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ABSTRACT: A methodology for learning behaviors in
mobile robotics has been developed. The algorithm is based
on obtaining cooperative rules with weights, and uses a ge-
netic algorithm to do the combinatorial search. The method-
ology has been employed to learn the wall-following behav-
(or. and the obtained controller has been tested using the
Nomad 200 simulation software in different environments.

Keywords: Mobile robotics, behaviors, fuzzy modeling,
cvolutionary algorithms.

1 INTRODUCTION

Control in mobile roboties requires different levels of action:
planning (high level) and reacting (low level). Usually. the
reactive laver is composed of behaviors that act directed by
the planning level. These behaviors are implemented in dif-
ferent ways. being one of the most usual a fuzzy controller.

The characteristic that makes specially useful a fuzzy
controller for the implementation of a behavior is the abil-
ity that fuzzy controllers have in order o cope with noisy
inputs. This noise appears when the sensors of the robot
detect the surrounding environment, and is particularly high
when using ultrasound sensors (specular reflection. low an-
gular resolution, etc. ).

However. learning or tuning a fuzzy controller is a tedious
task, and for this reason some learning techniques have been
applied (evolutionary algorithms. neural networks, ...). Evo-
lutionary algorithms have the advantage that can learn inter-
pretable rules and, also, that the designer can select the most
adequate tradeoff between interpretability and accuracy for
the know ledge base that is going to be learned

[n [2]. a new learning methodology to induce a better co
operation among the fuzzy rules was proposed: the Coop:
erative Rules (COR) methodology. The learning philoso-
phy was based on the use of ad hoc data-driven methods!
to deterniine the fuzzy input subspaces where a rule should
exist and 4 set of candidate consequents assigned 1o cach
rule. After that. @ combinatorial search was carried out 1in

es with
good cooperation among them. In [ 3], ditferent combinato-

the set of candidate consequents 1o obtain a set ol ru

ral search weehnigues were considered with this wm.
On the -ther hand. other echnigue to mprove the rule co-

operation s the use ol werghied Tuzzy rales 15, %] m which
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modifying the linguistic model structure an importance fac
tor (weight) is considered for each rule. By means ol this
technique, the way in which these rules interact with their
neighbor ones could be indicated.

In [1], the Weighted COR (WCOR) methodology was
presented to include the weight learning within the origi-
nal COR methodology. In this wuy. both technigues were
combined to obtain weighted cooperative fuzzy rules. Thus,
the system accuracy is increased while the interpretability is
maintained to an acceptable level.

In this paper, a methodology. based on WCOR. for the
design of behaviors in mobile robotics 15 presented. The al-
gorithm has been applied to the wull-following behavior. In
order to show the performance of the obtamned controller,
it has been tested in several simuluted environments. and it
has also been compared with a4 previous approach based on
COR [7]. The paper is structured us follows: section 2 1n-
troduces the wall-following behavior. section 3 describes the
COR methodology, while in section 4 WCOR is presented.
Finally, some results are shown. und conclusions are pointed
out.

2 LEARNING THE WALL-FOLLOWING BEHAVIOR

In order to evaluate the proposed miethodology, we have se-
lected the wall-following behavior. which s usually imple:
mented when the robot is explormg an unknown area, or
when it is moving between two pomnts in i map. A good
wall-following controller is characterized by three leatures:
to maintain a suitable distance from the wall that 1s being
followed, to move at a high velociny whenever possible, and
finally to avoid sharp movements. nuiking smooth and pro-
gressive turns and changes i veiod

The controller ¢an be contigured soditving the values ol
two parameters: the reference distances which s the desired

distance between the robot and the ~elected wall. and the

maximum velocity attanable by e sobot Inwhat follows
we dssume that the robot s gore o sotiow acontour that 1y

on its right side. Of course. the o s conld abo Tollow the

lelt-hand wall. but this can be cav v dealt wih by simply
interchanging the sensoriul impas

The mput variables of the come o sasten are tic el
hand distance (RO e distaroos oomens o wiichos

caleulated as

lefy
BIY (1)

DO shows the relative posit O CURRURTT AN G S
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ridor, which provides with informaticn that is more relevant
to the problem than simply using the left-hand distance. A
high value for D) means that the robot is closer to the right-
hand wall, whilst a low value indicates that the closer wall
is the left-hand one. The other input variables are the linear
velocity of the robot (LV) and the orientation of the robot
with respect to the wall it is foilowing. A positive value
of the orientation indicates that the robot is approaching to
the wall, whilst a nepative value means the robot is mov-
ing away from the wall. The output variables are the linear
acceleration and the angular velocity.

