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Abstract

Parent-centric real-parameter crossover operators create the offspring in the neighbourhood of one of the parents, the
female parent. The other parent, the male one, defines the range of the neighbourhood. With the aim of improving the
behaviour of these crossover operators, we present three processes that are performed before their application. First, a
female and male differentiation process determines the individuals in the population that may become female or/and male
parents. Then, two different selection mechanisms choose the female and male parents from each group. In addition, we
tackle the election of the most adequate evolution model to take out profit from these parent selection mechanisms. The
experimental results confirm that these three processes may enhance the operation of the parent-centric crossover
operators.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the initial formulation of the Genetic Algo-

rithms (GAs) (Goldberg, 1989; Holland, 1975), the
candidate solutions were coded using the binary
alphabet, however, other coding types, such as the
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real coding, have also been taken into account to
deal with the representation of the problem. The
real coding approach seems to be adequate when
tackling optimization problems of parameters with
variables in continuous domains (Davis, 1991;
Deb, 2001, 2005; Herrera et al., 1998; Michalewicz,
1992). GAs based on real-number representation
are called real-coded GAs (RCGAs). Over the past
few years, many researchers have been paying atten-
tion to RCGAs (Chelouah and Siarry, 2000;
Herrera et al., 2005; Hervás-Martı́nez and Ortiz-
Boyer, 2005; Someya and Yamamura, 2005; Winter
.
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et al., 2005; Yang and Kao, 2000), and recently,
there has been an increasing interest in solving
real-world optimization problems using these
algorithms.

The crossover operator has always been regarded
as one of the main search operators in GAs (De
Jong and Spears, 1992; Kita, 2001) because it
exploits the available information in previous sam-
ples to influence future searches. This is why most
RCGA research has been focused on developing
effective real-parameter crossover operators, and
as a result, many different possibilities have been
proposed (Deb, 2001; Herrera et al., 1998, 2003).
Parent-centric crossover operators (PCCOs) are a
family of real-parameter crossover operators that
has currently received special attention. They
include fuzzy recombination (Voigt et al., 1995),
SBX (Deb and Agrawal, 1995), PCX (Deb et al.,
2002), XLM (Takahashi and Kobayashi, 2001),
vSBX (Ballester and Carter, 2003), PNX (Ballester
and Carter, 2004), and PBX (Lozano et al., 2004).
In general, these operators use a probability distri-
bution to create offspring in a restricted search space
around the region marked by one of the parent, the

female parent. The range of this probability distribu-
tion depends on the distance among the female par-
ent and the other parent involved in the crossover,
the male parent. Experiments carried out in Deb
et al. (2002) have shown that PCCOs arise as a
meaningful and efficient way of solving real-param-
eter optimization problems. Thus, the study of these
operators becomes a topic of major interest for
RCGA research.

So far, PCCO practitioners have assumed that
every chromosome in the population may become
either a female parent or a male parent. However,
it is very important to emphasize that female and
male parents have two differentiated roles:

• female parents point to the search areas that will
receive sampling points, whereas

• male parents are used to determine the extent of
these areas.

At this point, it is reasonable to think that some
chromosomes may be well-suited to act either as
female parents or as male parents. This means that
we may make use of different ways to select the
female and male parents. Thus, with the aim of
improving the behaviour of PCCOs, in this paper,
we propose three processes that are performed
before their application:
1. The female and male differentiation (FMD) pro-

cess. It creates two different groups: (1) GF with
the NF chromosomes in the population that can
be female parents; and (2) GM with the NM indi-
viduals that can be selected as male parents (NF

and NM are tuneable parameters). This process
may be considered as a preselection mechanism.

2. The selection of the female parent. We present a
new method for the selection of the female par-
ent, the uniform fertility selection (UFS), which
attempts to assign a fair number of offspring to
the chromosomes that visit the population, with
the aim of providing a widespread search. In
order to do that, it selects, as female parent, the
individual in GF with the lowest number of off-
spring generated.

3. The selection of the male parent. We consider the
negative assortative mating (NAM) (Fernandes
and Rosa, 2001; Matsui, 1999) for the selection
of the male parent. From a set of candidate mates
(from GM), this procedure chooses, as male par-
ent, the chromosome with the highest Euclidean
distance from the female parent. With this strat-
egy, we force the use of wide probability distribu-
tions that favour the creation of offspring very
dissimilar to the female parent.

An important feature of the FMD process is that
two different types of specialized RCGAs may be
obtained by adjusting the NF and NM parameters:
global RCGAs, which may offer reliability, and local

RCGAs, which may provide accuracy. In addition,
with the aim of producing a robust operation, we
propose a hybrid RCGA method that combines
these algorithms. First, it applies a global RCGA,
and then, a local RCGA. The best individuals in
population of the former become the individuals
in the initial population of the last one.

The paper is organized as follows. In Section 2,
we introduce relevant issues related to PCCOs and
describe the one considered in this paper, the
PBX-a operator (Lozano et al., 2004). In Section
3, we describe the basic algorithm step of the
Steady-State Genetic Algorithms (SSGAs), which is
considered as the most adequate model to take
out profit from PCCOs (Ballester and Carter,
2003, 2004; Deb et al., 2002). This election was
made because SSGAs may supply high selection
pressure, which becomes well-suited for the mean-
ingful operation of these operators. In Section 4,
we propose the new method, UFS, for the selection
of the female parent, and its effectiveness is
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Fig. 1. Effects of the PBX-a operator.
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compared with other parent selection mechanisms
presented in the literature that may be used for
female selection. In Section 5, we examine the effects
produced by the male selection mechanism sug-
gested, NAM, on the operation of PBX-a. We
should point out that UFS and NAM are presented
and studied before the FMD process in order to
facilitate their analysis (the initial experimental
study of UFS and NAM (Sections 4 and 5) was
made without applying the FMD process). In Sec-
tion 6, we present the FMD process and carry out
experiments to investigate its behaviour when is
incorporated in an RCGA along with UFS and
NAM. In Section 7, we explain the way that global
and local RCGAs may be designed by adjusting the
parameters associated with the FMD process (NF

and NM), and in addition, we make up a hybrid

RCGA model that combines global and local
RCGAs, and compare its performance with other
specific metaheuristics proposed in the literature
for continuous optimization. Finally, we draw some
conclusions in Section 8. In Appendix A, we present
an abbreviation index of the terms used in the
paper. In Appendix B, we provide a detailed discus-
sion about the selection mechanisms and replace-
ment strategies for SSGAs. In Appendix C, we
include the features of the test suite used for the
experiments. This appendix explains, as well, the
way the executed algorithms were started with a
skewed population not bracketing the global opti-
mum. And, in Appendix D and E, we present the
results of the studied algorithms.

2. Parent-centric crossover operators

PCCOs assign more probability to create off-
spring near the female parent than anywhere in
the search space. In particular, they determine the
genes of the offspring extracting values from inter-
vals defined in neighbourhoods associated with the
genes of the female parent, throughout probability
distributions. The ranges of these probability distri-
butions depend on the distance among the genes of
the female parent and the genes of the male parent.
Examples are fuzzy recombination (Voigt et al.,
1995), SBX (Deb and Agrawal, 1995), XLM
(Takahashi and Kobayashi, 2001), PCX (Deb
et al., 2002), PNX (Ballester and Carter, 2004),
and PBX (Lozano et al., 2004).

In this section, we deal with the main aspects of
PCCOs. In Section 2.1, we describe the PCCO
instance that is used in this work and in Section
2.2, we discuss different advantages of PCCOs and
explain why they are like self-adaptive real-parame-
ter mutation operators.
2.1. The PBX-a crossover operator

In this paper, we use the parent-centric BLX-a
crossover operator (PBX-a) (Lozano et al., 2004),
which is described as follows. Let us assume that
X = (x1 � � � xn) and Y = (y1 � � � yn) ðxi; yi 2 ½ai; bi� �
R; i ¼ 1 . . . nÞ are two real-coded chromosomes
that have been selected to apply the crossover
operator to them. PBX-a generates the offspring
Z = (z1 � � � zn), where zi is a randomly (uniformly)
chosen number from the [li,ui] interval, with
li = max{ai,xi � I Æ a}, ui = max{bi,xi + I Æ a}, and
I = jxi – yij. The parents X and Y, will be named
differently:

• X will be called female parent, and
• Y will be denominated male parent.

The effects of this crossover operator may be
observed in Fig. 1. The role of the female parents
is to point to the search areas that will receive sam-
pling points. On the other hand, the male parents
are used to determine the extent of these areas,
because the ranges of the probability distributions
used by PBX-a depend on the distance among the
female parent and this parent. a determines the
spread associated with the probability distributions
used to create offspring. It uses to get values from
the interval [0.5,1].
2.2. Advantages of the parent-centric crossover

operators

Experiments carried out in Deb et al. (2002) have
shown that PCCOs arise as a meaningful and
efficient way of solving real-parameter optimiza-
tion problems. We think that these results are due
to those PCCOs combine two advantageous
features:
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• PCCOs behave like a mutation operator. PCCOs
generate solutions that are close to the female
parent. In this way, they may be seen as a special
type of mutation. In fact, it is interesting to high-
light that most RCGA models based on PCCOs
do not use additional mutation operators (Bal-
lester and Carter, 2003, 2004; Deb et al., 2002).
On the other hand, two of the most important
avenues of research in evolutionary algorithms
that use real coding pay attention on mutation
as the primal operation to generate novel search
points. They are the evolution strategies (ESs)
(Beyer and Schwefel, 2002; Schwefel, 1995) and
the evolutionary programming (EP) (Fogel,
1995). They simulate evolution as a phenotypic
process, that is, a process emphasizing the behav-
ioural link between parents and offspring, rather
than their genetic link. In this way, the emphasis
is placed on the use of mutation operators that
generate a continuous range of behavioural
diversity and keep a strong correlation between
the behaviour of the parent and its offspring
(Fogel, 1994).
Deb adopts a similar idea to justify the work of
PCCOs (Deb, 2005): since each parent is carefully
picked by the selection mechanism, for most real-
parameter optimization problems it can be
assumed that solutions close to these parents
are also likely to be very good candidates. From
this claim, we may remark an additional out-
standing comment: the operation of PCCOs
may become particularly promising when they
are applied to highly fit individuals. This explains
that most RCGAs based on PCCOs appeared in
the literature are steady-state GAs, because they
may attain higher selection pressure levels than
generational GAs (De Jong and Sarma, 1993).

• PCCOs are self-adaptive crossover operators.
PCCOs define a probability distribution of off-
spring solutions based on some measure of dis-
tance among the parent solutions. If the parents
are located closely to each other, the offspring
generated by the crossover might be distributed
densely around the female parent. On the other
hand, if the parents are located far away from
each other, then the offspring will be sparsely dis-
tributed around it. Therefore, PCCOs may fit
their action range depending on the diversity of
the population by using specific information held
by the parents. In this way, depending on the cur-
rent level of diversity in the population, they may
favour the production of additional diversity
(divergence) or the refinement of the solutions
(convergence). This behaviour is achieved with-
out requiring an external adaptive mechanism.
In fact, in the recent past, RCGAs with crossover
operators with this feature have been demon-
strated to exhibit self-adaptive behaviour similar
to that observed in ESs and EP (Deb and Beyer,
2001; Kita, 2001). Differential Evolution (Storn
and Price, 1997) is another example of an Evolu-
tionary Algorithm that exhibits self-adaptive
behaviour. Moreover, Beyer et al. (Beyer and
Deb, 2001) argue that a variation operator that
harnesses the difference of the parents in the
search space is essential for the resulting evolu-
tionary algorithm to exhibit self-adaptive behav-
iour on the population level.

