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Abstract:

This paper shows some of the uses of the the concept of additive consistency in the resolution process
of group decision making (GDM) problems where experts express their preferences by means of fuzzy
preference relations. A consistency measure for both complete and incomplete fuzzy preference relations
is proposed and a particular induced OWA operator based on it, the AC-IOWA operator, is defined. The
consistency measure is also used to guide an iterative procedure that estimates the unknown values of an
incomplete fuzzy preference relation.
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1 Introduction -

In Group Decision Making (GDM) problems experts have to express their preferences by means of a
set of evaluations over the set of alternatives. Many reasons have been provided for fuzzy preference
relations to be chosen as the preference representation format, among which it is worth noting that of
being a useful tool in the aggregation of experts’ preferences into group ones [2,7]. However, there may
be cases in which experts do not have an in-depth knowledge of the problem to be solved. In such cases,
experts may not have a say on every aspect of the problem, and as a result they may present incomplete
preferences, i.e. some values may not be given or may be missing [4, 8].

Due to the complexity of most decision making problems, experts’s preferences may not satisfy formal
properties that fuzzy preference relations are assumed to verify. One of these properties, consistency, is
associated with the transitivity property. Many properties have been suggested to model transitivity of
fuzzy preference relations and, consequently, consistency may be measured according to which of these
different properties is satisfied. One of these properties is the “additive consistency”, which, as shown
in [3], can be seen as the parallel concept of Saaty’s consistency property in the case of multiplicative
preference relations [6].

In this paper we show some of the uses of the the concept of additive consistency in the resolution process
of GDM problems. We propose a new additive consistency measure for both complete and incomplete
fuzzy preference relations. Based on this measure, a new IOWA operator [10], which we call Additive-
Consistency based IOWA (AC-IOWA) operator, and an iferative procedure to estimate the missing values
of an incomplete fuzzy preference relation are presented. Finally, following the choice scheme proposed
in[1], i.e., aggregation followed by exploitation, a resolution process of GDM problems with incomplete
fuzzy preference relations, based on fuzzy majority and the IOWA operator presented in this paper, is
given.
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2  Preliminaries

The problem we deal with is that of choosing the best alternative(s) among a finite set, X = {z1, ..., z,},
(n > 2). The alternatives will be classified from best to worst, using the information known accordmg
to a set of experts, i.e., E = {e1,...,em }, (m > 2). Each expert ¢;, € E, will provide his/her preferences
by means of a fuzzy preference relation:

Definition 1 A fuzzy preference relation P on a set of alternatives X is a fuzzy set on the product set
X X X, ie., itis characterized by a membership function up: X x X — [0,1].

When cardinality of X is small, the preference relation may be conveniently represented by the n x n
matrix P = (pj;), being pi; = pp(zi,x;) Vi,j € {1,...,n} interpreted as the preference degree or
intensity of the alternative z; over x;.

Usual decision-making procedures assume that experts are able to provide preference degrees between
any pair of possible alternatives. This is not always possible, which makes missing information a problem
that has to be dealt with. In order to model these situations, in the followmg deﬁmtlons the concept of an
incomplete fuzzy preference relation is expressed:

Definition 2 A function f: X — Y is partial when not every element in the set X necessarily maps to
an element in the set Y. When every element from the set X maps to one element of the set Y then we
have a total function.

Definition 3 An incomplete fuzzy preference relation P on a set of alternatives X is a fuzzy set on the
product set X X X that is characterized by a partial membership function.

As per this definition, a fuzzy preference relation is complete when its membership function is a total
one. Clearly, the usual definition of a fuzzy preference relation (definition 1) includes both definitions of
complete and incomplete fuzzy preference relations. However, as there is no risk of confusion between
a complete and an incomplete fuzzy preference relation, in this paper we refer to the first type as simply
fuzzy preference relations. :

3 Additive Consistency as a Tool for GDM

As shown in [3], additive transitivity for fuzzy preference relations can be seen as the parallel concept of
Saaty’s consistency property for multiplicative preference relations [6]. The mathematical formulation
of the additive transitivity was given by Tanino [7]:

(pij — 0.5) + (pjr — 0.5) = (ps — 0.5) Vi, 4,k € {1,...,n} (1)

In this paper, we will consider a fuzzy preference relation to be “additive consistent” when for every
three options in the problem z;, z;, z; € X their associated preference degrees py;, ik, pix fulfil (1). An
additive consistent fuzzy preference relation will be referred as consistent throughout the paper.

