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Abstract. The rapid development of methods that select over/under expressed 
genes from microarray experiments have not yet matched the need for tools that 
identify informational profiles that differentiate between experimental condi-
tions such as time, treatment and phenotype. Uncertainty arises when methods 
devoted to identify significantly expressed genes are evaluated: do all microar-
ray analysis methods yield similar results from the same input dataset? do dif-
ferent microarray datasets require distinct analysis methods?. We performed a 
detailed evaluation of several microarray analysis methods, finding that none of 
these methods alone identifies all observable differential profiles, nor subsumes 
the results obtained by the other methods. Consequently, we propose a proce-
dure that, given certain user-defined preferences, generates an optimal suite of 
statistical methods. These solutions are optimal in the sense that they constitute 
partial ordered subsets of all possible method-associations bounded by both, the 
most specific and the most sensitive available solution.  

1   Introduction 

Advances in molecular biology and computational techniques permit the systematical 
study of molecular processes that underlie biological systems [1]. Particularly, mi-
croarray technology has revolutionized modern biomedical research by its capacity to 
monitor changes in RNA abundance for thousands of genes simultaneously [2].  

To address the statistical challenge of analyzing these large data sets, new methods 
have emerged ([3], [4], [5], [6], [7] and many others). However, there is a dearth of 
computational methods to facilitate understanding of differential gene expression pro-
files (e.g., profiles that change over time and/or over treatments and/or over patient) 
and to decide which is the most reliable method to identify differences across profiles.  

We investigated the performance of several commonly used statistical methods, in-
cluding T-Tests [4], Permutation Tests [5], Analysis of Variance [6] and Repeated 
Measures ANOVA [7], in identifying differential expression profiles that change over 
time, treatments and phenotype. We found that these methods do not identify all ob-
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servable distinct profiles. Moreover, none of them subsumes the results obtained by 
the other methods.  

In view of these results, we propose a conceptual clustering method [8], [9], [10], 
devoted to discover optimal associations of microarray analysis methods in an effort 
to identify differential gene expression profiles.  

2   Methods 

We propose a conceptual clustering approach [8], [9], [10] devoted to identify optimal 
associations among microarray analysis methods in an effort to identify differential 
expression profiles (Fig. 1). This approach consists of six phases: (1) preprocessing of 
the dataset; (2) identification of differentially expressed genes by application of sev-
eral statistical methods; (3) arrangement of a lattice structure containing all possible 
associations of the statistical methods applied; (4) association of differentially ex-
pressed genes into differential profiles by clustering genes that change their expres-
sion over time, patient and/or treatment; (5) evaluation of the performance of the 
method-associations based on their specificity and sensitivity in the identification of 
previously detected differential profiles, using multiobjective optimization techniques 
[11], [12]. We create a set of method association rules based on the learned mappings 
of differential profiles into method-associations, [13];  (6) finally, we are able to pre-
dict optimal method-associations to identify differential profiles in new microarray 
datasets by use of the method association rules.  

2.1   Identification of Differentially Expressed Genes  

We perform the retrieval of differentially expressed genes from one experimental 
condition to the other/s by application of several statistical techniques [3], [14], har-
boring Student’s T-Test proposed in [4], including some of the variants the method 
poses to distinguish changes in the abundance of RNA occurring over both treatment 
and time; Permutation Test described in [5], also including a time approach; Analysis 
of Variance described in [6]; and Longitudinal Data approach by using Repeated 
Measures Analysis of Variance described in [7]. 

DIFFERENTIALLY
    EXPRESSED
        GENES

MICROARRAY 
   RAW DATA

   MICROARRAY 
PREPROCESSED 
          DATA

           
 PREPROCESSING

(1) 
             

 

(4)
  

   

  IDENTIFICATION 
  OF DIFFERENTIAL
        PROFILES

DIFFERENTIAL
 EXPRESSION
   PROFILES

   
 

METHOD 
EVALUATION     SCALING 

 
    

            
            (2) 
  IDENTIFICATION
        OF DIFF. 
    EXPRESSED 
         GENES

        (6) 
PREDICTION 
  

 
            
QUERY PROFILES

  +
    MICROARRAY
            DATA
     (OPTIONAL)

     METHOD
  SELECTION

               (5) 
    CREATION OF  
     METHOD ASS. 
           RULES 

   

     METHOD 
ASSOCIATION
      RULES 

 (3) 
ASSOCIATION 

OF STATISTICAL
METHODS 

 

   
   
   

 
       LATTICE 
     OF METHOD 
  ASSOCIATIONS

 

  

    

STATISTICAL 
    METHODS  
 

CONCEPTUAL 
CLUSTERING

    
 
    

    PROFILE  
      IDENTIF.  

