerned the modelization of the HVAC equipment as well
as solar radiation effects on internal heat gains. The experimentation of this
work has been performed considering the calibrated and validated GENESYS
test cell simulation model. Concretely, the GENESYS summer-season model.

3.1 Objectives and Fitness Function

As said, our main optimization objective was the energy perfor-
mance but maintaining the required indoor comfort levels. Therefore,
we should consider the development of a fitness function aiming at characteriz-
ing the performance of each tested controller towards thermal comfort, indoor
air quality, energy consumption and system stability criteria. In this way, the
global objective is to minimize the following five criteria:

O1 Upper thermal comfort limit: if PMV > 0.5, O1 = O1 + (PMV − 0.5).
O2 Lower thermal comfort limit: if PMV < −0.5, O2 = O2 +(−PMV −0.5).
O3 IAQ requirement: if CO2 conc. > 800ppm,O3 = O3 + (CO2 − 800).
O4 Energy consumption: O4 = O4+ Power at time t.
O5 System stability: O5 = O5+ System change from time t to (t − 1), where

system change states for a change in the system operation, i.e., it counts
the system operation changes (a change in the fan speed or valve position).

In our case, these criteria are combined into one overall objective function
by means of a vector of weights. This technique (objective weighting) has
much sensitivity and dependency toward weights. However, when trustwor-
thy weights are available, this approach reduces the size of the search space
providing the adequate direction into the solution space and its use is highly
recommended. Since trustworthy weights were obtained from experts, we fol-
lowed this approach.

Hence, an important outcome was to assign appropriate weights to each
criterion of the fitness function. The basic idea in this weight definition was
to find financial equivalents for all of them. Such equivalences are difficult to
define and there is a lack of confident data on this topic. Whereas energy con-
sumption cost is easy to set, comfort criteria are more difficult. Recent studies
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have shown that a 18% improvement in people’s satisfaction about indoor cli-
mate corresponds to a 3% productivity improvement for office workers. Based
on typical salaries and due to the fact that PMV and CO2 concentrations are
related to people’s satisfaction, such equivalences can be defined. The same
strategy can be applied to the systems stability criterion, life-cycle of various
systems being related to number of operations. Based on this, weights can
be obtained for each specific building (test site). Thus, trusted weights for
the GENESYS test cell objective weighting fitness function were obtained by
the experts with the following values: wO

1 = 0.0083022, wO
2 = 0.0083022, wO

3

= 0.00000456662, wO
4 = 0.0000017832 and wO

5 = 0.000761667. Finally, the
fitness function to be minimized was computed as:

F =
n∑

i=1

wO
i · Oi .

3.2 FLC Variables and Architecture

A hierarchical FLC architecture considering the PMV, CO2 concentration,
previous HVAC system status and outdoor temperature was proposed by the
BEMS designer for this site. The GENESYS summer-season FLC architecture,
variables and initial Rule Base are presented in Figure 3 and Figure 4.
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Fig. 3. Data Base of the GENESYS FLC

As Data Base, we considered symmetrical fuzzy partitions of triangular-
shaped membership functions for each variable. These membership functions
were labeled from L1 to Lli, with li being the number of membership functions
of the i-th variable. Figure 3 depicts the Data Base. Both, the initial Rule Base
and the Data Base, were provided by the BEMS designer.

Notice that, Figure 4 represents the decision tables of each module of the
hierarchical FLC considered in terms of these labels. When the Rule Base con-
siders more than two input variables (as in the case of modules M-2 in layer
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Fig. 4. Initial Rule Base and generic structure of the GENESYS FLC

2 and M-3a and M-3b in layer 3 where three input variables are involved),
the three-dimensional table is decomposed into three two-dimensional deci-
sion tables (one for each possible label of the first variable) in order to clearly
show its composition. Therefore, each cell of the table represents a fuzzy sub-
space and contains its associated output consequent(s), i.e., the corresponding
label(s). The output variables are denoted in the top left square for each mod-
ule. Notice that, when there are two consequents, they are placed in the same
cell (divided by a diagonal line).