The values for the distances and the orientation are ob-
tained from the distances measured by the ultrascund sen-
sors of the robot. We use the distributed perception [10]:
distance is measured as the minimum distance of a set of
sensors, and the orientation will be a weighted sum of the
orientation of each sensor in the set, giving more weight to
those sensors that detect closer obstacles.

A set of examples (1638) has been chosen [or learning
the knowledge base. These examples cover the universe of
discourse of all the vanables in the antecedent part of the
rule. The universes of discourse have been discretized, in
order to minimize the search space, with a step or precision
Pr, where n is the variable. Function §F. that scores the
action of the rule base over an example, is defined as:

SF (RB(e’)) =y + 00+ 0 )

!

where ¢' is an example. and ay, 0, and 3 are respectively:

|RD — referencedistance|

ay = 100- (3
PRD

=10 imaximumvelocity — LV| @
Py
entati

s = |orientation| )

Porientation

Thus, low values of SF indicate a good control action (a
score of 0 means that the robot has reached the best state).
PRDs Py, and Poriomaion are the precisions of the respective
input variables. Precisions are used in these equations in or-
der to evaluate the deviations of the values of the variables
from the desired ones in a relative manner (the deviation of
the value of variable » from the desired one is measured in
units of p,. 3. This makes possible the comparison of the de-
viations of different variables and, as a consequence, the as-
signmenl of the weights for each one of the variables. These
weights (100. 10 and | for (3), (4}, and (5} respectively)
have been heuristically determined, and indicate how much
important the deviation in the value of a variable is with re-
spect Lo the devianon of other variables. The highest weight
has been assigned 1o the distance, as small variations of RD
with respect 1o the reference distance should be highly pe-
nalized. An intermediate weight is associated to velocity
and. finally . the least ymportant contribution w function SF
is [or the onentauon of the robot.

The index that meusures the global quality of the encoded

rule set is:
NE N

- . _ l . " -
TiRB) = ZVNE!E(&(E J) (6)

where NE is the number of examples, and g(¢') is defined
as:

B (léh(el))-w%-l
g(et){ if hie') > 1

if k(e < 1
exp {t —h{e")) } 7

being w a scaling factor that has been set to 1000, and h(e'):

_ min (SF{e")) +1
~ SF(RB(eN) +1

: (8)

where min (SF(e’)) is the minimum score that an action can
obtain for example ¢’ (using only the discrete values of the
output variables). These values are obtained before the be-
ginning of the algorithm, trying and scoring all the possible
actions for each example.

3 THE COR METHOFOLOGY

The process followed to learn the fuzzy controller is based
on the COR methodology {propesed in (2] and extended
in [4]). The COR methodology is guided by example cov-
ering criteria Lo obtain antecedents {fuzzy input subspaces)
and candidate consequents [3}. Depending on the combi-
nation of this technique with different ad hoc data-driven
methods, different learning approaches arise. In this work,
we will consider the Wang and Mendel's method [ [] (WM)
for this purpose —approach guided by examples—. The
COR methodology following this approach consists of two
stages:

1. Search space construction — It obtains a set of candi-
date consequents for each rule.

2. Selection of the mosi cooperative fuzzy rule ser —
It performs a combinatorial search among these sels
looking for the combination of consequents with the
best global accuracy.

A wider description of the COR-based rule generation
process 1s shown in Fig. 1.

The above mentioned methodology has some interesting
advantages that make it very useful wo learn fuzzy controllers
in mobile robots navigation. We can mainly highlight two
characteristics:

[. Search space reduction — The COR methodology re-
duces the search space respect to other rule base learn-
ing methods [9} and allows it 10 be quicker and to make
a better solution exploration. It 15 due 1 two main rea-
sons:

s The fact of assigning each example o only one
subspace will involve tw reduce the number of
candidate consequents. <inve the positive exam-
ple sets are reduced.

o The use of u restrictive condition o cunsiruct
C(Sy) (seeeq (10) in Fig. 1) that generates o low
number of candidate rules.