    

 

 

   PROFILE  
     PRUNING

    NORMALIZING 
 
    

 

Fig. 1. Graphical representation of the methodology. The squared boxes represent the phases of 
the methodology, the round cornered boxes correspond to the input/output data at each step, 
and the ellipses the operations performed at each phase. 
 



174 C. Rubio-Escudero et al. 

2.2   Detection of Method-Associations  

We arrange a lattice containing all potential associations of the statistical methods 
used to retrieve differentially expressed genes (Fig. 2). The methods are associated as: 

}...,...,,,,,{ 21312121 nn MMMMMMMMMMM ⊕⊕⊕⊕⊕= , (1) 

where ⊕  is a classical set operator (e.g., the union (U ) or the intersection (I )) ap-
plied to the sets of genes retrieved by each method, and 1M corresponds to T-Test, 

2M  to T-Test considering time, 3M  Permutation Test, 4M  Permutation Test con 
sidering time, 5M  ANOVA over treatment, 6M  ANOVA over time, 7M  ANOVA 
over treatment and time, 8M  RMANOVA over treatment, 9M  RMANOVA over 
time and 10M  RMANOVA over treatment and time.  

The lattice containing all potential method-associations, M, is structured from top 
(i.e., intersection of all methods) to bottom (i.e., union of all methods) [15]. Each 
node in the lattice ( MM i ∈ ) is applied to the microarray dataset (D) retrieving the 
set of differentially expressed genes that are recognized by the method or method-
associations in such node D))M i (( .  

M3

M1 M2 M3 Mn

M1 M2 M3 M2 M3 M4 Mn-2 Mn-1 Mn

M1 M2 M3 … Mk

Mn-2 Mn-1 MnM2 M3 M4M1 M2 M3

Mn-1 MnM2 M3M1 M3M1 M2

MnM1 M2

M1 M2 M1 M3 M2 M3 Mn-1 Mn

M3

… …
… …

…
… …

… …

 

Fig. 2. Lattice structure containing all statistical methods potential associations 

2.3   Identification of Differential Profiles  

The set of genes previously identified in Section 2.2 serves as a means to create dif-
ferential expression profiles (i.e., sets of genes with coordinate changes in RNA 
abundance) between treatment TP , control CP  and subject. The applied representation 

(Fig. 3) allows us to identify different pattern behavior among patients inside the 
same experimental group, since this information may be missed if patients in the same 
experimental group were not plotted individually. 

We clustered separately genes in treatment and control groups. Therefore, genes 
belonging to a cluster in treatment, TP , can fit in more than one cluster in control, CP , 

and vice versa. We apply the K-means clustering algorithm [16] and identify differen-
tial profiles denoted as )( CT PP , which are pairwise relationships between profiles, TP   
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 Treatment - 6  Control - 3 

TREATMENT CONTROL

HOUR      0 2 4  6 9 24 0 2 4 6 9 24 0 2 4 6 9 24  0 2 4 6 9 24 

PATIENT      1                    2                 3                  4 

HOUR   0 2 4 6 9 24 0 2 4 6 9 24  0 2 4 6 9 24 0 2 4 6 9 24

PATIENT      5                    6                 7                  8  

Fig. 3. The expression profiles have been represented separately for each experimental group 
and patients arranged individually  

and CP , from treatment and control experiments, respectively. This relationship is de-
fined as the significant intersection of genes between TP  and CP , which is constrained 
by a threshold based on the typical statistical power of 80%. 

2.4   Creation of Method Association Rule 

We create a set of method association rules that, given a set of differential  
profiles queried by the user, suggests the most appropriate method-associations  
capable to retrieve them. The method association rules are created based on the  
lattice structure from Section 2.2, containing all potential method-associations, and 
the set of all possible differential profiles P from Section 2.4 defined as 

})(,....,){( 1 lCTCT PPPPP = where PPP jCT ∈)(  represents each of the differential pro-
files present in P. 