4 Three Different Post-Processing Approaches

This section introduces the three different post-processing approaches consid-
ered in this work: rule selection, classical tuning and lateral tuning.

4.1 Rule Selection

In complex multidimensional problems with highly nonlinear input-output re-
lations many redundant, inconsistent and conflicting rules are usually found in
the obtained Rule Base (especially in the case when they are generated by only
considering the expert’s knowledge). On the other hand, in high-dimensional
problems, the number of rules in the Rule Base grows exponentially as more
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inputs are added. A large rule set might contain many redundant, inconsis-
tent and conflicting rules. These kinds of rules are detrimental to the FLC
performance and interpretability.

Rule Selection methods directly aggregate multiple rules and/or select a
subset of rules from a given fuzzy rule set in order to minimize the number
of rules while at the same time maintaining (or even improving) the system
performance [12, 13, 25, 47, 48, 49, 53]. Inconsistent and conflicting rules
that degrade the performance are eliminated thus obtaining a fuzzy rule set
with better cooperation. Using Genetic Algorithms (GAs) to search for an
optimized subset of rules is motivated in the following situations:

• the integration of an expert rule set and a set of fuzzy rules extracted by
means of automated learning methods [27],

• the selection of a cooperative set of rules from a candidate fuzzy rule
set [14, 15, 16, 32, 33, 36],

• the selection of rules from a given KB together with the selection of the
appropriate labels for the consequent variables [11],

• the selection of rules together with the tuning of membership functions by
coding all of them (rules and parameters) in a chromosome [23], and

• the derivation of compact fuzzy models through complexity reduction com-
bining fuzzy clustering, rule reduction by orthogonal techniques, similarity
driving simplification and genetic optimization [45].

Two of them are of particular interest in our case, the second and the
fourth. In this work, we propose the selection of a cooperative set of rules
from a candidate fuzzy rule set together with the tuning of parameters coding
all in a chromosome. This pursues the following aims:

• To improve the FLC accuracy selecting the set of rules best cooperating
while a tuning of membership functions is performed.

• To obtain easily understandable FLCs by removing unnecessary rules.

4.2 Classical Tuning of Membership Functions

This approach, usually called data base tuning, involves refining the mem-
bership function shapes from a previous definition once the remaining FRBS
components have been obtained [14, 24, 28, 34, 35, 40].

The classical way to refine the membership functions is to change their def-
inition parameters. For example, if the following triangular-shape membership
function is considered:

µ(x) =






x−a
b−a , if a ≤ x < b

c−x
c−b , if b ≤ x ≤ c ,

0, otherwise
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changing the basic parameters — a, b, and c — will vary the shape of the
fuzzy set associated to the membership function, thus influencing the FRBS
performance (See Figure 5). The same yields for other shapes of membership
functions (trapezoidal, gaussian, sigmoid, etc.).

T T'

a a' b'b c' c

Fig. 5. Tuning by changing the basic membership function parameters

Tuning membership functions involves fitting the characterization of the
membership functions associated to the primary linguistic terms considered in
the system. Thus, the meaning of the linguistic terms is changed from a previ-
ous definition (an initial data base). In order to ensure a good interpretability
through the membership functions optimization process [9, 41, 42], some re-
searchers have proposed several properties. Considering one or more of these
properties several constraints can be applied in the design process in order to
obtain a BD maintaining the linguistic model comprehensibility to the higher
possible level [6, 14, 10, 21].

An example of evolutionary tuning can be seen in Figure 6, where each
membership function is encoded by means of three gene values representing
its definition points.

4.3 The Lateral Tuning of Membership Functions

The lateral tuning is a new model of tuning considering the linguistic 2-tuples
representation to laterally tune the support of a label, which maintains the
interpretability associated to the FLC. A new model for rule representation
based on the linguistic 2-tuples is introduced. This concept is presented in [29]
and allow a lateral displacement of the labels named symbolic translation. The
symbolic translation of a linguistic term is a number within the interval [-0.5,
0.5) that expresses the domain of a label when it is moving between its two
lateral labels. Formally, we have the couple,

(si, αi), si ∈ S, αi ∈ [0.5,−0.5).