To sum up, we may conclude that PCCOs may be
seen as self-adaptive real-parameter mutation opera-

tors. Several self-adaptive mutation techniques have
been proposed for ESs and EP as well (see Bäck,
1996). However, there exists a clear difference:

• ESs and EP evolve the parameters of this opera-
tor, such as standard deviations, simultaneously
with the decision variables.

• PCCOs calculate implicitly the standard devia-
tions using information about the distribution
of the individuals in the population.

Finally, we should point out that since PCCOs
work like self-adaptive mutation operators, they
are amenable for the design of effective local search

procedures. In fact, in Lozano et al. (2004), a cross-

over hill-climbing based on PBX-a is proposed as
local searcher of a real-coded memetic algorithm.

3. Steady-state genetic algorithms

The generational GA creates new offspring from
the members of an old population using the genetic
operators and places these individuals in a new pop-
ulation which becomes the old population when the
whole new population is created. The Steady-state
GA (SSGA) is different to the generational model
in that there is typically one single new member
inserted into the new population at any one time.
A replacement/deletion strategy defines which mem-
ber in the current population is forced to perish (or
vacate a slot) in order to make room for the new off-
spring to compete (or, occupy a slot) in the next iter-
ation. SSGAs are overlapping systems, since parents
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and offspring compete for survival. The basic algo-
rithm step of the SSGA (Syswerda, 1989; Whitley,
1989) considered is shown below. It is adapted for
the application of the PBX-a operator.

1. Select a female parent.
2. Select a male parent.
3. Create an offspring applying PBX-a on

the parents.
4. Evaluate the offspring with the fit-

ness function.
5. Select an individual in the popula-

tion, which may be replaced by the

offspring.
6. Decide if this individual will be

replaced.

These steps are repeated until a termination con-
dition is achieved. In step 5, one can choose the
replacement strategy (e.g., replacement of the worst,
the oldest, or a randomly chosen individual). In step
6, one can choose the replacement condition (e.g.,
replacement if the new individual is better or uncon-
ditional replacement). In Appendix B, we describe
different techniques for the parent selection and
the replacement phase of the SSGA.

4. Female selection mechanism: The uniform
fertility selection

Many replacement strategies presented for
SSGAs (Appendix B.2) may introduce a possible
drawback: some individuals may reside in the popula-

tion during a long time. This situation may cause
that particular search zones are excessively
exploited, at the expense of ignoring other areas
showing promise. One way to avoid the risks
derived from this problem lies in the limitation of
the number of offspring the chromosomes may
receive during their lifetime. Different parent selec-
tion schemes have been presented to implement this
idea (Branke et al., 1999; De Jong and Sarma, 1993;
Ghosh et al., 1998).

In this section, we present a new parent selection
mechanism, called uniform fertility selection (UFS),
which restricts, as well, the number of offspring
allowed to the chromosomes in the population.
UFS takes into account the number of times that
a chromosome has been selected as female parent.
Then, it chooses the less times selected chromosome.

UFS is designed to favour diversity only; it does
not cause a search bias towards the fittest individu-
als. Thus, it should be combined with a replacement
strategy that may yield some degree of selection
pressure. In particular, we proposed to apply UFS
along with the replace worst strategy (RW) (Section
B.2 in Appendix B), which introduces high selection

pressure because it maintains the best individuals
appearing so far. In this way, all the individuals in
the population represent promising search zones
that deserve to be explored by means of PBX-a.
This justifies the way UFS works: it induces a wide-
spread search by providing the same opportunities
to the chromosomes in the population of being
female parents.

With the combination of UFS and the RW strat-
egy (UFS&RW), we put together a diversification
parent selection scheme that favours the production
of offspring representing very different search zones
with a replacement method that introduces high
selection pressure. Other authors, with the aim of
providing an effective search, have suggested GA
schemes that connect techniques with high explora-
tion and techniques with high exploitation. For
example, in Shimodaira (1996), an algorithm is
implemented employing large mutation rates and
population-elitist selection. In Eshelman (1991), a
GA is proposed, which combines a disruptive cross-
over operator with a conservative selection strategy.
Finally, in Kemenade et al. (1995), authors suggest
that higher selection pressures allow the application
of more disruptive recombination operators.

In Section 4.1, we carry out an experimental
study of the performance of the combination
UFS&RW by means of its comparison against other
possible combinations of selection mechanisms and
replacement strategies. In Section 4.2, we investigate
the behaviour of UFS and its influence on the num-
ber of offspring that receives the chromosomes that
visit the population.

4.1. Study of the combination of UFS

and the RW strategy

The performance of SSGAs will be strongly
determined by the exploration/exploitation balance
derived from the combination between the parent
selection mechanism and the replacement strategy
being applied. The objective of this section is to
detect whether the balance maintained by the com-
bination UFS&RW produces beneficial effects on
the SSGA performance. In order to do this, we com-
pare empirically this combination against other
combinations of the selection mechanisms and the



Table 1
Combinations of selection mechanisms and replacement strategies

Selection mechanism (TS, RS,
DS, FUSS, and DOS)

Replacement strategy (RW, FIFO, and RTS)

Selection pressure Diversity Div. & Sel. pres.

Selection pressure TS&RW TS&FIFO TS&RTS
Diversity RS&RW – RS&RTS
Div. & Sel. pres. DS&RW DS&FIFO DS&RTS

FUSS&RW FUSS&FIFO FUSS&RTS
DOS&RW DOS&FIFO DOS&RTS
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replacement strategies described in Appendix B.
They are shown in Table 1. The x parameter asso-
ciated with RTS was set to 5, and nT, in TS, was
set to 2.

The eight types of combinations in Table 1 allow
us to analyze the effects derived from the union of
different ways of managing diversity and selection
pressure through the selection mechanism and the
replacement strategy. The combination between
selection mechanism and replacement strategy
favouring diversity only has not been considered;
because it reduces to random search (the selection
pressure is critical in ensuring sufficient optimiza-
tion progress).

We have carried out minimisation experiments
on six representative problems of the test suite
described in Appendix C. They include:

• Three unimodal functions, fsph, fRos, and fSch.
• Two multimodal functions, fRas and fGri, and
• One complex real-world problem, Psle.

We considered this reduced set of test functions
in order to facilitate the analysis of UFS. We have
Table 2
Results for the SSGAs compared

Algorithm fsph fRos fSch fRas

TS&RW 4.11e�61� 1.84e+01+ 3.18e�04+ 9.65e
TS&FIFO 2.06e+01+ 6.27e+03+ 5.77e+03+ 1.78e
TS&RTS 1.77e�26+ 1.87e+01+ 1.91e+00+ 4.76e
RS&RW 1.04e�39+ 1.96e+01+ 7.22e�02+ 5.30e
RS&RTS 2.48e�15+ 1.94e+01+ 5.71e+01+ 3.48e
DS&RW 4.23e�55+ 1.90e+01+ 8.62e�04+ 9.10e
DS&FIFO 2.96e+01+ 1.01e+04+ 6.84e+03+ 1.92e
DS&RTS 2.19e�22+ 2.21e+01+ 1.42e+01+ 3.32e
FUSS&RW 1.42e�75� 1.58e+01� 7.78e�06� 2.05e
FUSS&FIFO 2.45e+01+ 1.20e+04+ 1.28e+04+ 1.77e
FUSS&RTS 2.41e�08+ 2.06e+01+ 6.67e+02+ 4.76e
DOS&RW 4.92e�43+ 1.79e+01+ 7.45e�02+ 7.62e
DOS&FIFO 2.70e+01+ 9.54e+03+ 6.91e+03+ 1.89e
DOS&RTS 6.43e�16+ 2.72e+01+ 9.88e+01+ 5.50e

UFS&RW 2.86e�56 1.56e+01 8.90e�08 2.64e
implemented several SSGAs that are distinguished
uniquely by the selection mechanism and the
replacement policy. They use real coding and
apply the PBX-a operator with a fixed value for
a (a = 1). The population size was set to 60 individ-
uals. No mutation operator was used. The selection
mechanisms considered are used to determine the
female parents. The male parents are selected at
random. And, all the algorithms were executed 50
times, each one with a maximum of 100,000
evaluations.

Table 2 shows the results obtained. The perfor-
mance measure used is the average of the best fitness
function found at the end of each run. In addition, a
two-sided t-test at 0.05 level of significance was
applied in order to ascertain if the differences in
the performance for UFS&RW are significant when
compared against the ones for the other algorithms.
We denote the direction of any significant differ-
ences as follows:

• A plus sign (+): the performance of UFS&RW is
better than the one of the corresponding
algorithm.
fGri Psle + � �
+01+ 1.02e�02+ 2.48e+02+ 5 0 1
+02+ 1.95e+01+ 6.27e+02+ 6 0 0
+01+ 2.32e�02+ 8.74e+01� 5 0 1
+01+ 1.11e�02+ 1.40e+02� 5 1 0
+01+ 1.53e�02+ 7.72e+01� 5 0 1
+01+ 1.74e�02+ 1.95e+02+ 6 0 0
+02+ 3.17e+01+ 8.10e+02+ 6 0 0
+01+ 1.42e�02+ 9.48e+01� 5 1 0
+02+ 2.98e�02+ 3.67e+02+ 3 2 1
+02+ 2.71e+01+ 8.77e+02+ 6 0 0
+01+ 1.64e�02+ 9.65e+01� 5 1 0
+01+ 3.02e�02+ 3.25e+02+ 6 0 0
+02+ 2.87e+01+ 8.32+02+ 6 0 0
+01+ 3.40e�02+ 1.71e+02+ 6 0 0

+01 3.20e�03 1.20e+02



1094 C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 185 (2008) 1088–1113
• A minus sign (�): the algorithm improves the
performance of UFS&RW.

• An approximate sign (�): non significant
differences.

The places where these signs do not appear corre-
spond with the performance values for UFS&RW.
We have included in the Table 2 the last three col-
umns to facilitate the analysis of the results. They
have the number of improvements, reductions, and
non-differences (according to the t-test) in the per-
formance for UFS&RW with regards to the one
for the other algorithms.

We may observe that UFS&RW consistently
outperforms all the other algorithms, because it
achieves remarkable amount of improvements and
few reductions. In addition, the number of non-dif-
ferences is too small. These promising results reveal
that UFS and RW interact adequately to allow the
best solutions to be reached. With the application of
RW, the population accumulates information about
the location of the most promising regions, and with
UFS, an exhaustive exploration of these zones is
carried out.

Next, we examine the characteristics of the com-
binations that reach the best solutions. Table 3 dis-
plays the five algorithms that returned the best
results for each test problem.

An inspection of Table 3 allows us to make the
following comments:

• The combination UFS&RW arises as the most
robust one. In fact, it provides the best results
for four out six test problems.

• In general, the RW replacement strategy is very
successful. Most of the best algorithms are based
on this strategy.

• The RTS replacement strategy becomes compet-
itive for the complex problems, fRas, fGri, and
Psle. This is due to its ability to maintain popula-
tion diversity (it is a crowding method). In partic-
ular, the union of RTS and RS (selection
Table 3
Algorithms that provide the best results

fsph fRos fSch

FUSS&RW UFS&RW UFS&RW
TS&RW FUSS&RW FUSS&RW
UFS&RW DOS&RW TS&RW
DS&RW TS&RW DS&RW
DOS&RW TS&RTS RS&RW
mechanism that favours diversity only) provides
a robust operation for these problems. This com-
bination was already suggested in Harik (1995).