2.4.1   Method-Association Performance Evaluation 
We evaluate the performance of the method-associations MM i ∈  for the query pro-
files ),,..,( 1 s

S xxX =  over two objectives: specificity and sensitivity 

)/( FNTPTNySpecificit +=       )/( FNTPTPySensitivit += , (2) 

where TP stands for True Positives (i.e., genes exhibiting profile S
u Xx ∈ , which 

have been successfully retrieved by the applied method-association iM ), TN stands 
for True Negatives (i.e., genes exhibiting profile S

u Xx ∉  and not retrieved by iM ), 
FP stands for False Positives (i.e., genes exhibiting profile S

u Xx ∉ and retrieved by 
iM ) and FN  stands for False Negatives (i.e., genes exhibiting profile S

u Xx ∈ and 
not retrieved by iM ). These four factors are calculated as: 
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where uϕ  represents the genes in the microarray set D that exhibit the queried profile 
S

u Xx ∈ , and (D)M ii =η , the genes from D retrieved by the method-association iM .  

2.4.2   Method-Association Selection 
We evaluate the method-associations in M based on their specificity and sensitivity. 
These two objectives are always conflicting, so we use a multiobjective optimization 
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technique to maximize them, allowing us to detect all optimal methods-associations in 
M for the query profiles SX  [11], [12]. We define objectives )( 2,1 OO  corresponding 
to specificity and sensitivity respectively. 

2.4.3   Creation of a Set of Method Association Rules 
We use the non-dominated method-associations described in Section 2.4.2 to create 
the method association rules R },...,{ 1 kRR=  where RR f ∈ is defined as: 

fR : IF 1x IS f
CT PP 1)( AND , . . . , AND sx  IS 

f
sCT PP )(  THEN 

fz  IS  
iM WITH 

fC , (4) 

where )xx s,...,( 1  are the profiles SX  queried by the user; f
CT PP 1)( ,…, PPP f

sCT ∈)( ; 
Mz f ∈  is the appropriate method-association to retrieve SX  according to rule fR ; 

and fC  denotes a measure of the specificity/sensitivity levels for fz , defined as:  
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(5) 

where 1w  and 2w  are the weights associated to ),( 21 OO  respectively. These values 
are provided by the user based on the relevance of each of these objectives for the 
particular study. If no values are given, the standard (0.5, 0.5) are used. 

2.5   Prediction Using Method Association Rules 

The prediction phase works at two levels depending on the given input. If the input is 
a microarray data set D’, our methodology will provide the differential expression 
profiles P’ in the data set along with the optimal method-associations to retrieve such 
profiles. It might be the case that some of the differential profiles P’ uncovered from 
D’ were not included in the set of differential profiles P already learned by the meth-
odology. Consequently, the information provided as input will be used to update P 
and R. If the input is a set of query profiles SX , the output will consist of the optimal 
method-association hM  for SX  at a certain fC  value. To obtain these outputs, we 
apply matching and inference operations to the method association rule set [17].  

Given an association rule set },...,{ 1 kRRR = , for the differential profiles pro-
vided as the query set ),...,( 1 s

S xxX = , we define the matching degree Q of 
S

u Xx ∈ with the if-part of the association rule fR  as:  

f
uCTu

f
uCTu PPxPPxQ )(1))(( , −−= , (6) 

with being the Euclidean distance, and )( CT PP  the centroids of the profiles.  
Therefore, given a set of query profiles SX , we define the strength of activation of 

the if-part of the rule fR as: 

)))(,(,...,))(,(min()( 11
f
sCTs

f
CT

Sf PPxQPPxQXR = . (7) 

Let )),(( fSff CXRh denote the degree of association of the query profiles SX  
with the method-association iM according to rule fR and the specificity/sensitivity 
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level fC . This degree is obtained by applying a product operator between )( Sf XR  
and fC . The optimal method-association for the queried profiles SX  is defined as: 

iM / (ih
kf

iSi CXR
∈

= max)),( (fh )),( fSf CXR . (8) 

3   Results 

We apply our procedure to a data set derived from longitudinal blood expression pro-
files of human volunteers treated with intravenous endotoxin compared to placebo. 
We expect to identify molecular pathways that provide insight into the host response 
over time to systemic inflammatory insults, as part of a Large-scale Collaborative Re-
search Project sponsored by the National Institute of General Medical Sciences 
(www.gluegrant.org) [18]. 