Figure 7 shows the lateral displacement of the label M. The new label “y2”
is located between B and M, being enough smaller than M but closer to M.
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Initial Data Base

0 2

YX
S M L1 1 1 S M L2 2 2

0 2

YX
S M L1 1 1 S M L2 2 2

Tuned Data Base

0 20 2

 Evolutionary
Tuning

S 1 M 1 L 1 S 2 M 2 L 2

0 0.650 1 1.650.35 2 21.350 0.650 1 1.650.35 2 21.35

S 1 M 1 L 1 S 2 M 2 L 2

0 0.650 1 1.40.6 1.9 2.210.150.55-0.2 0.8 1.60.5 1.75 2.21.1

Fig. 6. Example of evolutionary tuning

ES MSVS L VL EL y2
y2 ES MSVS L VL EL

Fig. 7. Lateral Displacement of the Linguistic Label M

In [29], both the linguistic 2-tuples representation model and the needed
elements for linguistic information comparison and aggregation are presented
and applied to the Decision Making framework. In the context of Fuzzy Model-
ing and control, we are going to see its use in the linguistic rule representation.
In the next we present this approach considering a simple control problem.

Let us consider a control problem with two input variables, one output
variable and a Data Base defined from experts with the following labels:

Error → {N, Z, P}, �Error → {N, Z, P}, Power → {L,M,H} .

Figure 8 shows the concept of classical rule and linguistic 2-tuples repre-
sented rule. Analized from the rule interpretability point of view, we could
interpret the tuned rule as:
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R1: If the           is Zero and the
Classical Rule:  

Error
 is Positive then the             is HighPower

Rules with 2-tuples Representation:

Error Variation

R1: If the           is (Zero, 0.3) and theError Error Variation
is (Positive, -0.2) then the             is (High, -0.1)Power

Fig. 8. Classical Rule and Rule with 2-Tuple Representation

If the Error is “higher than Zero” and
the Error Variation is “a little smaller than Positive”
then the Power is “a bit smaller than High”.

This proposal decreases the tuning problem complexity, since the 3 para-
meters considered per label are reduced to only 1 symbolic translation para-
meter. As to how perform the lateral tuning there are two possibilities, the
most interpretable one and the most accurate one:

• Global Tuning of the Semantics. In this case, the tuning is applied to the
level of linguistic partition. In this way, the couple (Xi, label) takes the
same tuning value in all the rules where it is considered. For example, Xi is
(High, 0.3) will present the same value for those rules in which the couple
“Xi is High” is initially considered.
Considering this approach, the global interpretability of the final model
is maintained. It is analogous to the classical tuning of the Data Base
considering descriptive fuzzy rules [14], i.e., a global collection of fuzzy sets
is considered by all the fuzzy rules. Therefore, this approach obtains more
interpretable but less accurate linguistic models than the local approach.

• Local Tuning of the Rules. In this case, the tuning is applied to the level
of rule. The couple (Xi, label) is tuned in a different way in each rule,
based on the quality measures associated to the tuning method (usually
the system error).

Rule k: Xi is (High, 0.3) (more than high)
Rule j: Xi is (High, -0.2) (a little lower than high)

In this case, the global interpretability is lost to some degree and, the
obtained model should be interpreted from a local point of view. This ap-
proach is analogous to the classical tuning of approximate fuzzy rules [14],
i.e., each fuzzy rule has associated its own local fuzzy sets. However, in
our case, the tuned labels are still related to the initial ones, preserving
the global interpretability to some degree. Anyway, this approach presents
more accuracy but less interpretability than the global approach.
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5 Five Different Optimization Methods

Once the rule selection and two different tuning approaches have been
presented, the genetic optimization algorithms developed for rule selection
[32, 46], classical tuning [24, 28], lateral tuning [4] and, the combined action
of rule selection with both tuning approaches (rule selection and classical tun-
ing, rule selection and lateral tuning) are proposed in this section. However,
only four of them will be presented, the second one, the third one and the last
ones, since the algorithm for rule selection can be obtained as a part of this
last, the CS part.

