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Before implementing a design of a large engineering system different design proposals are eval-
uated. The information used by experts to evaluate different options may be vague and/or incom-
plete. Although different probabilistic tools and techniques have been used to deal with these
kinds of problems, it seems better to use the fuzzy linguistic approach to model vagueness and
the Dempster-Shafter theory of evidence for modeling incompleteness and ignorance. In the
evaluation of alternative designs, different criteria can be considered. In this article an evalua-
tion process is developed in terms of Safety and Cost analysis. Both criteria involve uncertainty,
vagueness, and ignorance due to their nature. Therefore, we propose an evaluation process defined
in a linguistic framework where both criteria will be conducted in different utility spaces, i.e., in
a multigranular linguistic domain. Once the evaluation framework has been defined, we present
an evaluation process based on a Multi-Expert Multi-Criteria decision model that will be able to
deal with multigranular linguistic information without loss of information in order to evaluate
different design options for an engineering system in a precise manner. Accordingly, we propose
the use of a multigranular linguistic model based on the Linguistic Hierarchies presented by
Herrera and Martinez (“A model based on linguistic 2-tuples for dealing with multigranularity
hierarchical linguistic contexts in multi-expert decision-making.” IEEE Trans Syst Man Cybern
B 2001;31(2):227-234). © 2005 Wiley Periodicals, Inc.

1. INTRODUCTION

The growing technical complexity of large engineering systems such as off-
shore platforms or offshore support vessels, together with the public concern over
their safety, has stimulated the research and development of novel safety analysis
methods and safety assessment procedures.
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The safety of a large engineering system is affected by many factors regard-
ing its design, manufacturing, installation, commissioning, operation, and mainte-
nance. Consequently, it may be extremely difficult to construct an accurate and
complete mathematical model for the system in order to assess its safety because
of inadequate knowledge about the basic failure events. This leads inevitably to
problems of uncertainty in representation.!

In the design of traditional engineering systems, such as marine and offshore
structures, the primary objective in selecting a design option is to minimize cost.
All future solicitation involving source selection should be structured using safety/
cost considerations.” Also the decision of implementing a design in a large engi-
neering system depends on whether the design can satisfy technical and economical
constraints. Multi-Criteria Decision Making (MCDM) techniques®~’ could be
applied for ranking different design options.

Information used by experts to assess design options may not be precise over
different criteria. The probability theory can be a powerful tool. Indeed, tradi-
tional risk analysis is conducted primarily using probabilistic tools and tech-
niques. However, it is not difficult to see that many aspects of uncertainties clearly
have a nonprobabilistic character because they are related to imprecision and vague-
ness of meanings. Often the type of uncertainties encountered in engineering sys-
tems such as offshore structures do not fit the axiomatic basis of probability theory,
simply because uncertainties in the systems are usually caused due to the inherent
incompleteness and fuzziness of parameters rather than randomness. Traditional
approaches, e.g., quantitative risk assessment (QRA) including probabilistic safety/
risk analysis [such as Fault Tree Analysis (FTA) and Failure Mode, Effects, and
Criticality Analysis (FMECA)], have been widely used. These methods allow us
to build MCDM models, but often fail in their ability to incorporate subjective
and/or vague terms as they rely heavily on supporting statistical information that
may not be available for a given event.® Therefore, linguistic descriptors, such as
“Likely,” “Impossible,” may be used to describe an event due to the fact that they
are often used by engineers and safety analysts. The linguistic terms are fuzzy
judgments and not probabilistic ones. The Fuzzy Linguistic Approach’ provides a
systematic way to represent linguistic variables in a natural decision-making pro-
cedure (see Appendix). It does not require an expert to provide a precise point at
which a risk factor exists. So it can be used as a powerful tool complementary to
traditional methods to deal with imprecise information, especially linguistic infor-
mation that is commonly used to represent risk factors in risk analysis.!-810-1°

In engineering safety analysis, intrinsically vague information may coexist
with conditions of “lack of specificity” originating from evidence not strong enough
to completely support a hypothesis but only with degrees of belief or credibility.
Dempster-Shafer (D-S) theory of evidence!”-!® based on the concept of belief func-
tion is well suited for modeling subjective credibility induced by partial evi-
dence.!” D-S theory enlarges the scope of traditional probability theory, and
describes and handles uncertainties using the concept of the degrees of belief, which
can model incompleteness and ignorance explicitly. It also provides appropriate
methods for computing belief functions for combination of evidence. Besides, the
D-S theory also shows great potentials in multiple attribute decision analysis
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(MADA) under uncertainty, where an evidential reasoning (ER) approach for
MADA under uncertainty has been developed, on the basis of a distributed assess-
ment framework and the evidence combination rule of the D-S theory.?0~24

Accordingly, it seems reasonable to extend the fuzzy logic framework to cover
credibility uncertainty as well. The present work combines fuzzy logic and D-S
models to deal with fuzziness and incompleteness in safety assessment.