• FUSS takes part of two combinations that are
worthy of remark: FUSS&RW and FUSS&RTS.
The first achieves promising results for the uni-
modal problems. The second appears among
the best performing algorithms for the two com-
plex problems fRas and Psle. FUSS prefers indi-
viduals that belong to sparsely populated fitness
regions. In this way, FUSS shares with UFS the
aim of providing a uniform sampling on the
search areas represented in the current popula-
tion. The good results of FUSS and UFS allow
us to conclude that this idea represents a promis-
ing way to improve SSGA performance.

• The combination TS&RW has been advanta-
geous for the unimodal problems, fsph, fRos, and
fSch. However, it does not appear among the best
performing algorithms for the complex problems.
This is reasonable, because both TS and RW are
focused on the production of selection pressure
only, which is beneficial for the unimodal prob-
lems and detrimental for the complex ones.

4.2. Effects of UFS

In this section, we attempt to discover those
behavioural characteristics that allow UFS to deci-
sively affect SSGA performance. In order to do this,
we have introduced Fig. 2, which compares UFS
and the selection mechanisms used in Section 4.1.
It displays the percentage of chromosomes that,
during their lifetime, either they were never selected
as female parent or once or twice or so on, when
tackling with fsph. The RW replacement is used as
well.

We may remark the following facts:

• Working with UFS, most chromosomes that
went through the population have produced
fRas fGri Psle

UFS&RW UFS&RW RS&RTS
DS&RTS TS&RW TS&RTS
RS&RTS RS&RW DS&RTS
TS&RTS DS&RTS FUSS&RTS
FUSS&RTS RS&RTS UFS&RW
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Fig. 2. Distributions of the number of offspring.
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two or three offspring. Thus, all the zones repre-
sented in the population have been equally
explored. However, a remarkable circumstance
that occurs with all the other selection methods
is that considerable percentage of chromosomes
did not generate offspring during their stay in
the population. This means that certain promis-
ing search regions that deserve attention are not
sampled with the enough interest and fall into
oblivion. This may be very detrimental for the
complex problems.

• TS, FUSS, and DOS assign many offspring to few
chromosomes and few offspring to many chromo-
somes. This is caused, firstly, because the selection
method show a high tendency to select the best
individuals in the population as female parents,
and secondly, because of the application of RW,
which retains the best individuals in the popula-
tion, giving them the opportunity of producing
offspring during long time periods.

• RS and DS slow down the imbalance caused by
the previous selection mechanism. On the one
hand, RS eliminates the bias towards the election
of the fittest individuals. On the other hand, DS
favours the selection of both better and worse
solutions.
5. Male selection mechanism: The negative

assortative mating

In this section, we undertake the study of the
selection of the male parent. This task may be car-
ried out by means of a mating selection mechanism,
which determines the way the chromosomes are
mated to apply the crossover to them. In the con-
ventional GA, no mating strategy is applied to the
results of selection; that is, parents are approved
without any further examination after they are cho-
sen at random or just by fitness. Indeed, mating in
nature is more complicated. Inspired by this obser-
vation, a number of mating strategies for GAs have
been proposed to deal with the issues of population
diversity or selection pressure in a natural way (Ting
et al., 2003; Bandyopadhyay et al., 1998; Craighurst
and Martin, 1995; Fernandes and Rosa, 2001;
Matsui, 1999).

We have chosen the Negative Assortative Mating

(NAM) (Fernandes and Rosa, 2001) as the tech-
nique for the male parent selection. Assortative
mating is the natural occurrence of mating between
individuals of similar phenotype more or less often
than expected by chance. Mating between individu-
als with similar phenotype more often is called posi-
tive assortative mating and less often is called
negative assortative mating. Fernandes and Rosa
(2001) implement these ideas to design two mating
selection mechanisms. A first parent is selected by
the roulette wheel method and nass chromosomes
are selected with the same method (in our experi-
ments nass is equal to 5, and all the candidates are
selected at random). Then, the similarity between
each of these chromosomes and the first parent is
computed (similarity between two real-coded chro-
mosomes is defined as the Euclidean distance
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between them). If assortative mating is negative

(NAM), then the one with less similarity is chosen.
If it is positive, the genome more similar to the first
parent is chosen to be the second parent. Clearly,
NAM may increase genetic diversity in the popula-
tion by mating dissimilar genomes with higher prob-
ability. There exists a mechanism similar to NAM,
which is called correlative tournament selection

(Matsui, 1999). It chooses the mate with higher fit-
ness and Hamming distance from a set of
candidates.

We have chose NAM as technique for the male
parent selection due to two reasons:

• NAM forces the creation of diversity following a
direct way. Most of the mating selection mecha-
nisms presented in the literature (Craighurst
and Martin, 1995; Eshelman and Schaffer, 1991;
Bandyopadhyay et al., 1998) are really decision-

making strategies, because they determine
whether two parents may be crossed over or
not. Their main ideas are to wait that an ade-
quate pair of parents (fulfilling a particular con-
dition) could arrive at any moment. On the
other hand, NAM acts directly; it finds the pair
of parent that really will promote the generation
of diversifying offspring.

• In an SSGA with the RW replacement, the suc-
cessive application of NAM and PBX-a may pro-
duce a self-adaptive diversification processing that
favours the generation of useful diversity (i.e.,
population diversity that in some way helps pro-
duce good solutions (Mahfoud, 1995)).

In Section 5.1, we explain the second of these rea-
sons in detail and in Section 5.2, we compare the
performance of NAM with the one of random mat-
ing, which was applied up to now in these
experiments.
5.1. Self-adaptive diversification by means

of NAM and PBX-a

An SSGA with the RW replacement maintains a
population with the best elements appeared so far
(elite population). There are two important kinds
of information in an elite population that may be
exploited to generate new elements: (1) where the
best elements are located and (2) how these elements
are distributed (close together, disperse, etc.). Pre-
cisely, some real-parameter crossovers may obtain
their self-adaptive ability because they make use of
the second type of information.

NAM manages the second type of information as
well, with the aim of influencing the extent of the
areas on which PBX-a samples the offspring. In par-
ticular, it extracts information from the elite popu-
lation about how far away promising individuals
are distributed located from each other. Then,
PBX-a may exploit this information with two
intentions:

• To use the widest areas for the generation of off-
spring. The idea is to create offspring the most
distant from their parents as possible, in order
to contribute diversity to the population.

• To produce offspring with high fitness quality.
Since we use information about the distribution
of the best individuals to generate new chromo-
somes, we may expect that these ones will show
suitable fitness values.

In this way, the successive application of NAM
and PBX-a allows the two main objectives of a
GA to be tackled simultaneously: to obtain high-

quality solutions and to enhance population diversity,
that is, to promote useful diversity. In addition, we
should point out that since the diversity levels pro-
vided by NAM and PBX-a depend directly on the
distribution of the individuals in the population,
we may say that they carry out a self-adaptive diver-

sification processing.

5.2. Empirical analysis of NAM

In this section, we analyse the way NAM affects
the performance of an SSGA that applies the RW
replacement. In addition, we are particularly inter-
ested on ascertaining the influence of the a parame-
ter associated with PBX-a on the action of NAM,
because a determines the spread associated with
the probability distributions used by this operator
to create offspring. In order to do this, we have
introduced Table 4. It compares the performance
of algorithms that apply random mating for male
parent selection with others that incorporate
NAM. Different values for a were tried, a = 0.7,
0.8, 0.9, and 1. We have experimented with other
values for this parameter; however they offered very
poor results and thus were discarded. All the algo-
rithms consider UFS as female parent selection
and the RW replacement. The first type of algo-
rithms will be denoted as RM-a (random mating)
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and the second NAM-a. We indicate, in bold, the
result that becomes significantly the best (according
to a t-test). If there are not any differences between
the corresponding algorithms, neither of them
appears remarked.

We clearly notice that, in general, with a = 0.7
and a = 0.8, NAM provides meaning improvements
on most test problems with regards to the corre-
sponding RM algorithms. With a = 0.9 and a = 1,
it attains the best performance as well for the com-
plex fRos, the multimodal fRas, and the complex real-
world problem Psle. These two facts suggest that
NAM is a promising diversification tool that is able
to empower the performance of SSGAs. This affir-
mation may be reinforced with Table 5, which out-
lines the five algorithms that returned the best
solutions for each problem. We point out two
important remarks from this table:

• For most problems, the best performing algo-
rithm is based on NAM.

• In general, the best solution for each problem is
reached by NAM using different a values. For
the multimodal problems, fRas and fGri, and the
complex Psle the most effective a value is 1,
whereas for the unimodal problems lower values
become more beneficial. This indicates that a has
an important influence on the effectiveness of
NAM.
Table 4
Results obtained using NAM

Algorithm fsph fRos fSch

RM-0.7 1.97e�066 2.24e+001 5.41e�003
NAM-0.7 9.88e�095 1.91e+001 7.97e�011

RM-0.8 9.89e�080 1.98e+001 5.29e�008
NAM-0.8 1.44e�081 1.47e+001 6.05e�008

RM-0.9 4.35e�071 1.56e+001 5.87e�009

NAM-0.9 3.67e�060 1.42e+001 2.68e�003

RM-1.0 2.86e�056 1.56e+001 8.90e�008

NAM-1.0 2.10e�041 1.48e+001 3.28e+000

Table 5
Algorithms that provide the best results

fsph fRos fSch

NAM-0.7 NAM-0.9 NAM-0.7
NAM-0.8 NAM-0.8 RM-0.9
RM-0.8 NAM-1.0 RM-0.8
RM-0.9 RM-0.9 NAM-0.8

RM-0.7 RM-1.0 RM-1.0
• Despite the previous fact, we may consider that
the algorithm based on NAM with a = 0.8,
NAM-0.8 (boldfaced in Table 5), achieves an
acceptable robustness with regard to the other
algorithms, because it appears among the best
algorithms for all the problems considered in
our experimentation. None of the remaining
algorithms allows a better operation to be
obtained.

Another interesting observation in Table 4 is that
the results of NAM with a = 0.9 and a = 1 are
worse than those for the corresponding RM algo-
rithms for the unimodal fsph and fSch, and for the
non complex multimodal fGri. The application of
NAM along with the use of high values for a forces
PBX-a to use ranges for the probability distribu-
tions that are too long (see Fig. 1). This may be suit-
able for complex problems where the diversity can
help to reach promising search zones (as we have
observed, a = 1 is the best choice for these prob-
lems); however, this excessive amount of explora-
tion becomes disadvantageous for problems with
the features of the aforementioned test functions.