In the following, the common parts of the said algorithms are introduced
to later present its application (coding scheme and operators) to the classical
and lateral tuning methods and to the combined action of rule selection with
both tuning approaches.

5.1 Common Aspects of the Algorithms

It consists of a GA based on the well-known steady-state approach and consid-
ering an objective weighting-based fitness function. The steady-state approach
[50] consists of selecting two of the best individuals in the population and com-
bining them to obtain two offspring. These two new individuals are included
in the population replacing the two worst individuals if the former are better
adapted than the latter. An advantage of this technique is that good solutions
are used as soon as they are available. Therefore, the convergence is acceler-
ated while the number of evaluations needed is decreased (in our case it is
very important since the model evaluation takes several minutes).

In order to make the method robust and more independent from the weight
selection for the fitness function, the use of fuzzy goals for dynamically adapt-
ing the search direction in the space of solutions will be considered. The se-
lection scheme is based on the Baker’s stochastic universal sampling together
with an elitist selection.

Evaluating the chromosome:

The fitness function (see Section 3.1) has been modified in order to consider
the use of fuzzy goals that decrement the importance of each individual fitness
value whenever it comes to its respective goal or penalize each objective when-
ever its value worse with respect to the initial solution. To do so, a function
modifier parameter is considered, δi(x) (taking values over 1.0). A penaliza-
tion rate, pi, has been included in δi(x), allowing the user to set up priorities
in the objectives (0 less priority and 1 more priority). Therefore, the global
fitness is evaluated as:

F ′ =
5∑

i=1

wO
i · δi(Oi) · Oi ,
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Two situations can be presented according to the value of the goal gi, and
the value of the initial solution ii. Depending on these values, two different δ
functions will be applied:

• When the value of gi is lesser than the value of ii, the objective is not
considered if the goal is met and penalized if the initial results are worsened
(see Figure 9).

1

0
gi ii

δi(x) =






0, if x ≤ gi

x − gi

ii − gi
, if gi < x < ii

x − ii
x − x · pi

+ 1, if ii ≤ x .

Fig. 9. δi(x) when gi ≤ ii

• When the value of ii is lesser than the value of gi, the initial results can
be worsened while the goal is met and, it is penalized otherwise (see Fig-
ure 10).

1

0
giii

δi(x) =






0, if x < gi

x − gi

x − x · pi
+ 1, if gi ≤ x .

Fig. 10. δi(x) when gi > ii

Restarting approach:

Finally, to get away from local optima, this algorithm uses a restart approach
[19]. Thus, when the population of solutions converges to very similar results
(practically the same fitness value in all the population), the entire popula-
tion but the best individual is randomly generated within the corresponding
variation intervals. It allows the algorithm to perform a better exploration of
the search space and to avoid getting stuck at local optima.
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5.2 Evolutionary Algorithm for Classical Tuning

In this subsection, the coding scheme and genetic operators of the algorithm
proposed for classical tuning are explained. To do so, the WMC-SSGA algo-
rithm presented in [2] for classical tuning will be briefly described.

The coding scheme represents a solution by joining the representation of
the mi labels of each one of the n variables composing the Data Base:

Ci = (ai
1, b

i
1, c

i
1, . . . , a

i
mi , bi

mi , ci
mi), i = 1, . . . , n ,

CT = C1C2 . . . Cn .

To make use of the existing knowledge, the Data Base previously obtained
from experts is included in the population as an initial solution. The remain-
ing individuals are randomly generated maintaining their genes within their
respective variation intervals. These intervals are computed from the initial
Data Base, having the same interval the group composed by the vertex of a
label and the nearest points of the next and the previous labels. From these
groups, the interval extremes are obtained computing the middle point be-
tween the nearest points of the corresponding consecutive groups [2]. Finally,
these intervals are dynamically adapted from the best individual for each
generation.