The data were acquired from blood samples collected from eight normal human 
volunteers, four treated with intravenous endotoxin (i.e., patients 1 to 4) and four with 
placebo (i.e., patients 5 to 8) [18]. Complementary RNA was generated from circulat-
ing leukocytes at 0, 2, 4, 6, 9 and 24 hours after the i.v. infusion and hybridized with 
GeneChips® HG-U133A v2.0 from Affymetryx Inc., containing a set of 22283 genes.  

3.1   Identification of Differentially Expressed Genes  

The statistical methods harbored have been applied using the standard p-value 
05.0= . The number of differentially expressed genes retrieved by each of the 

methods from the original set of genes is 1M -10942 genes, 2M -7841, 3M -3904, 
4M -8023, 5M -13151, 6M -4588, 7M -6070, 8M -8557, 9M -3995, 10M -3367. 

These values show the number of significant genes retrieved by each of the statistical 
methods ranges in a wide rank. Moreover, the concordance rates also vary widely, in- 
 
Table 1. Coincidence between methods in the retrieval of genes. The number in each cell 
represents a ratio of coincidence between genes retrieved by the statistical method in  that col-
umn and the genes retrieved by the statistical method in that row relative to the total number of 
genes retrieved by the method in the row ( RowColumnRow /)( I ). 

% 1M  2M  3M  4M  5M  6M  7M  8M  9M  10M  
1M  -- 92.20 52.29 75.05 96.48 69.23 85.55 70.06 61.33 50.52 

2M  56.06 -- 34.07 57.84 85.27 59.54 71.11 62.64 50.57 42.98 

3M  82.19 88.07 -- 96.24 94.77 57.35 78.75 72.87 56.86 46.73 

4M  67.22 85.19 54.84 -- 95.16 55.49 73.65 70.20 51.49 42.83 

5M  55.20 77.80 33.45 58.94 -- 50.28 66.72 66.38 46.42 38.93 

6M  59.04 83.51 31.11 52.84 77.30 -- 89.63 56.56 60.64 49.38 

7M  58.36 79.79 34.18 56.10 82.05 71.70 -- 62.34 57.23 49.07 

8M  57.36 84.34 37.96 64.17 95.96 54.30 74.80 -- 49.62 40.51 

9M  62.10 84.21 36.63 58.21 84.74 72.00 84.95 61.36 -- 72.31 

10M  59.56 83.34 35.05 56.37 82.72 68.26 84.80 58.34 84.19 -- 

σ
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dicating that none of the methods subsumes the others (Table 1)(e.g., from the genes 
retrieved by 3M , only 31.11% are also retrieved by 5M , and 52.29% by 1M ).  

3.2   Association of Statistical Methods  

The lattice arranged in this particular work contains all potential combinations of un-
ion and intersection of the ten statistical methods applied. Thus, M’ is defined as 

}...,...,,...,
,...,,,.,,..,{

10932132132

31211021

MMMMMMMMMM
MMMMMMMM

⊕⊕⊕⊕⊕⊕⊕⊕
⊕⊕=  

We found that there is a relationship between the statistical methods and the differ-
ential profiles they are able to identify (see Section 2.2), having differential profiles 
identified by some methods and not by others. For example, the differential profile in 
(Fig. 4(a)) harbors 29 genes in our dataset D and is only retrieved by those statistical 
methods that take into account the time factor (e.g., 2M , which retrieves more than 
90% of these genes). This happens because the statistical methods that consider the 
treatment vs. control factor make an average of the expression values from patients 1 
and 2 with those of patients 3 and 4 by considering them as replicas. Consequently, 
the differential behavior between them is lost.  

 Treatment - 8 

 Treatment - 21  Control - 9 

 Control - 7 

TREATMENT CONTROL 

a)

b)

 

Fig. 4. Examples of differential profiles only identified by some of the statistical methods 

3.3   Identification of Differential Profiles  

The expression profiles have been represented separately for each experimental group 
(Section 2.3), and patients arranged individually. In our current problem, with eight 
patients, four treated with intravenous endotoxin (i.e., patients 1 to 4) and four with 
placebo (i.e., patients 5 to 8), and data retrieved over time at hours 0, 2, 4, 6, 9 and 24, 
each profile is represented by 24 consecutive time points (see Fig. 5). 

The differential profiles extracted from the treatment group show different levels of 
expression change. For example, there are sets of genes sharing very high variations 
in the levels of expression (e.g., profiles 15, 19, 21, and 22 in Fig. 5). In addition, 
some other profiles show differential characteristics for the patients (e.g., profiles 8 
and 16 in Fig. 5). In the control group, the profiles are more homogeneous than in the 
treatment group. 