1280

———




ased
nded
cov-
0es)
mbi-
riven
vork,
WM}

The
W0

andi-

?f —
. sets
h the

‘ation

sng
Jllers

;y re-
carn-
make
1red-

¢ one
er of
LdMm-

struct
i low

oo |

Neural Networks, Genetic Algorithims & Soft Computing

Inputs: A
o An input-output data set—& = {ey..... Ciannn. en). with ¢ =
et b e {1l L N)L N being Ihe data set size,
and n (m) being the number of input (outpul) vanables—
represenfing the behavior of the problem being solved.

A fuzzy partition of the varable spaces. 'n our case, uni-
formly distributed fuzzy sels are regarded. Let 4 be the set
of linguistic terms of the i-th input variable, with i€ {1.... ,n},
and B; be the set of linguistic terms of the j~th output vari-
able, with f€ {1 ....m}, with .2 (1%,:) being the number of
labels of the i-th (j-th) input {output) variable.

Algorithm:
1. Search space construction.

1.1. Define the fuzzy input subspaces containing positive
examples: To do so, we should define the positive
example set (E7(S5,)) for each fuzzy inpul subspace
Se=(A]... AL Ay, with A & 3, being a label, s €
[1.. ..Ns}o and Ny =TI, 1A being the number of
fuzzy inpul subspaces. In this paper, we use the fol-
fowing:

E (S0 =1 weE vwiell . ,n}

VA;e:a,.,u,l;(.l{)gpﬁ,_'(,\{) p @

with g4} being the membership function associated
with the label A7

Amang all the N possible fuzzy input subspaces, con-
sider only those containing at least one positive ex-
ample. To do so, the set of subspaces with posilive
examples is defined as §° = {5, " £ (5:) £8].

1.2. Generate the set of candidate ruies in each subspace
with positive exampies: Firstly, the candidate conse-
quent set associated with each subspace containing
at least an example, 5, € §7, is defined. In this paper,
we use the following:

CS)={ (B BB x. xB,|

ey € E7(Sp) where Ve {1..... m},
V8, € B, i () 2 e () }
(10}

Then, the candidate rule set for each subspace is de-
fined as CR(Sy) = {Ry, = [IF X, is AY and ... and X,
is A% THEN v is 8" and ... and ¥, is B] such that
BB € OS]

To allow COR to reduce the inbal number for fuzzy
rules, the special element Ry (which means “do not
care”) is added lo each candidate rule set, ie,
CR{S;) = CR(S,)URy. Ititis selected, no rules are used
in the corresponding fuzzy inpul subspace.

2. Selection of the most cooperative fuzzy rule set — This

stage 15 performed by running a combinatoriat search algo-
rithm to look for the combinalion RA = (R, & CR(S))... .. By
CR(Sy .. .Rg- = CR(S¢ 1) with lhe best accuracy. Since
the tackled search space 1s usually large, approximate
search 1echniques should be used.
An index ¢ R measuring the global qualty of the encoded
rule set is considered 1o evaluate the quality of each solu-
tlon. In order to obtain solutions with a high interpretabilily,
the onginat functon 1s modilied to penalize excessive num-
ber ol ruigs:

;RB (RB - B RB: #—:IH (i
with 3 1.1 being a parameter deiined by the designer to
regulaie the impaertance ol tine number of rules, 4KE being
the nurcer of rules used in the evaluated solulion {i 2., -5

ARy RE v that R~ Rol ). and R#t beng the initial rule

base considered oy the search algorithm.

Figure 1: COR algorithm

This is an important issue for the learning of fuzzy
controllers, where a high number of examples is used.
In the wall-following behavior presented in this pa-
per, 1638 examples have been used. and the employed
methodology spends around ene hour (with an Intel
Pentium 4 2.4 GHz processor) in order 1o obtain the
controller.

2. lnterpretability issues — The proposed methodology
has also some interesting advantages from the inter-
pretability of the obtained fuzzy knowledge point of
view. In this case, the membership functions and
the model structure keep invariable. since the COR
methodology improves the accuracy by only induc-
ing cooperation among linguistic fuzzy rules. Further-
more, the COR methodology achieves a rule reduction
process at the same time as the learning one with the
aim of improving the accuracy (the cooperation among
rules and thus the system performance cau be improved
by removing rules) and interpretability (a model with
less rules is more interpretable) of the learned modei.
These are important issues 1o fuzzy contrel for mobile
robot navigation, as the actions of the robot are easily
understandable.