Since a real coding scheme is considered, the crossover and mutation oper-
ators have been selected according to this aspect: the Max-Min-Arithmetical
crossover and Michale-wicz’s non-uniform mutation (more complete informa-
tion on these operators can be found in [2, 17]). Once the mutation operator
is applied on the four offspring generated by the crossover operator, the two
best are selected as the final descendents.

5.3 Evolutionary Algorithm for Lateral Tuning

This subsection presents the coding scheme and genetic operators of the lateral
tuning algorithm.

Coding scheme and initial gene pool:

Taking into account that two different types of tuning have been proposed
(global tuning of the semantics and local tuning of the rules), there are two
different kinds of coding schemes. In both cases, a real coding is considered,
i.e., the real parameters are the GA representation units (genes).

In the following both schemes are presented:

• Global tuning of the semantics: Joint of the parameters of the fuzzy
partitions. Let us consider the following number of labels per variable:
(m1,m2, . . . , mn), with n being the number of system variables. Then, a
chromosome has the following form (where each gene is associated to the
tuning value of the corresponding label),
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CT = (c11, . . . , c1m1 , c21, . . . , c2m2 , . . . , cn1, . . . , cnmn).

See the CT part of Figure 11 (in the next section) for an example of coding
scheme considering this approach.

• Local tuning of the rules: Joint of the rule parameters. Let us consider
that the FRBS has M rules: (R1, R2, . . . , RM), with n system variables.
Then, the chromosome structure is,

CT = (c11, . . . , c1n, c21, . . . , c2n, . . . , cM1, . . . , cMn).

To make use of the available information, the initial FRBS obtained from
automatic fuzzy rule learning methods or from expert’s knowledge is included
in the population as an initial solution. To do so, the initial pool is obtained
with the first individual having all genes with value ‘0.0’, and the remaining
individuals generated at random.

Genetic operators:

The genetic operator considered is crossover. No mutation is considered in
this case in order to improve the algorithm convergence. A description of the
crossover operator is presented in the following.

The BLX-α crossover [20] and a hybrid between a BLX-α and an arith-
metical crossover [26] are considered. In this way, if two parents, Cv

T =
(cv

T1, . . . , c
v
Tk, . . . , cv

Tm) and Cw
T = (cw

T1, . . . , c
w
Tk, . . . , cw

Tm), are going to be
crossed, two different crossovers are considered:

1. Using the BLX-α crossover [20] (with α being a constant parameter chosen
by the GA designer), one descendent Ch

T = (ch
T1, . . . , c

h
Tk, . . . , ch

Tm) is ob-
tained, with ch

Tk being randomly generated within the interval [ILk
, IRk

] =
[cmin − I · α, cmax + I · α], cmin = min(cv

Tk, cw
Tk), cmax = max(cv

Tk, cw
Tk)

and I = cmax − cmin.
2. The application of the arithmetical crossover [26] in the wider interval

considered by the BLX-α, [ILk
, IRk

], results in the next descendent:

Ch
T with ch

Tk = aILk
+ (1 − a)IRk

,

with a ∈ [0, 1] being a random parameter generated each time this
crossover operator is applied. In this way, this operator performs the same
gradual adaptation in each gene, which is an interest characteristic.

5.4 Evolutionary Algorithm for Rule Selection + Tuning

In this subsection, the coding scheme and genetic operators of the algorithms
combining rule selection with both tuning approaches are presented.
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Coding scheme and initial gene pool:

A double coding scheme (C = CS + CT ) for both rule selection and tuning is
used:

• For the CS part, the coding scheme generates binary-coded strings of
length m (with m being the number of fuzzy rules in the existing FLC,
obtained from expert knowledge). Depending on whether a rule is selected
or not, the alleles ‘1’ or ‘0’ will be respectively assigned to the correspond-
ing gene. Thus, the corresponding part Cp

S for the p-th chromosome will
be a binary vector representing the subset of rules finally obtained.

Cp
S = (cp

S1, . . . , c
p
Sm) | cp

Si ∈ {0, 1}

• The CT part represent the coding scheme previously explained for the
classical or lateral tuning algorithm.