6. Female and male differentiation process

In this section, we present a FMD process that
determines the individuals in the current population
fRas fGri Psle

1.65e+002 2.51e�002 6.60e+002
7.49e+001 5.17e�003 1.89e+002

8.09e+001 4.58e�003 3.39e+002
3.08e+001 6.84e�003 7.14e+001

4.08e+001 4.04e�003 2.07e+002
1.45e+001 8.81e�003 3.50e+001

2.64e+001 3.20e�003 1.20e+002
1.04e+001 1.00e�002 2.25e+001

fRas fGri Psle

NAM-1.0 RM-1.0 NAM-1.0
NAM-0.9 RM-0.9 NAM-0.9
RM-1.0 RM-0.8 NAM-0.8

NAM-0.8 NAM-0.7 RM-1.0
RM-0.9 NAM-0.8 NAM-0.7
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that may become female parents only, or male par-
ents only, or, even, both female and male parents.
This process should be carried out before the appli-
cation of the female and male selection mechanisms
(which will be applied on the corresponding
groups). In this way, it may be considered as a pre-

selection mechanism.
The proposed FMD process needs two parame-

ters, NF and NM, with NF 6 N and NM 6 N (N is
the population size) and obtains GF and GM as fol-
lows (Fig. 3):

• GF consists of the NF best individuals in the pop-
ulation, and

• GM is made of the NM best individuals in the
population.

In addition, it should be ensured that either
NF = N or NM = N is fulfilled. Next, we provide
two remarks derived from this definition:

1. In the case of NF = NM, there is not female and
male differentiation, reaching the standard way
of applying PCCOs.

2. GF \ GM 5 ;, which means that some individu-
als may be both female and male parents (see
Fig. 3). In particular, the Nmin best individuals
in the population have this characteristic, where
Nmin = min{NF,NM}. We have assumed that
these individuals may be well-suited to act as
both female and male parents.

Another important feature of this FMD process
is that it introduces selective pressure in the pro-
cesses of selection of the female and male parents
(which are applied later). In addition, we may point
out that:
Fig. 3. Female and male differentiation imposed by the FMD
process, considering: (a) NF < NM and (b) NF > NM. (We assume
that the two populations are ordered based on the fitness values
of the chromosomes.)
• The impact of the NF parameter on this selective
pressure is simple and predictable.

• The range of selective pressure that can be made
by varying the NF parameter is very large.

These are two desirable features for a selection
process (Bäck, 1994). On the one hand, when NF

is low, high selection pressure degrees are achieved,
which forces the search process to be very focused in
the best regions. On the other hand, if NF is high,
the selection pressure is softened, providing an
extensive sampling on the search areas represented
in the current population.

Now, we may outline our RCGA model based on
PCCOs, which will be called FMD-U&N. The
FMD process is performed before the application
of UFS and NAM and returns GF and GM. Then,
UFS selects a female parent from GF and NAM
picks a male parent from GM. The remaining steps
are accomplished following the usual way. Its basic
algorithm step is the following:

1. Construct GF and GM applying FMD
process.

2. Select a female parent from GF using

UFS.
3. Select a male parent from GM using NAM.
4. Create an offspring applying PBX-a to

the parents.
5. Evaluate the offspring with the fit-

ness function.
6. Introduce the offspring in the popu-

lation using the RW strategy.

We should recognize that the idea of incorporat-
ing chromosome differentiation in GAs is not new.
Other authors (Bandyopadhyay et al., 1998; Goh
et al., 2003) added a sexual differentiation process
in order either to investigate new models or to have
a clear and balanced separation of functions
between exploration and exploitation. The main dif-
ference with the model proposed in this paper comes
from taking into account the different roles of the
parents in the PCCOs.

Next, we investigate the influence of the parame-
ters associated with the FMD process, NF and NM,
on the performance of the FMD-U&N algorithm.
We have carried out experiments with this algo-
rithm on the test problems used in Sections 4.1
and 5.2, considering different values for NF and
NM (NF = 1, 5, 25, 50, 100, 200, 300, and 400
individuals, and NM = 25, 50, 100, 200, 300, and



Table 7
Best combinations with NF 5 NM versus best combinations with
NF = NM

Test problem NF,NM Average best fitness

fsph 5, 100* 9.98e�187
50, 50 6.19e�095

fRos 5, 100* 1.56e+000
50, 50 1.46e+001

fSch 25, 50* 1.01e�012
50, 50 3.54e�010

fRas 400, 100* 2.60e+000
200, 200 3.58e+000

fGri 400, 300 3.48e�004
300, 300 5.42e�004

Psle 200, 400* 5.45e+000
400, 400 7.84e+000
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400 individuals). All the possible combinations of
these values were investigated. Table 11 (Appendix
D) shows the results obtained.

Now, we may examine the characteristics of the
NF and NM combinations that reach the best solu-
tions. Table 6 displays the fifteen combinations that
returned the best results for each test problem in a
sorted way. We have underlined, in boldface, the
best combinations with NF = NM, which represent
the standard way of implementing the RCGAs
based on PCCOs.

For every test function, the combination that
achieves the best results fulfils that NF 5 NM, that
is, it implies female and male differentiation. We
have applied a t-test in order to ascertain if differ-
ences in the performance of the best combinations
with NF 5 NM are significant when compared
against the one for the best combinations with
NF = NM (we have introduced a ‘*’ sign when this
occurs). Table 7 has the results. For most test func-
tions, we may see that the female and male differen-
tiation allows the performance of FMD-U&N to be
improved. Only for fGri, a comparable behaviour is
achieved.

Another important observation, from Table 6, is
that the best solution for each problem is reached by
using different values for NF and NM. In particular,
we may remark the big differences between the best
NF values for the multimodal and complex prob-
lems (fRas, fGri, and Psle) and the ones for the unimo-
dal problems (fsph, fRos, and fSch):

• Low NF values (e.g. 5 or 25 individuals) induce
very high selection pressures, which may be suit-
Table 6
Best NF and NM values used by the FMD-U&N algorithm

fsph fRos fSch

5, 100 5, 100 25, 50
5, 50 5, 200 50, 50

1, 200 5, 300 5, 100
25, 50 25 100 100, 25
5, 200 25 200 25, 100
1, 300 25 300 5, 200
25, 100 5 400 200, 25
5, 300 25 400 100, 50
1, 400 25 50 5, 300
50, 50 50 100 50, 100
100, 25 50 200 300, 25
5, 400 50 300 25, 200
200, 25 50, 50 5, 400
50, 25 50, 400 400, 25
25, 200 100, 50 200, 50
able to obtain accuracy on unimodal problems.
However, this is not the unique determinant
aspect to achieve success for this type of prob-
lems (and in particular, in our case, since we fol-
low a skewed initialisation (Section C.1 in
Appendix C)). The use of high NM values (e.g.
50 or 100 individuals) enlarges the sampling
zones. This circumstance has produced synergetic
effects with the selection pressure, ensuring that
the algorithm may progress towards better zones.

• The use of high NF values along with the applica-
tion of UFS induces a scattered search, due to
different female parents become the centre of
attention of the PCCO. This high exploration
of the search space is essential to provide reliabil-

ity for multimodal and complex problems. In
fRas fGri Psle

400, 100 400, 300 200, 400
300, 100 200, 400 300, 400
200, 200 300, 300 400, 400

400, 50 300, 400 50, 400
100, 400 400, 200 400, 300
200, 100 100, 300 300, 300
100, 300 300, 200 400, 200
100, 200 200, 300 100, 400
300, 200 100, 400 200, 300
200, 300 300, 100 300, 200
300, 50 50, 400 100, 300
50, 400 200, 200 50, 300
200, 50 100, 200 25, 400
400, 25 400, 400 200, 200
50, 300 25, 400 100, 200
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addition, the application of very high NM values
(e.g. 400 individuals) reinforces this exploration
ability, inducing a promising performance on
the most complex problems (e.g. Psle).

Thus, we may conclude that the FMD process let
us easily tune the SSGA in order to obtain promis-
ing results on unimodal problems, by using low val-
ues for the NF parameter, or on multimodal and
complex problems, by using higher values for this
parameter.

7. Global and local RCGAs

An important conclusion obtained from Section 6
is that the FDM process allows the application of
PCCOs to be more effective. This is possible due to:

• The large range of selective pressure obtained by
varying NF, and

• The possibility of supplying adequate exploration
levels by controlling NM.

These two characteristics allow us to design two
different kind of specialized search algorithms:

• RCGAs that offer reliable solutions when they
attempt to solve multimodal and complex prob-
lems. An example may be the FMD-U&N algo-
rithm adopting NF = 200 and NM = 400 (see
Table 6), and

• RCGAs that reach accurate solutions when they
deal with unimodal problems. An example may
be the FMD-U&N algorithm using NF = 5 and
NM = 100 (see Table 6).

In this paper, these algorithms will be termed glo-

bal RCGAs and local RCGAs, respectively. In
order to achieve a robust operation for problems
with different characteristics, global and local
RCGAs should be hybridized in such a way that
their beneficial advantages might be offered simulta-
neously, allowing the most promising search space
regions to be reached and refined. Thus, the objec-
tive of this section is the design of a hybrid RCGA
model that might be suited to most practical
problems.

7.1. The conflict between accuracy and reliability

There exists a fundamental conflict between accu-

racy and reliability when searching for the global
optimum in most practical problems (Renders and
Flasse, 1996). Traditionally, this conflict was tack-
led by means of advanced genetic operators (e.g.
the non-uniform mutation operator proposed in
(Michalewicz, 1992), adaptation of GA control
parameters (Eiben et al., 1999), heterogeneous dis-
tributed populations (Herrera and Lozano, 2000),
etc.). Nowadays, an alternative that receives special
attention is the hybridization of GAs with other
search techniques. Three important examples are:

• Memetic algorithms (Moscato, 1999). They are
GAs that apply a separate local search process
(which searches efficiently only for a local opti-
mum) to members of the population after recom-
bination and mutation. In this case, the local
search procedure works within the GA.

• Continuous hybrid algorithm (Chelouah and Sia-
rry, 2003). It comprises two main stages. The first
stage involves the run of a RCGA. The second
stage involves the application of a local search pro-
cess to the best individual found by the RCGA.

• Hybridization of GAs with different purposes.

Kazarlis et al. (2001) propose the use of a microge-

netic algorithm (MGA) (GA with small popula-
tion that evolves for a few generations) as a
generalized hill-climbing operator. They combine
a standard GA with the MGA to produce a hybrid
genetic scheme. In contrast to conventional hill
climbers that attempt independent steps along
each axis, a MGA operator performs a genetic
local search. The authors claimed that the MGA
operator is capable of evolving paths of arbitrary
direction leading to better solutions and following
potential ridges in the search space regardless of
their direction, width, or even discontinuities.
Lozano et al. (2004) present a real-coded memetic
algorithm that applies a real-parameter crossover

hill-climbing. This hill-climbing maintains a pair
of parents and performs repeatedly the PBX-a
operator on this pair until some number of off-
spring is reached. Then, the best offspring is
selected and replaces the worst parent only if it
is better. The authors claimed that this process
may be conceived as a micro selecto-recombinative

RCGA.

7.2. Combining global and local RCGAs

In this section, we propose a hybrid RCGA
model that combines a global RCGA (with N G

F
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and N G
M as NF and NM values, respectively) and a

local RCGA (with NL
F and NL

M as NF and NM val-
ues, respectively). The hybridization is accom-
plished following the idea of the continuous hybrid
algorithm (Chelouah and Siarry, 2003) because is
very simple: first, it runs the global RCGA during
the PG% of the available evaluations, and then, it
performs the local RCGA. The initial population
for the local RCGA consists of the Nmax best indi-
viduals in the final population of the global RCGA,
where N max ¼ maxfN L

F;N
L
M}.

This hybridization follows a classical heuristic:
‘‘to protect the exploration in the initial stages and

the exploitation later’’. This heuristic has been con-
sidered to design other search techniques, such as
simulated annealing (Kirkpatric et al., 1983). With
the initial exploration, the diversity became greater,
increasing the probability of finding zones which are
close to optimal solutions. Then, supposing that the
population has information about these zones, the
convergence towards the optimum is produced
through exploitation.