Typically, testing the coincidence among different data sources and clustering 
methods serves as a tool to investigate the validity of the identified groupings [19]. 
We follow this guideline to increase the confidence in the obtained differential pro-
files. Therefore, we calculate the coincidence between our retrieved differential profi- 
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Fig. 5. Representation of the differential profiles obtained separately for the treatment and con-
trol groups using the statistical methods applied in the current work   

 
les and external information provided by the Gene Ontology database [20]. To ad-
dress this problem we developed an evolutionary multiobjective conceptual clustering 
methodology (R.R.Z., C.R.E., O.C., J.P.C., and I.Z., manuscript in preparation) that 
extracts clusters composed of features such as biological processes, molecular func-
tions and cellular components defined at different specificity levels, and compare 
these clusters with our differential profiles by using a coincidence index test based on 
the hypergeometric distribution [9], [10], [19].  

3.4   Creation of Method Association Rules  

We have arbitrarily selected six profiles (i.e., 1)( CT PP ,…, 6)( CT PP ) identifying a total 
of 1395 genes in our dataset D and plotted as treatment clusters 2, 3, 4, 5, 10 and 12 in 
Fig. 5. These profiles represent genes exhibiting non-uniform behavior for distinct pa-
tients in the treatment group, and genes with changes in a level of expression smaller 
than 5000. We applied our methodology to find the optimal method-associations iM  
to retrieve them.  

3.4.1   Method Association Performance Evaluation 
The results of the evaluation of the method-associations contained in the lattice M’ for 
the differential profiles are shown in Table 2, where the information relative to the 
sensitivity and specificity levels for the application of the most representative method-
associations over D is also specified. On the one hand, we observe that the union set 
of the genes obtained by seven of the statistical methods evaluated (i.e., methods 

10876532 ,,,,,, MMMMMMM ) contains the 1395 genes desired (i.e., sensitivity 
value of 1) but with a low level of specificity (i.e., value of 0.369). On the other hand, 
the intersection set of genes obtained by the same seven statistical methods has a very 
low level of sensitivity (i.e., only 95 out of the 1395 genes were retrieved), whereas 
the value for specificity is very high. In between these two extremes we see some 
other method-associations which evaluation reveal trade-off solutions between the 
specificity and sensitivity objectives (Table 2).  
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3.4.2   Method Association Selection 
Once the method-associations M have been evaluated, we search for the non-
dominance relations in their applications to the microarray dataset D. The decision is 
based on the levels of specificity and sensitivity in Table 2. The Pareto optimal front 
conformed by this set of non-dominated method-associations is represented in Fig. 6.  

Table 2. Specificity and sensitivity values for the method-associations. The non-dominated so-
lutions are pointed out with a star. 

Methods Specificity Sensitivity 

                               2M  0.611 0.707 

                               3M  0.826 0.205 

                               5M  0.448 0.785 

*                                  6M  0.813 0.447 

*                                  7M  0.747 0.587 

                              8M  0.625 0.537 

*                                 10M  0.859 0.322 

                      2M ∩ 3M  0.803 0.432 

*                         2M ∪ 3M  0.618 0.866 

*   Union of ( ),,,,,, 10876532 MMMMMMM  0.3690 1 

* Intersection  of ( ),,,,,, 10876532 MMMMMMM 0.983 0.066 
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Fig. 6. Results of the evaluation of the method-associations contained in the lattice M’ for the 
six selected differential profiles 

3.4.3   Creation of Method Association Rules 
The set of method association rules is created based on the evaluated profiles (i.e., 

1)( CT PP ,…, 6)( CT PP ), and the method-associations iM present in the Pareto optimal 
front of non-dominated solutions. The weights ),( 21 ww associated to the objectives 

),( 21 OO  are set to (0.5, 0.5) to calculate the specificity/sensitivity measure fC . We il-
lustrate two association rules extracted from the evaluation of M’ over the former pro-
files, which have the following form:  