Finally, a chromosome Cp is coded in the following way:

Cp = Cp
SCp

T

An example of the coding scheme considering the global lateral tuning
with rule selection can be seen in Figure 11.

Fig. 11. Example of Coding Scheme Considering the Global Lateral Tuning and
Rule Selection

To make use of the available information, the FLC previously obtained
from expert knowledge is included in the population as an initial solution. To
do so, the initial pool is obtained with an individual having all genes with value
‘1’ in the CS part and the initialization previously explained for the classical
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or lateral tuning algorithms in the CT part. The remaining individuals are
generated at random.

Genetic operators:

The crossover operator will depend on the chromosome part where it is ap-
plied: in the CS part, the standard two-point crossover is used, whilst in the
CT part for the classical tuning is applied the Max-Min-Arithmetical operator
and for the lateral tuning is applied a hybrid between a BLX-α and an arith-
metical crossover. The two-point crossover involves exchanging the fragments
of the parents contained between two points selected at random (resulting two
different descendents). Finally, eight/four offspring are generated by combin-
ing the two ones from the CS part with the four/two ones from the CT part
(classical/lateral tuning).

As regards the mutation operator, it flips the gene value in the CS part.
In the CT part, for classical tuning the Michale-wicz’s non-uniform mutation
is used and for lateral tuning no mutation is applied. In this way, once the
mutation operator is applied over the offspring obtained from the crossover
operator, the resulting descendents are the two best individuals.

6 Experiments and Analysis of Results

To evaluate the goodness of the studied techniques, several experiments have
been carried out considering the GENESYS test site. The main characteristics,
the control objectives and the initial FLC for this site have been presented in
Section 3. In this section, the experiments performed with the said algorithms
are presented. In order to see the advantages of the combined action of the
rule selection and the tuning techniques, three different studies have been
performed:

1. Considering the said post-processing approaches separately. In this case,
we consider the different proposed techniques individually:
• Rule Selection.
• Classical Tuning.
• Lateral Tuning (both approaches, global and local).

2. Combining the rule selection with the tuning approaches. In this case, we
consider the rule selection and the different tuning approaches jointly:
• Rule Selection and Classical Tuning.
• Rule Selection and Lateral Tuning (both approaches, global and local).

3. Analysis of the different algorithms. A comparison will be performed
pointing out the good performance obtained when both, rule selection
and tuning, are combined.
To assess the proposed techniques for fitness computation, accurate models

of this controlled building (as well as the corresponding initial FLC) were
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provided by experts. The proposed optimization strategy was assessed with
simulations of 10 days with the corresponding climatic conditions.

The FLCs obtained from the proposed technique will be compared to
the performance of a classic On-Off controller and to the performance of the
initial FLC. The goals and improvements will be computed with respect to this
classical controller as done in the GENESYS 3 project. The intention from
experts was to try to have 10% energy saving (O4) together with a global
improvement of the system behavior compared to On-Off control. Comfort
parameters could be slightly increased if necessary (no more than 1.0 for
criteria O1 and O2).

Table 1. Initial results and fitness function (F ′) parameters

Fitness PMV CO2 Energy Stability
MODEL #R F % O1 O2 O3 O4 % O5 %

ON-OFF − 6.58 − 0.0 0 0 3206400 − 1136 −
FLC 172 6.32 4 0.0 0 0 2901686 9.50 1505 -32.48

Goals (gi) − − − 1.0 1 7 2000000 − 1000 −
Rates (pi) − − − 1 1 1 0.9 − 0.97 −

Table 1 presents the results obtained with the On-Off and the initial FLC
controllers together with the parameters considered to compute the fitness
function in the GA (F ′), fuzzy goals and penalization rates (the objective
weights can be seen in Section 3.1). Notice that, the goals imposed to the
algorithm are higher than the ones initially required by the experts since we
are trying to obtain even better results. No improvement percentages have
been considered in the table for O1 . . . O3, since these objectives always met
the experts requirements and the On-Off controller presents zero values for
these objectives.