We have implemented three instances of this
hybrid model. The global RCGA is the FMD-
U&N algorithm adopting N G

F ¼ 200 and N G
M ¼ 400

and the local RCGA is the same algorithm but with
NL

F ¼ 5 and NL
M ¼ 100. The instances are distin-

guished with regards to the values considered for
PG (PG = 25%, 50%, and 75%). They will be called
GL-25, GL-50, and GL-75, respectively. Their
results are outlined in Table 8. We have included
the results for the global and local RCGAs when
they are executed independently.

We should point out that, for four problems,
there exist instances of our hybrid RCGA model
that perform better than the sole usage of the corre-
sponding global and local RCGAs: fRos (GL-25),
fRas (GL-50 and GL-75), fGri (GL-25, GL-50, and
GL-75) and Psle (GL-25, GL-50, and GL-75). This
means that the hybrid technique proposed is a suit-
able way to achieve synergy between global and
local RCGAs.
Table 8
Results for the hybrid RCGA model

Algorithm fsph fRos fSch

Local RCGA 9.98e�187 1.56e+000 1.74e�00

GL-25 3.17e�147 7.61e�001 1.61e�00
GL-50 1.29e�104 6.03e+000 1.22e�00
GL-75 3.94e�061 1.22e+001 3.26e�00

Global RCGA 2.95e�018 1.91e+001 3.12e+00
Another important observation is that GL-25
and GL-75 have returned solutions for fRos and fGri,
respectively, which are the best ones as compared
with the solutions achieved by all the algorithms
previously studied (see Table 7).

7.3. Comparison with other algorithms

The main aim of this section is to compare our
hybrid RCGA method with other metaheuristics

for continuous optimization presented in the
literature:

• Two RCGAs based on PCCOs: SPC-PNX
(Ballester and Carter, 2004) and G3-PCX (Deb
et al., 2002).
– The SPC-PNX algorithm is a steady-state

RCGA model that uses the PNX crossover
operator. We have considered four instances
that use different population size (N = 40, 60,
100 and 200). They will be called SPC-PNX-N.

– The G3-PCX algorithm is a steady-state
RCGA model that uses the PCX crossover
operator. We have implemented several
instances that use different values for the k
parameter of the PCX operator (k = 2, 3,
and 4), l = 3, and the population size is 150
individuals. The other parameters for the
PCX operator are: r2

1 ¼ 0:1 and r2
g ¼ 0:1.

These algorithms will be referred as G3-
PCX-k.
• Two hybrid RCGAs: the real-coded memetic

algorithm with crossover hill-climbing (RCMA-
XHC) (Lozano et al., 2004) and a hybrid algo-
rithm that combines the CHC algorithm (Eshel-
man, 1991) with the Solis and Wets’ algorithm,
which is a local searcher, (CHC-SW) (Solis and
Wets, 1981).
– The RCMA-XHC, whose authors claimed that

this algorithm improves the performance of
other real-coded memetic algorithms appeared
in the literature (Lozano et al., 2004).
fRas fGri Psle

9 2.90e+002 1.27e�002 1.64e+002

7 1.33e+001 2.22e�017 4.69e+000
5 8.26e+000 1.33e�017 3.25e+000
2 3.74e+000 0.00e+000 2.72e+000

1 1.92e+001 4.93e�004 5.45e+000
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– CHC-SW follows the idea of the continuous
hybrid algorithm (Chelouah and Siarry,
2003). First, the CHC is performed during
the PG% of the available evaluations, and
then, the local searcher refines the best individ-
ual returned by CHC. We have considered
PG = 25%, 50%, and 75%. These algorithms
will be termed CHC-SW-PG. We have
included the CHC algorithm as well.
• Enhanced simulated annealing (ESA) (Siarry
et al., 1997). It is a continuous variant of the
well-known Simulated Annealing (Kirkpatric
et al., 1983). All the parameters were set as the
authors suggest in Siarry et al., 1997. In addition,
the normalization guidelines proposed in that
work have been followed. We have implemented
a simple linear variable change Xnorm = aÆ
Xreal + b that brings Xnorm into the [�1,1] range.

• Differential evolution algorithm (DE1) (Storn and
Price, 1997). It is an Evolutionary Algorithm that
borrows the idea from Nelder &Mead’s simplex

algorithm. It evolves a population of solution
by combining its individuals. We have considered
three instances:
– DE uses the DE/rand/1/bin strategy, with 10Æ

Dimension members in the population,
F = 0.8, and CR = 0.5, as the code suggests;
and

– two instances with 60 and 100 individuals,
which use the DE/Rand/1/Exp strategy, F =
0.5, and CR = 0.8. They are DE-60 and DE-
100 respectively.
• Comprehensive learning particle swarm optimizer

(CLPSO2) (Liang et al., 2004a,b). It is a variant
of the original particle swarm optimizer (Eber-
hart and Kennedy, 1995; Kennedy and Eberhart,
1995), which simulates the behaviours of the
birds flocking. We have compared two
instances: CLPSO that uses 10 particles, as Liang
et al. (2004b) suggests, and CLPSO-30 that uses
30.

• Evolution strategy with covariance matrix adapta-

tion (CMA-ES3) (Hansen and Ostermeier, 2001;
Hansen et al., 2003). It represents the state of
We have used the matlab code offered at http://
w.icsi.berkeley.edu/~storn/code.html#matl.
The code is offered at http://www.ntu.edu.sg/home/EPNS-
n/.
We have used the MATLAB code, Version 2.34a, available
m http://www.bionik.tu-berlin.de/user/niko/index.html.
the art of Evolution Strategies and it is a referent
in the continuous optimization field. The initial
step size r(0) is set to half of the initialisation
interval.

• Evolutionary programming with Levy probability

distribution based mutations (LEP) (Lee and
Yao, 2004) and the variant called adaptive LEP
(ALEP) (Lee and Yao, 2004). LEP is a recent
Evolutionary Programming and ALEP is a LEP
algorithm that considers four different values
for the a parameter, simultaneously. We have
implemented the ALEP algorithm and a LEP
instance with a = 1.4. In addition, we have
tried two different values for the initial step sizes
r0 (1 with r0 = 0.015 Æ Dwidth, and 2 with r0 =
0.01).

For this comparison, we will use all the 18 test
functions described in Appendix C. We have chosen
GL-25 (Table 8) for the comparison, because it
shows an acceptable level of robustness. The stop
criterion of every algorithm has been set to
100.000 objective function evaluations. The results
for all these algorithms are included in Tables 12–
14 (Appendix E). A t-test was applied to detect sig-
nificant differences between GL-25 and the other
algorithms.

We have introduced the Fig. 4 in order to facili-
tate the analysis of these results. It shows the
percentage of improvements, reductions, and non-
differences, according to the t-test, obtained when
comparing the GL-25 algorithm with the other algo-
rithms for all the test problems.

We can draw the following conclusions from
Fig. 4:

• GL-25 performs better than all the other algo-
rithms for more than the 60% of the test prob-
lems. Thus, we may conclude that the hybrid
RCGA model proposed arises as a promising
algorithm to deal with continuous optimisation
problems.

• CMA-ES, ESA, CLPSO, CLPSO-30, and CHC-
SW arise as the most competitive algorithms for
GL-25.

In order to compare the behaviour of CMA-ES,
ESA, CLPSO and CHC-SW with the one of GL-25,
we examine their results differentiating two groups
of test problems: unimodal functions (fsph �
fQNoise), and multimodal ones (fRas � fSchaffer and
Psle and Pfms). Fig. 5 shows the results:

http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://www.ntu.edu.sg/home/EPNSugan/
http://www.ntu.edu.sg/home/EPNSugan/
http://www.bionik.tu-berlin.de/user/niko/index.html
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Fig. 4. Comparison of GL-25 with the other algorithms.
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Fig. 5. Comparison of GL-25 with CMAES, CHC-SW instances, ESA, and PSO, considering: (a) unimodal functions, and (b) multimodal
functions.

C. Garcı́a-Martı́nez et al. / European Journal of Operational Research 185 (2008) 1088–1113 1103
• On the one hand, CMA-ES outperforms the GL-
25 algorithm on most unimodal functions
(Fig. 5a). However, GL-25 outperforms CMA-
ES on most multimodal functions (Fig. 5b).
Since, CMA-ES was interpreted as a robust local
search strategy (Hansen and Ostermeier, 1996), it
achieves very good results on unimodal
functions.

• On the other hand, ESA, CLPSO, and CLPSO-
30 outperform the GL-25 algorithm on most
multimodal functions (Fig. 5b). However,
GL-25 obtains better results on the unimodal
ones (Fig. 5a). We can see in Tables 12–14 that
ESA, CLPSO, and CLPSO-30 obtain outstand-
ing results on multimodal functions (for example,
see the results obtained by ESA, CLPSO, and
CLPSO-30 for fSRas and fBoh), whereas that does
not occur on unimodal functions. This reveals
that the ESA, CLPSO, and CLPSO-30 algo-
rithms prefer the global search.
• Although GL-25 outperforms the CHC-SW
instances, they show a similar behaviour, with
regards to GL-25, for both kinds of test func-
tions. This may be due to these algorithms are
designed in order to achieve a balanced behav-
iour between global and local search, by combin-
ing the CHC algorithm with the Solis and Wets’
local searcher.

Finally, we introduce Fig. 6 with the aim of
determining the general performance of GL-25 on
every test problem. It shows the percentage of
improvements, reductions and non-differences
obtained by GL-25 for each function (with regards
to the other algorithms).

Several remarks are worth being mentioned from
Fig. 6:

• GL-25 achieves better results than the 60% of all
the algorithms on all the functions, except on
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fMSch, EF10, and fSchaffer, where it obtains better
or equal results than more than the 50%. Thus,
we may conclude that the balance between global
and local search obtained by our hybrid method
may produce outstanding benefits.

• GL-25 returns the best results for function
fQNoise, which is highly noisy.

• GL-25 is one of the best algorithm on the multi-
modal functions fGri and fBoh, the two real-world
problems, Psle and Pfms, and the Rotated Rastri-

gin’s function, fRRas.
• Although GL-25 performs well on all the func-

tions, the main difficulties appear on fsph,
fSch, fMSch, EF10, and fSchaffer. On the one hand,
fsph and fSch are non complex unimodal functions,
which require a strong local behaviour in order to
be adequately solved, whereas fMSch, EF10 and
fSchaffer are very complex problems that need extra
global search to obtain reliable results. Since GL-
25 attempts to keep a balance between local and
global search, it may not achieve highly accurate
results for these problems.

To sum up, we may conclude that our proposal
of combining global and local RCGAs is very com-
petitive with the state-of-the-art on metaheuristics

for continuous optimization, because it may produce
a robust operation for test problems with different
characteristics.

8. Conclusions

This paper presented a FMD process and two
parent selection mechanisms, UFS and NAM, with
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Fig. 6. Performance of GL-25
the aim of improving the performance of the
PCCOs:

• The FMD process assigns the role of female or/
and male parent to the chromosomes in the
population.

• UFS broads the search because it obliges PCCOs
to consider different zones for the generation of
offspring. Thus, it encourages an exhaustive cov-
erage of the regions represented by the female
parent.