1R : IF 1x  IS 1
1)( CT PP   AND ,…, AND 6x  IS 1

6)( CT PP  THEN 1Z  IS 6M WITH 1C  

where fC is calculated based on the specificity/sensitivity levels obtained on the ap-
plication of such method over 1)( CT PP  ,…, 6)( CT PP  profiles (Table 2):  
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631.0)5.05.0/()447.0*5.0()813.0*5.0(1 =++=C  

and: 2R : IF 1x IS 2
1)( CT PP AND,…,AND 6x IS 2

6)( CT PP THEN 2Z IS 32 MM U WITH 2C  

where 2C  is defined as: 742.0)5.05.0/()866.0*5.0()618.0*5.0(2 =++=C  

3.5   Prediction Using Method Association Rules 

To evaluate the ability of our computational approach to retrieve differential profiles, 
we have randomly selected 100 query sets SX  containing a random number of dif-
ferential profiles from the 24 actually available. Using the method association rules 
created, and averaging the results, we obtained an 86.92% of overall performance 
measurement [21] as a particular correlation coefficient implementation.5   Prediction 
using method association rules 

4   Discussion  

The emergence of microarray technology as a standard tool for biomedical research 
has necessarily led to the rapid development of specific analytical methods to handle 
these large data sets. Despite the multiplicity of methods devoted to identify differen-
tially expressed genes, there is a dearth of computational methods intended to opti-
mize use of a particular method or suite of methods. Our motivation was to address 
two frequently asked questions: 1) do all methods retrieve the same results with the 
same set of input data, and 2) are the results from methods which retrieve a smaller 
amount of genes subsumed in the results of methods retrieving a larger amount of 
genes? We have shown herein how commonly used statistical methods yield different 
results for the same data input: each statistical method applied neither identifies all 
observable differential profiles, nor subsumes the results obtained by the other meth-
ods (see Tables 1 and 2). Our method also addresses another common conundrum, 
specifically the need for computational methods to facilitate understanding of differ-
ential gene expression profiles, to establish comparisons among them, and to decide 
which the most reliable method to identify informational profiles is. In this context we 
propose a procedure that generates optimal associations of microarray analysis meth-
ods for the set of data being analyzed, based on the differential expression profiles 
exhibited by the genes in the dataset.  

The generation of the optimal method-associations is based on a set of previously 
obtained method association rules between differential profiles and the optimal 
method-associations to identify them. The methodology proposed is valid for either 
providing the optimal method-associations for a set of query profiles, or identifying 
all differential profiles in a given set of microarray data, suggesting the optimal 
method-associations for them and updating the set of possible profiles used for pre-
diction. Although we have applied our procedure to a time-course structured experi-
ment, we have to take into account that time-course experiments constitute more gen-
eral cases than simpler microarray problems where time is not a factor and microarray 
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samples are taken as single data points. Therefore, the methodology presented is also 
useful for simpler microarray experiments with single data points. 

This approach presents various advantages over the standard analytical methods 
usually applied to microarray experiments. First, it permits combining the results of 
independent analytical methods for microarray experiments. Our proposal consists of 
a conceptual clustering technique that combines the advantages of the methods ap-
plied. The combination of the union and intersection operators also provides the pos-
sibility of querying negative samples (i.e., genes which exhibit a given profiles but 
not others). Second, it permits interaction with the user in the selection of differen-
tially expressed profiles, where the user provides the differential profiles queried from 
the set of microarray data and receives the optimal combination of statistical methods 
to retrieve the genes exhibiting those profiles. Third, the representation used for the 
profiles is optimal, as plotting the patients sequentially presents advantages over the 
traditional one, where all biological replicates (i.e., patients in the same experimental 
group) are combined in just one set of values. The main advantage of this representa-
tion is that we can examine the behavior of the genes independently in each patient, 
making it possible for us to recognize different behaviors of genes across the patients 
in the same experimental group. These differences can help us to discover the influ-
ence of biological conditions not previously considered in the experiment such as 
gender or age. Finally, the system provides solutions based on a trade-off of specific-
ity vs. sensitivity, whereas other methods evaluate their solutions over one measure, 
usually a ratio of False Positives and the total number of genes retrieved [4], [5]. As a 
result of this trade-off, the procedure provides as output all non-dominated solutions 
in terms of specificity and sensitivity by application of multiobjective techniques.  

The computational procedure we propose solves many of the problems actually 
present in the process of analyzing a microarray experiment, such as the decision of 
analytical methodology to follow, extraction of results biologically significant for the 
experts, proper management of complex experiments harboring experimental condi-
tions, time-series and patients. Therefore, it sets up a robust platform for the analysis 
of all types of microarray experiments, from the simplest experimental design to the 
most complex, providing accurate and reliable results.  
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