Finally, the values of the parameters used in all of these experiments are
presented as follows: 31 individuals, 0.2 as mutation probability per chro-
mosome (except for the lateral tuning which has no mutation), 0.3 for the
factor α in the hybrid crossover operator and 0.35 as factor a in the max-min-
arithmetical crossover. The termination condition will be the development of
2000 evaluations, in order to perform a fair comparative study. In order to
evaluate the GA good convergence, three different runs have been performed
considering three different seeds for the random number generator.
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6.1 Results Separately Considering the Said Post-Processing
Approaches

The methods considered in this study are shown in Table 2. The models
presented in Table 3, where % stands for the improvement rate with respect
to the On-Off controller for each criterion and #R for the number of fuzzy
rules, correspond to the best individuals from the last population considering
the three runs performed. The time required for each model evaluation is 215
seconds approximately. Therefore, the run times are approximately four days
(evaluations × evaluation time).

Table 2. Methods Considered for Comparison

Method Description

S Rule Selection
C Classical Tuning
GL Global Lateral Tuning
LL Local Lateral Tuning

Table 3. Results obtained with rule selection and tuning approaches

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

Rule Selection
S1 147 0.2 0 0 2867692 10.56 991 12.76
S2 162 0.0 0 0 2889889 9.87 1441 -26.85
S3 172 0.0 0 0 2901686 9.50 1505 -32.48

Classical Tuning
C1 172 0.0 0 0 2575949 19.66 1115 1.85
C2 172 0.0 0 0 2587326 19.31 1077 5.19
C3 172 0.0 0 0 2596875 19.01 1051 7.48

Global Lateral Tuning
GL1 172 0.7 0 0 2378784 25.81 1069 5.90
GL2 172 1.0 0 0 2327806 27.40 1066 6.16
GL3 172 0.9 0 0 2268689 29.25 1080 4.93

Local Lateral Tuning
LL1 172 0.9 0 0 2386033 25.59 896 21.13
LL2 172 0.8 0 0 2343409 26.92 943 16.99
LL3 172 0.3 0 0 2377596 25.85 938 17.43

From the obtained results, the tuning approaches present better results in
energy and stability than the rule selection, On-Off controller and the initial
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FLC controller. However, the rule selection technique minimizes the number
of rules presenting significant improvements respect to the On-Off controller.

Regarding the tuning approaches, the lateral tuning presents a good trade-
off between energy and stability, since this approach reduces the size of the
search space of this complex problem. The lateral tuning techniques are robust
and perform a better exploration of the search space, avoiding getting stuck at
local optima. Note that, the local lateral tuning obtains more accurate results
than the global approach, since this technique presents more freedom degrees
and locally tunes each parameter. The local tuning presents improvement
rates of about a 26% in energy and about a 18% in stability.

6.2 Results Combining the Rule Selection with the Tuning
Approaches

The methods considered in this study are shown in Table 4. The models pre-
sented in Table 5 correspond to the best individuals from the last population
considering the three proposed seeds (once again % stands for the improve-
ment rate with respect to the On-Off controller and #R for the number of
fuzzy rules). Again, the run times are approximately four days.

Table 4. Methods Considered for Comparison

Method Description

C-S Classical Tuning and Rule Selection
GL-S Global Lateral Tuning and Rule Selection
LL-S Local Lateral Tuning and Rule Selection

In view of the obtained results, we can point out that all the controllers
derived by the studied methods achieve significant improvements over both,
the On-Off controller and the initial FLC controller. In this case, all the goals
required by experts were met, amply exceeding the expected results.

A good trade-off between energy and stability was achieved for all the
obtained models, maintaining the remaining criteria within the optimal values.
GL-S presents improvement rates of about a 28.6% in energy and about a
29.6% in stability, with the remaining criteria for comfort and air quality
within the requested levels. Moreover, the proposed algorithm presents a good
convergence and seems to be independent of random factors.