• NAM diversifies because it forces PCCOs to cre-
ate offspring very dissimilar from their parents.
In this way, it helps PCCOs to give rise to useful
diversity.

In addition, the paper tackled the election of the
most adequate evolution model to take out profit
from UFS and NAM. SSGAs with the RW replace-
ment were finally selected, because they supply high
selection pressure that becomes well-suited for the
meaningful operation of these two selection
mechanisms.

An experimental study carried out with the PBX-
a operator has shown that these three processes may
empower the work of PCCOs. Another important
conclusion is that the two parameters associated
with the FMD process, NF and NM, may be ade-
quately adjusted to design reliable global RCGAs
and accurate local RCGAs. With the aim of achiev-
ing a robust operation, we have followed a simple
hybridization technique to put together these spe-
cialized search algorithms. We have confirmed
empirically that: (1) this technique allows synergy
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on every test problem.
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to occur between global and local RCGAs, that is,
their combination performs better than the sole
usage of any of them, and (2) it is very competitive
with state-of-the-art on metaheuristics for continuous
optimization.

In essence, the research line initiated with the
present work is indeed worth of further studies.
We are currently extending our investigation to
different test-suites and real-world problems. Also
we intend to: (1) design adaptive FMD processes
that select female and male parents depending on
the current state of the search, (2) study the effec-
tiveness of the FMD process, UFS, and NAM
when multiparent crossover operators are applied
(e.g. PCX (Deb et al., 2002; Deb, 2005)), and (3)
study adaptive mechanisms to adjust the PG

parameter required by the hybrid RCGA model
proposed.
Acknowledgements

This research has been supported by the project
TIN2005-08386-C05-01 and a scholarship from the
Education and Universities Spanish Government
Secretariat given to the author C. Garcı́a-Martı́nez.
In addition, the authors would like to thank the
anonymous reviewers for their constructive com-
ments and suggestions.
Appendix A. Abbreviation index

See Table 9.
Appendix B. Diversity and selection pressure
in SSGAs

There are two primary factors in the search car-
ried out by a GA (Whitley, 1989):

• Selection pressure. In order to have an effective
search there must be a search criterion (the fitness
function) and a selection pressure that gives indi-
viduals with higher fitness a higher chance of
being selected for reproduction, mutation, and
survival. Without selection pressure, the search
process becomes random and promising regions
of the search space would not be favoured over
non-promising regions.

• Population diversity. It is crucial to a GA’s ability
in order to continue the fruitful exploration of
the search space.
Selection pressure and population diversity are
inversely related. Increasing selection pressure
results in a faster loss of population diversity, while
maintaining population diversity offsets the effect of
increasing selection pressure. These two factors
should be controlled in order to obtain their benefi-
cial advantages simultaneously, allowing the most
promising search space regions to be reached and
refined.

The population diversity versus selection pres-
sure problem has been tackled considering both
the parent selection and the replacement phases of
a SSGA. In fact, different studies have shown that
improved performance in SSGAs on generational
GAs is because of their higher selection pressure
and changes in the exploration/exploitation balance
caused by using different parent selection and
replacement strategies, and is not because of the
use of an overlapping model (De Jong and Sarma,
1993).

There are parent selection mechanisms and
replacement strategies that:

• promote diversity only, or
• select pressure only, or
• both diversity and selection pressure are

included.

Different examples of these mechanisms are
shown in Sections B.1 and B.2, respectively.
B.1. Parent selection mechanisms

In this section, we describe different parent selec-
tion mechanisms that belong to each one of the
aforementioned categories.
B.1.1. Diversity only

Random Selection (RS). RS selects an individual
at random from the population.
B.1.2. Selection pressure only
Tournament Selection (TS). TS is one of the more

commonly used parent selection schemes, perhaps
because of its simplicity. The basic idea of TS
scheme is quite straightforward. A group of nT indi-
viduals is selected randomly from the population.
The individuals in this group are then compared
with each other, with the fittest among the
group becoming the selected individual. Typical



Table 9
Abbreviation index

Abbreviation Meaning Abbreviation Meaning

(A)LEP Evolutionary Programming defined in Section 7.3 NAM Negative Assortative Mating (Section 5)
CHC-SW-PG Combination of CHC and SW defined in Section 7.3 NF Size of GF (Section 6)
CLPSO Comprehensive Learning Particle Swarm Optimizer

(Section 7.3)
NM Size of GM (Section 6)

CMAES Evolution Strategy with Covariance Matrix Adaptation

(Section 7.3)
NG

F Size of GF of the Global Genetic Algorithm

(Section 7)
DE Differential Evolution (Section 7.3) NG

M Size of GM of the Global Genetic Algorithm

(Section 7)
DOS Diversity-Oriented Selection (Appendix B.1) NL

F Size of the GF of the Local Genetic Algorithm

(Section 7)
DS Disruptive Selection (Appendix B.1) NL

M Size of the GMof the Local Genetic Algorithm

(Section 7)
EP Evolutionary Programming (Fogel, 1995) P Population of a GA

ES Evolution Strategy (Schwefel, 1995) PBX-a Parent-Centric Crossover Operator defined in
Section 2.1

ESA Enhanced Simulated Annealing (Section 7.3) PCCO Parent-Centric Crossover Operator (Section 2)
FIFO First-In-First-Out Replacement Strategy (Appendix

B.2)
RCGA Real-Coded Genetic Algorithm

FMD Female and Male Differentiation process (Section 6) RCMA-
XHC

A Memetic RCGA defined in Section 7.3

FMD-U&N FMD with UFS and NAM selection mechanisms

(Section 6)
RS Random Selection (Appendix B.1)

FUSS Fitness Uniform Selection Scheme (Appendix B.1) RTS Restricted Tournament Selection (Appendix
B.2)

G3-PCX-k ARCGA defined in Section 7.3 RW Replace Worst (Appendix B.2)
GA Genetic Algorithm (Goldberg, 1989; Holland, 1975) SPC-PNX-N A RCGA defined in Section 7.3
GF Group of Female Parents (Section 6) SSGA Steady-State Genetic Algorithm (Section 3)
GL-PG Combination of a Global and a Local Algorithm

(Section 7)
TS Tournament Selection (Appendix B.1)

GM Group of Male Parents (Section 6) UFS Uniform Fertility Selection (Section 4)
N Size of the population of a GA
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implementation of TS involves picking only two
individuals for comparison (binary TS).
B.1.3. Diversity and selection pressure

This group is represented by three instances
because many selection mechanisms presented in
the GA literature may be included in it.

Disruptive Selection (DS) (Kuo and Hwang,
1996). Unlike conventional selection mechanisms,
DS devotes more trials to both better and worse
solutions than it does to moderate solutions. This
is carried out by modifying the objective function
of each chromosome, C, as follows:

f 0ðCÞ ¼ jf ðCÞ � �f j;

where �f is the average value of the objective func-
tion of the individuals in the population. Tourna-
ment selection may be applied considering this
new objective function to select an individual from
the population.
Fitness uniform selection scheme (FUSS) (Hutter,
2002). FUSS generates selection pressure towards
sparsely populated fitness regions, not necessarily
towards higher fitness. It is defined as follows: if fmin

and fmax are the lowest and highest fitness values in
the current population, respectively, we select a fit-
ness value uniformly in the interval [fmin, fmax].
Then, the individual in the population with fitness
nearest to this value is selected. FUSS results in
high selection pressure towards higher fitness if
there are only a few fit individuals and the selection
pressure is automatically reduced when the number
of fit individuals increases. In a typical FUSS pop-
ulation, there are many unfit and only a few fit indi-
viduals. Fit individuals are effectively favoured until
the population becomes fitness uniform. Occasion-
ally, a new higher fitness level is discovered and
occupied by a new individual, which then, again,
is favoured.

Diversity-oriented selection (DOS) (Shimodaira,
1999). There exists an important group of parent
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selection mechanisms that are defined using both
the fitness function and a measure that evaluates
the diversity introduced by the competing chromo-
somes in the population (Bonham and Parmee,
1999; De Jong et al., 2001; Ichikawa and Ishiiolland,
1993; Lee, 2003; Mori et al., 1995; Shimodaira,
1999; Toffolo and Benini, 2003). Their purpose is
to favour the individuals with both high fitness
function values and high diversity contributions.
For example, in DOS, the chromosomes for the next
generation are selected from a merged population of
parents and their children. The chromosomes are
Table 10
Used test functions fsph � fQNoise are unimodal and fRas � fSchaffer are m

Test function

Sphere
fsph ¼

Pn
i¼1x2

i

Cigar-Tablet
fcig ¼ x2

1 þ 1e8 � x2
n þ 1e4 �

Pn�1
i¼2 x2

i

Schwefel’s Problem 2.22
fSch2:22 ¼

Pn
i¼1jxij þ

Qn
i¼1jxij

Schwefel’s Problem 2.21
fSch2.21 = max{j xij, 1 6 i 6 n}

Generalized Rosenbrock’s Function
fRos ¼

Pn�1
i¼1 ½100ðxiþ1 � x2

i Þ
2 þ ðxi � 1Þ2�

Schwefel’s Problem 1.2
fSchðxÞ ¼

Pn
i¼1

Pi
j¼1xj

� �2

Quartic Function i.e. Noise
fQNoise ¼ random½0; 1Þ þ

Pn
i¼1i � x4

i
Generalized Rastrigin’s Function

fRasðxÞ ¼ 10 � nþ
Pn

i¼1x2
i � 10 � cosð2p � xiÞ

Rotated Generalized Rastrigin’s Function
fRRas ¼ 10nþ

Pn
i¼1ðz2

i � 10 cosð2p � ziÞÞ

with z = Ax and Aij ¼
4=5 if i ¼ j
ð�1Þiþ1 � 3=5 if ji� jj ¼ 1
0 otherwise

8<
:

Scaled Generalized Rastrigin’s Function

fSRas ¼ 10nþ
Pn

i¼1 10
i�1
n�1 � xi

� �2
� 10 cos 2p � 10

i�1
n�1 � xi

� �� �

Generalized Griewank Function
fGriðxÞ ¼ 1

4000

Pn
i¼1x2

i �Pn
i¼1 cos xiffi

i
p
� �

þ 1

Generalized Schwefel’s Problem 2.26
fMSch ¼ �

Pn
i¼1xi � sin

ffiffiffiffiffiffiffiffiffi
j xi j

p� �
Expanded F10

EF 10 ¼ F 10ðxn; x1Þ þ
Pn�1

i¼1 F 10ðxi; xiþ1Þ with

F10(x,y) = (x2 + y2)0.25 Æ (sin2(50 Æ (x2 + y2)0.1) + 1)

Composed fGri (fRos (x))
F 8F 2 ¼ fGriðfRosðxn; x1ÞÞ þ

Pn�1
i¼1 fGriðfRosðxi; xiþ1ÞÞ

Bohachevsky
fBoh ¼

Pn�1
i¼1 ðx2

i þ 2x2
iþ1 � 0:3 cosð3p � xiÞ � 0:4 cosð4p � xiþ1Þ þ 0:7Þ

Schaffer
fSchaffer ¼

Pn�1
i¼1 ðx2

i þ x2
iþ1Þ

0:25 � ½sin2ð50 � ðx2
i þ x2

iþ1Þ
0:1Þ þ 1�
selected in their fitness values order, through a selec-
tion probability that is calculated using the Ham-
ming distance between the candidate chromosomes
and the chromosome with the best fitness value,
being larger for chromosomes with larger Hamming
distances.