3.1 Additive Consistency Measure
Expression (1) can be rewritten as:
pij + pjk — 0.5 = py. Vi, 5,k e {1,...,n} )

This expression allows a preference degree p;;. to be calculated using other preference degrees. Indeed,
let us denote

Pl = Pij + Pix — 0.5
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where cpf , means the calculated value of p;y, via 7, that is, using p;; and p;i. Obviously, if the information
provided in a fuzzy preference relation is completely consistent then cpfka Vi € {1,...,n}, and pj
coincide. However, because experts are not always fully consistent, the information given by an expert
may not verify (2). In these cases, the value

n .
Z JCpgA - Dik
j=1

ik

EPik =

can be used to measure the error expressed in a preference degree between two options. This error can be
interpreted as the consistency level between the preference degree p; and the rest of preference values
of the fuzzy preference relation. When ep;y, = 0 there is no inconsistency at all, and the higher the value
of epy, the more inconsistent is p; with respect to the rest of information.

The consistency level for the whole fuzzy preference relation P is defined as follows:
n
Z EPik
ik=1
CLp=2F )
ne—n

When C'Lp = 0 the preference relation P is fully consistent, otherwise, the higher CLp the more
inconsistent F.

When working with an incomplete fuzzy preference relation, equation (3) cannot be used to estimate
preference values. To cover these cases, we define:

A={(G) 7 €{l,...,n} Ai#j} .
MV ={(i,) | pij unknown, (4, ) € A}

EV = A\ MV

Hip ={j | (1,7), (7, k) € EV} Vi#k

CEp={(3,k) € EV |3j: (i,5),(j.k) € EV}

Z ‘Cpfk — Dik

jeH;
EPik = Z & FH
Z EPik
. (i,k)eCEp
CLp=ENECE

We call CEp the computable error set because it contains all the elements for which we can compute
every ep;x. This redefinition of C'L p is an extension of expression (4), because when P is complete both
CEp and A coincide and thus #CFEp = n® — n.

3.2 Additive Consistency based IOWA Operator

A rational assumption in the resolution process of a GDM is that of associating more importance to
those experts that provide the more consistent information. This assumption implies that GDM problems
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should be viewed as heterogeneous problems. Indeed, in any GDM problem with fuzzy preference rela-
tions, each expert e;, can have associated its fuzzy preference relation consistency index value (C'L phl
and therefore Yager’s procedure to evaluate the overall satisfaction of @ important criteria (experts) by an
alternative can be applied. This procedure associates a zero weight to those expert with zero importance
degree (see [9] for more details). In our case, we may as well implement these consistency level values
by an alternative approach, which consists of using them to induce the ordering of the IOWA operator to
be applied in the aggregation phase of the resolution process [5, 10]. Indeed, the set of consistency levels
may be used not just to associate ‘importance’ values to the experts but also to establish the ordering of
the preference values to be aggregated by ordering the experts from most to least consistent one. In this
case we obtain an IOWA operator that we call the additive-consistency IOWA (AC-IOWA) operator and
denote it as 7.

Definition 4 If a set of experts, . = {e1, ..., em}, provides preferences about a set of alternatives, X =
{z1,...,Tn}, by means of the fuzzy preference relations, {PY, ..., P™}, then the AC-IOWA operator
of dimension m, ®4E, is an IOWA operator whose set of order inducing values is {1l — CLp1,...,1 —
CLpm}.