Finally, since the search space tackled in step 2. 1s usuaily
large, it is necessary to use approximate search techniques.
In [3] four different well-known rechniques were proposed
for this purpose. One of them, the ant colony optimization
(ACQ) [6], was first applied to the fuzzy conitrol for mobile
robot navigation in [7]. We will consider this approach for
comparison 1n the experiments section.

4 LEARNING WEIGHTED LINGUISTIC RULES
BASED ON COR

In this section we present an extension of the COR method-
ology to obtain a cooperative set of weighted linguistic rules.
In the following, we present the use of the weighted linguis-
tic rules and the said WCOR methodology (learaing scheme
and evolutionary algorithm).

4.1 The Use of Weighted Linguistic Rules

Using rule weights 3, 8] has been usually considered o im-
prove the way in which rules interact, improving the accu-
racy of the learned model. In this way. rule weights suppose
an effective extension of the conventional fuzzy reasoning
systetn that allow the wning of the <vsem 1o be developed
at the rule level {5, 8.

When weights are apphed o complete rules. the corre-
sponding weight is used w maodulate the Hrng strength ot g
rule in the process of compunng the defuzzined value. From
human beings, it s very near to cons<ider this weight us an
unportance degree associaled w the rule. determinimg how
this rule interacts with s neighbor ones. We will follow
this approach, since the muerpretabilis ol the system Is ap-
propriately maintained. [n addinon, we will only consider
weight vatues in [(1, U] since it preserves the mode! readubil-
ity. In this way, the use of ruie weights represenss an ideal
framewaork for extended linguistic tuzzy modehng when we
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search for a trade-otf between accuracy and interpretability.
In order to do so, we will follow the weighted rule struc-
ture and the inference system proposed in [8] extended for
multiple output variables:

IF X is 4, and ... and X, is 4, (12)
THEN ¥, is B and ... and Y,, is B, with [w],
where X; (¥;) are the linguistic input (output) variables, A;
(8;) are the linguistic labels used in the input {output) vari-
ables, w is the real-valued rule weight, and with is the oper-

ator modeling the weighting of a rule.

With this structure, the fuzzy reasoning must be extended.
The classical approach is to infer with the FITA (First Infer,
Then Aggregate} scheme and compute the defuzzified out-
put of the j-th variable as the following weighted sum:

— Ehm;, L Ph(_})
Eh g - Wy

y(J) (13)
with ry, being the matching degree of the A-th rule, wy, be-
ing the weight associated to the 4-th rule, and P;; being the
characteristic value of the output fuzzy set corresponding to
that rule in the j-th variable. In this contribution, the center
of gravity will be considered as characteristic value and the
mintmum t-norm will play the role of the implication and
conjunctive operators.

A simple approximation for weighted rule leamning would
consist in considering an optimization technique to derive
the associated weights of the previously obtained rules (e.g.,
by means of ad hoc data-driven methods as WM, or even
COR).

4.2 The WCOR Methodology

This methodology involves an extension of the original COR
methodology. Therefore, WCOR [ 1] consists of the follow-
ing steps:

1. Obtain the subspaces with positive examples S, € St
and a set of candidate consequents C(8;,) associated to
them.

2. Problem representation. For each rule R, we have: §j,
C(Sh), and wy € {0 ]]
Since 5y 1s kept fixed, the problem will consist of de-
termining the consequents and the weight associated to
each rule. Two vectors, ¢ and 2, of size [$7] (number
of rules finally obtained) are defined 1o represent this
information. where.

C|Uﬂ =ky | Rg'.: ECR(S,I.) (14
('Z{hi:""h- Vhe{l......5"i} (13)

In this way. the ¢ part is an mteger-vatued vector in
which cach cell represents the index of the consequents
used o build the corresponding rule. The ¢ part is
a real-valued vector in which each cell represents the
welght associated o this rule. Finally, a problem solu-
tion 15 represented as follows:

=002 (16}

3. Perform a search on the ¢ vector, looking for the com-
bination of consequents and weighis with the best co-
operation. To do that, we consider the use of a simple
Genetic Algorithm (GA).