We have designed a parent selection mechanism
for SSGAs that follows the main idea of DOS. In
particular, we run two times binary TS to choose
two highly-fit chromosomes; then the one more dis-
similar to the best chromosome in the population,
according to the Euclidean distance, is selected.
ultimodal

D Domain Init f*

25 [�5.12, 5.12] [4,5] 0

25 [�7,7] [5,7] 0

25 [�10,10] [8,10] 0

100 [�100,100] [80,100] 0

25 [�5.12,5.12] [�5,�4] 0

25 [�65.536,65.536] [60,65] 0

25 [�1.28,1.28] [�1.28, 1.28] 0

25 [�5.12, 5.12] [4,5] 0

25 [�5.12,5.12] [4,5] 0

25 [�5.12,5.12] [4,5] 0

15 [�600,600] [580,600] 0

30 [�500,500] [�500,300] �12.569.5

15 [�100,100] [�100, 100] 0

10 [�5,5] [�5,5] 0

25 [�15,15] [10,15] 0

25 [�100,100] [50,100] 0
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B.2. Replacement strategies

Next, we review three different replacement strat-
egies aimed to either promote diversity, or produce
selection pressure, or ensure both of them.
B.2.1. Diversity only

First-in-first-out strategy (FIFO) (De Jong and
Sarma, 1993). The offspring replaces the oldest indi-
vidual in the population.
B.2.2. Selection pressure only
Replace worst strategy (RW). This strategy

replaces the worst individual in the population only
if the new individual is better. Goldberg et al.
(Goldberg and Deb, 1991) suggested that the dele-
tion of the worst individuals induced a high selec-
tion pressure, even when the parents were selected
randomly.

B.2.3. Diversity and selection pressure

Restricted tournament selection (RTS) (Harik,
1995). Let us suppose that A is the individual to
be included in the population. Then, RTS scans x
(window size) members of the population and picks
the individual that most closely resembles A from
those x elements. A then competes with this ele-
ment, and if A wins, it is allowed to enter the pop-
ulation. RTS is a crowding method (Cedeño et al.,
1995; De Jong, 1975; Mahfoud, 1995). New individ-
uals are more likely to replace existing individuals in
the population that are similar to themselves based
on genotypic similarity. In this manner, the popula-
tion does not build up an excess of similar solutions.

Appendix C. Test suite

The test suite that we have used for the experi-
ments consists of sixteen test functions and two
real-world problems. They are described in Sections
C.1 and C.2, respectively.

C.1. Test functions

Table 10 describes the sixteen test functions con-
sidered in the experiments. It includes number of
decision variables of each problem (D), the decision
variables’ domains, the ranges where the population
of the algorithms is initialized, and the fitness value
of the optimal solution (f*). In addition, it indicates
the functions which are non-separable.
We have applied a skewed initialization that
forces the initial population to be away from the
global basin due to two reasons (Deb et al., 2002):

• To prevent the advantage enjoyed by algorithms
which have inherent tendency to create solutions
near the centroid of the parents.

• To make sure that an algorithm must overcome a
number of local minima to reach the global basin
when dealing with multimodal functions.

C.2. Real-world problems

C.2.1. Systems of linear equations

(Eshelman et al., 1997)

The problem to be solved is to obtain the ele-
ments of a vector X, given the matrix A and vector
B in the expression: A Æ X = B. The evaluation func-
tion used for these experiments is:

P sleðx1; . . . ; xnÞ ¼
Xn

i¼1

Xn

j¼1

jðaij � xjÞ � bjj:

We have studied an example of a ten-parameter
problem. We have considered that �127 6 xi 6 127
and the following matrices:
5 4 5 2 9 5 4 2 3 1

9 7 1 1 7 2 2 6 6 9

3 1 8 6 9 7 4 2 1 6

8 3 7 3 7 5 3 9 9 5

9 5 1 6 3 4 2 3 3 9

1 2 3 1 7 6 6 3 3 3

1 5 7 8 1 4 7 8 4 8

9 3 8 6 3 4 7 1 8 1

8 2 8 5 3 8 7 2 7 5

2 1 2 2 9 8 7 4 4 1
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:

Clearly, the best value for this objective function
is Psle(x*) = 0. Inter-parameter linkage (i.e., non-lin-
earity) is controlled easily in systems of linear equa-
tions; their non-linearity does not deteriorate as
increasing numbers of parameters are used, and
they have proven to be quite difficult.

The initialization of the population of the algo-
rithms have been made in the range [�120,�100].



Table 11
Achieve results with different combinations of values for NF and NM

NF NM fsph fRos fSch fRas fGri Psle

1 25 1.90e+002 3.36e+005 5.70e+006 5.04e+002 5.90e+002 7.59e+003
1 50 3.19e+001 1.85e+004 1.94e+006 4.61e+002 1.46e+002 4.11e+003
1 100 2.86e�005 4.92e+001 2.29e+005 4.41e+002 2.80e+001 2.21e+003
1 200 2.46e�144 2.13e+001 2.61e+004 4.34e+002 3.57e+000 9.85e+002
1 300 4.92e�116 1.59e+001 8.34e+003 4.16e+002 5.21e+000 7.03e+002
1 400 5.10e�095 1.95e+001 3.06e+003 4.19e+002 7.44e�002 3.90e+002
5 25 9.17e+001 1.75e+005 1.17e+005 4.00e+002 3.14e+002 2.70e+003
5 50 6.21e�146 2.89e+001 2.81e+003 3.50e+002 1.04e+001 5.94e+002
5 100 9.98e�187 1.56e+000 1.74e�009 2.90e+002 1.27e�002 1.64e+002
5 200 2.76e�129 2.33e+000 3.09e�009 2.22e+002 1.41e�002 8.86e+001
5 300 8.99e�098 7.67e+000 1.05e�006 2.06e+002 1.18e�002 5.09e+001
5 400 2.53e�079 1.16e+001 7.60e�005 1.85e+002 1.49e�002 3.82e+001

25 25 9.24e�007 3.27e+003 3.69e+003 2.02e+002 2.22e+001 5.78e+002
25 50 1.64e�130 1.33e+001 1.01e�012 1.34e+002 1.07e�002 1.47e+002
25 100 3.31e�104 9.48e+000 2.68e�009 6.62e+001 6.70e�003 6.50e+001
25 200 1.05e�074 9.80e+000 6.66e�005 4.48e+001 2.56e�003 3.85e+001
25 300 1.24e�059 1.08e+001 3.82e�003 2.37e+001 3.45e�003 2.10e+001
25 400 4.18e�050 1.23e+001 3.43e�002 1.84e+001 2.51e�003 1.46e+001
50 25 5.98e�076 2.53e+001 1.74e�003 1.21e+002 2.67e+000 4.50e+002
50 50 6.19e�095 1.46e+001 3.54e�010 4.97e+001 6.45e�003 8.96e+001
50 100 1.29e�072 1.37e+001 3.85e�006 2.39e+001 4.73e�003 5.61e+001
50 200 1.15e�053 1.38e+001 4.15e�003 1.26e+001 2.86e�003 2.77e+001
50 300 9.83e�044 1.45e+001 9.00e�002 1.04e+001 2.71e�003 1.43e+001
50 400 1.82e�037 1.51e+001 5.36e�001 7.80e+000 1.38e�003 8.59e+000

100 25 1.15e�088 2.45e+001 2.45e�009 5.37e+001 1.84e�002 2.50e+002
100 50 1.29e�071 1.55e+001 1.00e�006 1.94e+001 5.07e�003 1.19e+002
100 100 2.28e�049 1.60e+001 2.20e�003 1.10e+001 3.30e�003 3.32e+001
100 200 5.59e�037 1.65e+001 2.34e�001 6.27e+000 1.58e�003 1.79e+001
100 300 9.01e�031 1.71e+001 1.45e+000 5.32e+000 9.37e�004 1.33e+001
100 400 1.06e�026 1.75e+001 4.58e+000 4.24e+000 1.18e�003 1.05e+001
200 25 2.19e�078 2.53e+001 3.96e�007 1.86e+001 6.99e�003 1.49e+002
200 50 8.56e�052 1.65e+001 6.07e�004 7.92e+000 4.04e�003 6.90e+001
200 100 6.31e�035 1.73e+001 9.10e�002 5.15e+000 2.76e�003 2.02e+001
200 200 1.22e�024 1.83e+001 3.40e+000 3.58e+000 1.53e�003 1.61e+001
200 300 9.95e�021 1.88e+001 1.45e+001 6.64e+000 1.04e�003 1.07e+001
200 400 2.95e�018 1.91e+001 3.12e+001 1.92e+001 4.93e�004 5.45e+000
300 25 3.22e�068 1.85e+001 1.37e�005 1.13e+001 4.78e�003 1.28e+002
300 50 2.72e�044 1.70e+001 1.40e�002 6.81e+000 3.74e�003 5.04e+001
300 100 1.09e�027 1.81e+001 6.89e�001 3.33e+000 1.23e�003 1.94e+001
300 200 5.19e�020 1.89e+001 1.18e+001 6.32e+000 9.86e�004 1.16e+001
300 300 3.17e�016 1.96e+001 3.76e+001 3.80e+001 5.42e�004 9.13e+000
300 400 2.53e�014 1.98e+001 7.35e+001 6.58e+001 5.92e�004 7.45e+000
400 25 3.47e�061 1.87e+001 2.96e�004 8.08e+000 7.44e�003 1.10e+002
400 50 1.28e�039 1.74e+001 9.27e�002 4.16e+000 2.86e�003 3.73e+001
400 100 1.71e�024 1.85e+001 2.53e+000 2.60e+000 3.10e�003 2.43e+001
400 200 7.73e�017 1.94e+001 2.35e+001 3.45e+001 6.41e�004 1.01e+001
400 300 4.93e�014 1.99e+001 7.18e+001 6.72e+001 3.48e�004 8.83e+000
400 400 5.35e�012 2.03e+001 1.38e+002 9.71e+001 1.77e�003 7.84e+000
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C.2.2. Frequency modulation sound parameter

identification (Tsutsui and Fujimoto, 1993)

The problem is to specify six parameters a1, w1,
a2, w2, a3, w3 of the frequency modulation sound
model represented by
yðtÞ ¼ a1 � sinðw1 � t � hþ a2 � sinðw2 � t � h

þ a3 � sinðw3 � t � hÞÞÞ;
with h = (2 Æ p/100). The fitness function is defined
as the sum of square errors between the evolved
data and the model data as follows:

P fmsða1;w1; a2;w2; a3;w3Þ ¼
X100

t¼0

ðyðtÞ � y0ðtÞÞ
2
;

where the model data are given by the following
equation:



Table 12
Comparison of the hybrid RCGA with other continuous metaheuristics (fsph � fSch)