Figure 12 represents the initial and the final data base of the FLC ob-
tained by GL-S1 in Table 5. It shows that small variations in the membership
functions cause large improvements in the FLC performance. Figure 13 rep-
resents the decision tables of the FLC obtained from GL-S1 (see Section 3.2).
In this case, a large number of rules have been removed from the initial FLC,
obtaining much simpler models (more or less 59 rules were eliminated in each
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Table 5. Results obtained combining rule selection with the tuning approaches

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

Selection with Classical Tuning
C-S1 94 0.0 0 0 2540065 20.78 1294 -13.91
C-S2 109 0.1 0 0 2492462 22.27 989 12.94
C-S3 100 0.1 0 0 2578019 19.60 887 21.92

Selection with Global Lateral Tuning
GL-S1 105 1.0 0 0 2218598 30.81 710 37.50
GL-S2 115 0.4 0 0 2358405 26.45 818 27.99
GL-S3 118 0.8 0 0 2286976 28.68 872 23.24

Selection with Local Lateral Tuning
LL-S1 133 0.5 0 0 2311986 27.90 788 30.63
LL-S2 104 0.6 0 0 2388470 25.51 595 47.62
LL-S3 93 0.5 0 0 2277807 28.96 1028 9.51
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Fig. 12. Initial and Tuned Data Base of a Model Obtained with GL-S (Seed 1)

run). This fact improves the system readability, and allows us to obtain simple
and accurate FLCs.

6.3 Analyzing Both Approaches

In order to see how the consideration of the rule selection affects to the tuning
approaches, Table 6 presents a comparison. The averaged results obtained
from the three different runs performed in the previous subsections are shown
in the table.

The methods combining the rule selection with the tuning approaches
has yielded much better results than the different post-processing approaches
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Fig. 13. Rule Base and final structure of a Model Obtained with GL-S (seed 1)

Table 6. Comparison among the different methods

PMV CO2 Energy Stability
MODEL #R O1 O2 O3 O4 % O5 %

ON-OFF − 0.0 0 0 3206400 − 1136 −
FLC 172 0.0 0 0 2901686 9.50 1505 -32.48

Averaged Results
S 160 0.1 0 0 2886422 9.98 1312 -15.52
C 172 0.0 0 0 2586717 19.33 1081 4.84

GL 172 0.9 0 0 2325093 27.49 1072 5.66
LL 172 0.7 0 0 2369013 26.12 926 18.52

C − S 109 0.1 0 0 2536849 20.88 1057 6.98
GL − S 113 0.7 0 0 2287993 28.64 800 29.58
LL − S 110 0.5 0 0 2326088 27.46 804 29.26

separately, specially in the case of the global lateral tuning together with the
rule selection. Moreover, in the case of GL-S, the interpretability level obtained
is very near to the original one, since the initial rules and membership function
shapes remain fixed. It is notorious the fact that, in general, the simplified
FLCs only maintain a 64% of the initial rules. Furthermore, considering rule
selection helps to reduce the search space and favors the ability of the tuning
techniques to obtain good solutions.



114 R. Alcalá et al.

On the other hand, the methods based on the lateral tuning present better
results than the ones based on the classical tuning. The lateral tuning is a
particular case of the classical tuning, however, the search space reduction
helps to these kinds of techniques to obtain more optimal results.

7 Concluding Remarks

In this work, we propose the use of tuning approaches together with a rule
selection to develop accurate FLCs dedicated to the control of HVAC systems
concerning energy performance and indoor comfort requirements. To do so,
different GAs considering an efficient approach for tuning and rule selection
have been developed.

The studied techniques, specially those based on lateral tuning, have
yielded much better results than the classical On-Off controller showing their
good behavior on these kinds of complex problems. It is due to the following
reasons:

• The search space reduction that the lateral tuning involves in complex
problems. It allows to these techniques to obtain more optimal FLCs.

• The complementary characteristics that the use of the tuning approaches
and the rule selection approach present. The ability of the rule selection
to reduce the number of rules by only selecting the rules presenting a good
cooperation is combined with the tuning accuracy improvement, obtaining
accurate and compact FLCs.
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