4.3 Genetic Algorithm Applied to the WCOR Methodol-
gy

The proposed GA performs an approximarte search among
the candidate rules with the main aim of selecting the set of
consequents with the best cooperation and simultaneously
learning the weights associated Lo the obtained rules. The
main characteristics of the said algorithm are presented in
the following:

e Genetic Approach — An elitist generational GA with
the Baker’s stochastic universal sampling procedure.

s [nitigl Pool — The initial pool is obtained by generat-
ing a possible combination at random for the ¢ part of
each individual in the population. And for the ¢ part, it
is obtained with an individual having all the genes with
value ‘17, and the remaining individuals generated at
random in [0, 1].

e Fitness Function — The fitness funcion will be the
said objective function, defined ineq. (11) 1n Fig. I.

s Crossover — The standard two-point crossover in
the ¢ part combined with the max-min-arithmetical
crossover in the ¢; part. By using the max-min-
arithmetical crossover, if ¢} = {c'1'....ch. . .. cin})
and ¢ = (c/[1],.... [k ... ¢'inl) are crossed, the next

four offspring are obtained:

(;II =acy + (1 - a)o (17
ed=ach + {1 —a)eh i(18)
c3 with ¢k = min{c k. &} (19
3 with ¢qjky = max{ck.c"k } (20

with a € [0.1] being a parameter chosen by the GA de-
signer.

[n this case, eight offspring are generuted by com-
bining the two ones from the ¢y part itwo-point
crossover) with the four ones [roem the ¢ part {max-
min-anthmetical crossover). The two best oltspring so
obtained replace the two corresponding parents in the
population.

o Mutation — The operator considered in the oy part ran-
domly selects a gene (i {1
random the current consequent B, by olher consequent
HL,,’ such that Rk; € CR{S;). On the other hand, the se-

- 't .
lected gene in the o3 parttakes a value af random withun

Sx 7 brand changesal

the interval jO. 1}

1282

of
ol
s
Wit
n

hee

bas
The




1-

ith

the

Y-
Rt

N0
the

PUE

Neurat Networks. Genetic Algorithms & Soft Computing

1 meler

5 RESULTS

The learned contreller has been tested using the Nomad 200
simulation software. Six environments have been chosen
which include very different siuations that the robor usually
faces during navigation: straight walls of different lengths,
followed and/or preceded of a number of concave and con-
vex corners, gaps. ... thus covering a wide range of contours
to follow and truly defining very complex test environments.
[t is important to remark that none of these environments
have been used during the leaming process. Thus. the train-
ing set has been a setof 1638 examples that uniformly cover
the universe of discourse of the inpurt variables.

Figure 2 shows the rohot path along one of the test en-
vironements. The robot trajectory is represented by circu-
lar marks, A higher concentration of marks indicates lower
velocity. The maximum velocity the robor can reach is 61
cm/s. and the reference distance at which the robut should
follow the right wall is 31 e,

Several controllers have been learned for difTerent values
of B (equation 11). & parameter to regulute the importance
of the number of rules. Finally. the conwoller with § = (1.2
has been sclected. This controller has also been compared
with anather one ebtuined using the methodology presented
in |7]. In 7] the COR methodoloey withour weights had
been applied lor the same purpose. but in that case the search
lechnigue was the wit colony optiintizaten algorithne while
i this approact o genctic algorithm has Bees used.

The controllers have 30 rales tWCORY and 55 rules
(COR) {7 respectivels thuth leurned for B - 0.2 Ten testy
have been done for cach one of the anads 7od enviconnients.
The average values meusured for seme paraineters that re-

Movement
direclion

Figure 2: Path of the robot along eavironment £.

fAect the controllers performance are shown in table 1. while
table 2 shows the values of these parameters for the COR
controller [7]. The parameters are the average distance
the right wall (the wall that is being followed). the average
linear velocity, the time spent by the robot along the paih,
and the average velocity change. The latter parameter mea-
sures the change in the linear velocity between two consec-
utive cycles, reflecting the smoothness of the behavior.

Table 1: Average values of some parameters for WCOR con-
troller (46 rules).

{ Env. LRD (cm) { Vel. {crifs) | AVel {em/sy Time (s)
L

A 57 34 : 387 101
B 58 36 396 61 -
- C 51 54 309 71
D 55 56 3.60 0%
E 49 50 . 6.17 4
F 55 51 103 il

Tahle 20 Average values of some purameters for COR con-
woller (55 rules) [ 7.
. Env. LRD (em)

Vel (emiv) AVel (omdvr Do ia)

LA W

B ST S0 6

C 501 N T 93
D R U B
TR 6 | 18 A
P s T 719 -

As can he seen, the conwoller lewned using WCOR has
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increased the average velocity in most of the environments
around a 10% without gelling worse the average right-hand
distance. Also the smoothness of the behavior has been im-
proved in all of the environments. The improvement of these
paramelers due to the use of weights for the rules has been
obtained without loosing interpretability of the knowledge
base.