4 Estimation of Missing Values in Incomplete Fuzzy Preference Relations Using
Additive Consistency

Usual procedures for GDM problems correct the lack of knowledge of a particular expert using the infor-
mation provided by the rest of the experts in conjunction with aggregation procedures [4,8]. Our proposal
estimates missing information in an expert’s incomplete fuzzy preference relation using only the rest of
preference values provided by that particular expert. By doing this, we assure that the reconstruction of
the incomplete fuzzy preference relation is compatible with the rest of the information provided by that
expert. In fact, our procedure is guided by the expert’s consistency level measured taking into account
only the provided preference values, because an important objective is to maintain experts’ consistency
levels. To develop the iterative procedure to estimate missing values two different tasks have to be carried
out:

4.1 Elements to be estimated in step A

The subset of missing values M V' that can be estimated in step h is denoted by EMV}, (estimated missing
values) and defined as follows:

h—1 h—1
EMV;, = {(i,k) e MV\ | JEMV, |3j:(,4),(,k) € EVU (U EMV;) }
=0 =0

with EMVy = 0.

When EMViaziter = 0 with maxlter > 0 the procedure stops because there will not be any more
maxlter

missing values to be estimated. Furthermore, if U EMV, = MV then all missing values are esti-

=0
mated and consequently the procedure is said to be successful in the completion of the fuzzy preference

relation.

4.2 Expression to estimate a particular value p;;.

In iteration A, to estimate a particular value p;; with (i,k) € EMV, the following three steps function
is applied:
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function estimate_p(i,k)

h—1
1. Iy = {j (i,5),(4,k) € EVU (U EMV.!) }

1=0
> i
!
2. Calculate Cp = "m‘

_ jeli

3. Make p;;, = cply + z with z € [-CLp, CLp] randomly selected,
subjectto 0 <cpj, +2z <1

end function

Therefore, a missing value p;; can be estimated when there is at least one chained pair of known pre-
ference values (pij, pjk) that allow the application of expression (3), in which case the average of the
values obtained using it, ¢p},, is calculated. The estimation of p; is obtained by adding a random value
z € [-CLp,CLp] to this average value. This is done in order to mairitain'the consistency level of the
expert, and is subject to the condition of being the final estimated value in the range of fuzzy preference
values [0, 1].

5 Resolution Process of a GDM with Incomplete Fuzzy Preference Relations

In this context, to obtain a set of solution alternatives X o, C X, the first step of a resolution process
of GDM problems with incomplete fuzzy preference relations might be the application of the iterative
procedure to estimate the missing values. Therefore, the resolution process presents the scheme given in
fig. 1.

. ExpertSet

!

 Incomplete Fuzzy -
 Preference Relations.

~aeDD and
QGNDD

Figure 1: Resolution Process of a GDM with Incomplete FPR

Once the experts provide their (incomplete) preference relations, two main steps are applied: (1) Estima-
tion of missing information, and (2) Application of a selection process

1. Estimation of missing information. In this step, incomplete fuzzy preference relations are completed
by using the iterative procedure presented in section 4.

2. Application of a selection process, which is carried out in two sequential phases:
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(a) Aggregation phase. A collective fuzzy preference relation is obtained by aggregating all the
individual fuzzy preference relations. This aggregation is carried out by applying the AC-
TOWA operator guided by a linguistic quantifier representing the concept of fuzzy majority (of
experts) desired to implement in the resolution process.

(b) Exploitation phase. Using again the concept of fuzzy majority (of alternatives), two choice
degrees of alternatives are used: the guantifier-guided dominance degree (QGDD) and the
quantifier-guided non-dominance degree (QGNDD) [1]. These choice degrees will act over
the collective preference relation resulting in a global ranking of the alternatives, from which
the set of solution alternatives will be obtained.

6 Conclusions

Additive consistency property can be used as a tool to solve GDM problems with complete or incomplete
fuzzy preference relations. In the last case, an iterative procedure to estimate missed preference values,
using only the preference values provided by that particular expert, has been presented. This is guided
by the expert’s additive consistency level, for which an additive consistency measure has been defined.
Based on this iterative procedure and on the additive consistency property, we have presented a new
decision model to solve GDM problems with incomplete fuzzy preference relations. In this decision
model, a new IOWA operator is used, the AC-IOWA operator. This operator permits the aggregation of
experts’ preferences in such a way that more importance is associated to the most consistent ones.
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