Algorithm fsph fcig fSch2.22 fSch2.21 fRos fSch

SPC-PNX-40 5.42e�040+ 8.49e�037+ 4.95e�025+ 8.92e+001+ 2.22e+001+ 2.43e�001+
SPC-PNX-60 2.37e�029+ 1.35e�027+ 1.20e�017+ 8.62e+001+ 1.99e+001+ 9.75e�001+
SPC-PNX-100 8.62e�018+ 4.91e�015+ 4.65e�010+ 7.62e+001+ 2.20e+001+ 1.62e+001+
SPC-PNX-200 2.94e�008+ 5.91e�005+ 2.96e�004+ 6.74e+001+ 2.09e+001+ 3.55e+002+
G3-PCX-1 4.21e�203� 6.81e+001+ 1.63e+002+ 9.26e+001+ 9.83e+000+ 3.74e�029�
G3-PCX-2 3.55e�178� 5.41e+001+ 1.56e+002+ 9.23e+001+ 3.30e+000+ 5.78e�031�
G3-PCX-3 8.10e�148� 7.40e+001+ 1.54e+002+ 9.14e+001+ 4.84e�001� 8.88e�032�
G3-PCX-4 4.47e�127+ 7.60e+001+ 1.46e+002+ 9.07e+001+ 7.18e�001� 2.95e�030�
ALEP-1 1.15e�003� 1.62e+003+ 1.47e+000+ 9.77e+001+ 4.05e+001+ 1.35e+003+
ALEP-2 1.55e+000+ 7.47e+004+ 9.37e+000+ 9.38e+001+ 9.92e+002� 1.51e+004+
LEP-1 3.31e�002+ 1.08e+003+ 2.65e+000+ 9.89e+001+ 4.17e+001+ 1.70e+003+
LEP-2 3.60e+000+ 1.39e+005+ 2.21e+001+ 9.45e+001+ 7.50e+002+ 3.21e+004+
CMAES 3.18e�293� 5.25e�243� 1.32e�124� 3.17e�005� 1.59e�001� 8.73e�267�
RCMA-XHC 9.47e�100+ 5.73e�094+ 3.56e�041+ 7.67e+001+ 2.85e+000+ 9.48e�007+
CHC-SW-25 3.41e�322� 5.01e�005+ 7.02e�005+ 8.42e+001+ 5.59e+000+ 1.91e�031�
CHC-SW-50 3.80e�322� 2.98e�013+ 4.79e�010+ 8.31e+001+ 8.99e+000+ 8.51e�022�
CHC-SW-75 5.30e�205� 1.66e�022+ 1.13e�015+ 8.32e+001+ 1.31e+001+ 3.97e�012�
ESA 1.46e�023+ 3.48e�018+ 6.73e�009+ 2.12e+001� 9.40e+000+ 1.80e�005+
CLPSO 2.21e�028+ 9.68e�026+ 4.05e�017+ 9.44e+001+ 6.69e+000+ 5.80e+002+
CLPSO-30 1.03e�011+ 2.71e�007+ 1.07e�005+ 9.61e+001+ 2.34e+001+ 2.47e+003+
DE 2.86e+000+ 1.04e+005+ 5.21e+001+ 9.84e+001+ 2.94e+003+ 1.07e+005+
DE-60 6.81e�024+ 6.68e�010+ 2.63e�011+ 8.97e+001+ 3.38e+000+ 2.28e�004+
DE-100 1.03e�011+ 1.83e�007+ 4.34e�005+ 8.71e+001+ 8.52e+000+ 2.84e+000+
GL-25 4.36e�147 1.03e�122 9.85e�077 3.25e+001 8.22e�001 3.43e�009

Table 13
Comparison of the hybrid RCGA with other continuous metaheuristics (fQNoise � fMSch)

Algorithm fQNoise fRas fRRas fSRas fGri fMSch

SPC-PNX-40 8.33e�003+ 1.29e+002+ 1.66e+002+ 1.05e+002+ 2.62e�002+ �9.16e+003�
SPC-PNX-60 7.80e�003+ 7.30e+001+ 8.81e+001+ 6.09e+001+ 1.96e�002+ �9.47e+003�
SPC-PNX-100 9.81e�003+ 3.68e+001+ 3.80e+001+ 3.12e+001+ 2.02e�002+ �1.01e+004�
SPC-PNX-200 1.53e�002+ 3.13e+001+ 4.76e+001+ 2.51e+001+ 9.25e�003+ �1.12e+004�
G3-PCX-1 1.03e+000+ 4.86e+002+ 4.78e+002+ 1.56e+003+ 1.44e�001+ �7.89e+003+
G3-PCX-2 5.83e�001+ 4.85e+002+ 4.72e+002+ 1.18e+003+ 7.32e�002+ �7.97e+003+
G3-PCX-3 3.41e�001+ 4.88e+002+ 4.76e+002+ 9.94e+002+ 4.98e�002+ �8.20e+003+
G3-PCX-4 2.63e�001+ 4.83e+002+ 4.73e+002+ 7.42e+002+ 4.51e�002+ �8.25e+003+
ALEP-1 5.92e�002+ 4.84e+001+ 7.72e+001+ 5.92e+001+ 6.79e�002+ �9.82e+003�
ALEP-2 9.87e�002+ 4.59e+001+ 1.26e+002+ 1.09e+002+ 8.66e+001+ �8.80e+003+
LEP-1 4.55e�002+ 6.94e+001+ 9.09e+001+ 1.18e+002+ 1.12e�001+ �9.31e+003�
LEP-2 5.14e�002+ 8.39e+001+ 1.65e+002+ 2.40e+002+ 2.38e+002+ �7.30e+003+
CMAES 2.23e�001+ 5.24e+001+ 5.15e+001+ 6.77e+001+ 4.14e�003+ �6.89e+003+
RCMA-XHC 5.55e�003+ 1.24e+001� 1.93e+001� 1.05e+001� 4.71e�002+ �1.06e+004�
CHC-SW-25 1.79e�002+ 2.61e+001+ 3.60e+001+ 2.56e+001+ 5.27e�003+ �1.11e+004�
CHC-SW-50 1.10e�002+ 2.72e+001+ 3.42e+001+ 2.29e+001+ 4.93e�003+ �1.11e+004�
CHC-SW-75 7.93e�003+ 2.15e+001+ 2.76e+001+ 2.16e+001+ 5.91e�003+ �1.08e+004�
ESA 2.37e�002+ 1.99e�002� 2.46e+001+ 0.00e+000� 3.14e�002+ �5.58e+003+
CLPSO 6.12e�003+ 7.20e+000� 3.64e+001+ 4.40e+000� 9.86e�004+ �1.20e+004�
CLPSO-30 1.05e�002+ 5.57e�001� 3.29e+001+ 2.32e�006� 6.09e�009+ �1.25e+004�
DE 6.16e�001+ 1.63e+002+ 1.93e+002+ 2.41e+002+ 3.37e�001+ �6.28e+003+
DE-60 7.00e�003+ 1.23e+002+ 1.30e+002+ 1.23e+002+ 4.43e�004+ �6.70e+003+
DE-100 1.40e�002+ 1.31e+002+ 1.39e+002+ 1.32e+002+ 3.24e�003+ �5.85e+003+
GL-25 1.67e�003 1.38e+001 1.90e+001 1.35e+001 2.26e�018 �9.36e+003
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Table 14
Comparison of the hybrid RCGA with other continuous metaheuristics (Psle � fSchaffer)

Algorithm Psle EF10 F8F2 PSound fBoh fSchaffer

SPC-PNX-40 2.64e+002+ 3.31e+000+ 8.48e�001� 8.80e+000+ 2.41e+000+ 2.65e+001+
SPC-PNX-60 1.71e+002+ 4.10e�001+ 7.78e�001� 7.26e+000+ 8.17e�001+ 4.20e+000+
SPC-PNX-100 1.11e+002+ 5.65e�003� 9.34e�001+ 3.96e+000+ 1.14e�001+ 1.03e�001�
SPC-PNX-200 4.32e+001+ 2.86e�002� 1.08e+000+ 1.86e+000+ 9.42e�006+ 2.06e+000�
G3-PCX-1 3.07e+002+ 9.62e+001+ 5.07e+000+ 2.20e+001+ 1.53e+001+ 2.42e+002+
G3-PCX-2 1.89e+002+ 9.50e+001+ 3.69e+000+ 2.21e+001+ 1.33e+001+ 2.41e+002+
G3-PCX-3 1.30e+002+ 9.07e+001+ 2.90e+000+ 2.28e+001+ 1.27e+001+ 2.39e+002+
G3-PCX-4 1.22e+002+ 8.58e+001+ 2.54e+000+ 2.16e+001+ 1.25e+001+ 2.43e+002+
ALEP-1 3.62e+002+ 4.14e+000+ 6.91e�001� 1.39e+001+ 2.16e+000+ 5.26e+001+
ALEP-2 1.33e+003+ 5.93e+001+ 1.74e+000+ 2.22e+001+ 1.59e+002+ 1.39e+002+
LEP-1 1.73e+002+ 8.07e+000+ 8.63e�001� 7.88e+000+ 6.60e+000+ 5.20e+001+
LEP-2 1.76e+003+ 8.30e+001+ 9.20e�001+ 2.18e+001+ 3.55e+002+ 1.62e+002+
CMAES 3.23e�013� 2.02e+001+ 1.13e+000+ 2.24e+001+ 2.65e+000+ 3.24e+001+
RCMA-XHC 1.87e+002+ 5.62e�001+ 3.92e�001� 7.73e+000+ 4.13e�002+ 1.09e+001+
CHC-SW-25 8.13e+001+ 1.31e�002� 9.25e�001+ 1.59e+000� 1.46e�014+ 2.04e+000�
CHC-SW-50 6.98e+001+ 4.43e�007� 8.80e�001+ 6.63e�001� 7.70e�015+ 6.73e�002�
CHC-SW-75 8.60e+001+ 3.88e�007� 8.78e�001+ 2.51e�001� 0.00e+000� 1.30e�002�
ESA 1.52e+003+ 9.06e�009� 4.23e�001� 2.46e+001+ 0.00e+000� 2.96e�004�
CLPSO 1.37e+002+ 9.86e�004� 1.23e�001� 4.16e+000+ 0.00e+000� 1.62e�002�
CLPSO-30 1.90e+002+ 1.86e�002� 6.06e�002� 2.58e+000+ 2.76e�009+ 2.36e+000�
DE 7.10e+002+ 9.58e+000+ 1.46e+000+ 1.27e+001+ 8.11e+001+ 1.33e+002+
DE-60 1.26e�001� 5.62e�008� 1.58e+000+ 1.52e+000� 0.00e+000� 3.54e�002�
DE-100 1.77e+000� 1.14e�002� 1.70e+000+ 1.66e+000+ 2.05e�008+ 1.81e+000�
GL-25 4.70e+000 1.99e�001 7.48e�001 2.96e�001 0.00e+000 2.70e+000
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y0ðtÞ ¼ 1:0 � sinð5:0 � t � hþ 1:5 � sinð4:8 � t � h
þ 2:0 � sinð4:9 � t � hÞÞÞ:

Each parameter is in the range [�6.4,�6.35] (the
initial population was generated considering this
range). This is a highly complex multi-modal prob-
lem, having strong epitasis, with minimum value
Pfms(x*) = 0.
Appendix D. Results of the FMD-U&N algorithm

See Table 11.
Appendix E. Results of the comparison

Tables 12–14 present the results of the compared
metaheuristics. They are the average of the best
obtained fitness value of 50 executions. A t-test
was applied to detect significant differences between
GL-25 and the other algorithms.
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Bäck, T., 1994. Selective pressure in evolutionary algorithms: A
characterization of selection mechanisms. In: Proc. of the
First IEEE Conference on Evolutionary Computation, pp.
57–62.
Bäck, T., 1996. Evolutionary Algorithms in Theory and Practice.
Oxford University Press.

Ballester, P.J., Carter, J.N., 2003. Real-parameter genetic algo-
rithms for finding multiple optimal solutions in multi-modal
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