The Data Base and the Rule Base of the model obtained
by WCOR are respectively presented in Figures 3 and 4.
In Figure 4, each row of the table represents a fuzzy sub-
space and contains its associated oulpul consequents, ie.,
the correspondent labels together with its respective rounded
rule weight Moreover, these weights have been graphically
showed by means of the gray scale, from black (1.0) to white
(0.0).

In order to show the quality of the controller we are go-
ing to describe in detail the path of the robot in environment
£ (figure 2). As it has been said, this environment is quite
complex, with ten concave corners and six convex corners in
a circuit of a length of 57 meters. The measurements of the
ultrasound sensors are quite noisy due to the gaps present
in the wall, and also because of the convex corners. These
are truly difficult situations, because the robot’s sensors may
cease (o comectly detect the wall at some given moments.
The controller must also significantly reduce velocity at cor-
ners. All these situations provoke a reduction in the average
distance and velocity. As can be seen, the robot follows the
wall with a high precision, except at the corners, where 1t
approaches to the wall (concave corners) or gets away from
it (convex cormers) in order to turn.

X1
i i I " —] 9 I w 1
X2/Xa
[ " | ] t
X3

rd
T — —— — T S R B——
QOO
i

m | e | o J k] & I & | v [ w { & }

Figure 3- Data Base of the obtazined model.

6 CONCLUSIONS

A methodology for the design of behaviors in maobile
robotics hus been presented. [uis based on COR (Cooper-
ative Rules) with weights (WCORY), and uses a genetic al-
corithm o perform the search. Using rule wetghts unproves
the accuracs of the knowledge base (Uhe way rules interact).
wlhile maintaining a good interpretability.

The systent has been tested learning the wall-following
beiavior in mobile robotics using the Nomad 200 software.
shewmy a good performance in the difterent environments
in which it has been tested. Also. the learned controller has

KR: 46
. X1 X2 X3 X4 Y,¥2 with . x1 X_Z X3 X‘}___\:_LYZ with
BT 1 2 1z 12 [(0650] NEE 12 2 13 1 IBJE [0.751]
Edl 1 o @3 o155 [0297) M (2 12 13 12 (706 [0559]
M 1@ 12 143 [0360] EE8 12 12 15 12 19,1 [0465]
M 1 14 12 18)2 {0333) HE (3 11 11 12 1] [0981)
M 2 1 12 1,2 (0334 W13 11 12 12 1136 [0981)
1 12 12 n 1346 [0932] EE I3 1B 111218 [0879
n o2 12 21413 (03282 [C243 10 13 12 104 (0273
Eit 12 12 11708 [0743) 13 1 14 11 1818 [0.498]
€28 i 42 I3 12 18)3 [0.610) 13 1t 4 12 1706 [0425]
B 11 2 14 |1;1906 (0.966) NN 13 N 15 11 (9,18 [0.765)
H 112 14 120 19,02 (0.947) EEE 13 1 5 12 19,14 [0.683)
H 12 15 1,19 (0873 HEE I3 12 13 N1 N8 [0647)
: H 111 1N 047 3 12 13 12 16 [0.426)
: H 112 1N {0965 12 12 14 12 1706 [0.368|
2 o2 1 B [0.771] 4 11 M1 s [0.929]
EZ 1z 11BN ‘ 7 (0408] [T 14 11 12 R NI [0195
BEE(12 1143 12| (314 [0.440] @EE 4 11 13 M I8 [0.952]
-| 2 1 44 1| l7)7 (0729 @ 14 1 13 12 M6 (0.960]
B 12 11 14 12 i7,)4 [0466) HEE 14 1M 14 11 1,8 [0.585]
B2 1 5 119 [0.519) 14 1 4 12 [,6 [0379)
EER|I2 11 15 (2: 1913 [0696) EEE 14 N 15 11 1518 (0.528)
2 12 12 18 [0.576) M oI5 12 1606 ([0.369)
B 12 12 2 1201106 [0957] EEE 14 12 M It (28 [0.600)

Figure 4: Rule Base of the obtained model.

been compared with another one obtained using the COR
methodology [7]. The WCOR controller improves the aver-
age linear velocity and the smoothness of the behavior main-
taining an adequate distance to the right-hand wall.
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