The aim of this article is to develop a linguistic evaluation model that evalu-
ates different design options for a large engineering system according to safety
and cost criteria. To do so, we propose:

1. To define an evaluation framework to assess the criteria of safety and cost

o Safety will be assessed based on fuzzy logic and the ER approach, referred to as a
FUzzy Rule-Based Evidential Reasoning (FURBER) approach,? which is based on
the RIMER approach proposed recently in Ref. 26. In this approach, a fuzzy rule-
base with the belief structures was designed to capture uncertainty and nonlinear
causal relationships in safety assessment. The inference process of such a rule-based
system was characterized by a rule expression matrix and implemented using the ER
approach.

e The synthesis of the safety assessments for each option is expressed and imple-
mented using a linguistic 2-tuple scheme.?’

e The cost assessments of each design option will be obtained from the cost assess-
ments of each cost factor supplied directly by the experts in terms of linguistic labels.

2. To develop an evaluation model based on a Multi-Expert Multi-Criteria decision process

e Cost and safety linguistic assessments will be synthesized from the experts knowl-
edge regarding each design option. The assessments of each criterion are conducted
in different utility spaces from each other.

o These assessments will be the input values for a Multi-Expert Multi-Criteria Deci-
sion Making (MEMC-DM) problem defined in a multigranular linguistic domain
used to evaluate the different design options in order to choose the most suitable one
for the engineering system.

o In the evaluation process the cost and safety assessments will be combined to obtain
adegree of suitability for each design option. Once the suitability degrees of all options
have been calculated, the best option can be chosen.

The main difficulty to solve the above evaluation problem is that the linguis-
tic assessments for cost and safety are conducted in different utility spaces, i.e., in
different linguistic term sets, because they have different scales and meaning. There-
fore, we shall deal with an evaluation problem defined in a multigranular linguis-
tic context that we shall model as an MEMC-DM process. Hence, in this article
we propose the development of a multigranular linguistic decision model based on
the Linguistic Hierarchies*® to avoid any loss of information during the resolution
of the multigranular linguistic MEMC-DM problem. Because the use of accurate
models is a critical factor in the processes related to engineering systems, the lin-
guistic hierarchies will provide us a common utility space for expressing safety
and cost assessments and for ranking design options without loss of information.

This article is structured as follows. In Section 2 we present the evaluation
framework used for the safety and cost modeling of large engineering systems. In
Section 3 we review the concept of Linguistic Hierarchy. In Section 4 a decision
model will be proposed to evaluate and choose the best design option for a large
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engineering system. In Section 5 an example to demonstrate this model is pre-
sented, and the paper concludes in Section 6.

2. EVALUATION FRAMEWORK FOR SAFETY AND COST
MODELING IN LARGE ENGINEERING SYSTEMS

In this section we propose an evaluation framework for safety and cost mod-
eling. We shall demonstrate how our model can be used to synthesize linguistic
safety and cost assessments. Eventually, we shall construct a MEMC-DM schema
to evaluate different design options for an engineering system.

2.1. Safety Evaluation Framework

A generic framework for modeling system safety estimate using the FURBER
approach and for safety synthesis using the ordinal fuzzy linguistic approach is
depicted in Figure 1. The framework for modeling system safety for risk analysis
consists of four major steps, which include all necessary steps required for safety
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Figure 1. A generic qualitative safety assessment framework.
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analysis at the bottom level of a system using the FURBER approach. The steps
used are outlined as follows (more details can be found in Refs. 25 and 26):

Step #1: Identification of causes/factors: This can be done by a panel of
experts during a brainstorming session at early conceptual design stages.

Step #2: Identify and definite fuzzy input and fuzzy output variables. The three
parameters used to assess the safety level of an engineering system on a subjective
basis are failure rate (FR), consequence severity (CS), and failure consequence
probability (FCP). Subjective assessments using linguistic variables may be more
appropriate for analysis using these three parameters as they are always associated
with uncertainty, especially for a new system with high level of innovation. The
characterization of the linguistic values used to describe FR, CS, FCP of a partic-
ular element are defined in Ref. 15:

e FR describes failure frequencies in a certain period, which directly represents the num-
ber of failures anticipated during the design life span of a particular system or an item.
To estimate FR, one may choose to use such linguistic terms as “very low,” “low,”

99 9 <

“reasonably low,” “average,” “reasonably frequent,” “frequent,” and “highly frequent.”
e CS describes the magnitude of possible consequences, which is ranked according to the
severity of failure effects. One may choose to use such linguistic terms as “negligible,”
“marginal,” “moderate,” “critical,” and “catastrophic.”
o FCP defines the probability that consequences happen given the occurrence of the even.
For FCP, one may choose to use such linguistic terms as “highly unlikely,” “unlikely,”
“reasonably unlikely,” “likely,” “reasonably likely,” and “definite.”

Safety estimate is the only output fuzzy variable used in this study to produce
safety evaluation for a particular cause to technical failure. This variable is also
described linguistically using the following linguistic term set, denoted as Sg in
this article:

Ss ={ “Poor,” “Low,” “Average,” “High,” “Good}

which are referred to as safety expressions.

Step #3: Construct a fuzzy rule-base with belief structures. Fuzzy logic sys-
tems are knowledge-based or rule-based ones constructed from human knowledge
in the form of fuzzy IF-THEN rules. For example, the following is a fuzzy IF-THEN
rule for safety analysis:

IF FR of a hazard is frequent AND CS is catastrophic AND FCP is likely,
THEN safety estimate is Poor.

Taking into account the belief degrees of a rule, attribute weights, and rule
weights, fuzzy rules for safety can be extended in the following way. In general,
assume that the three antecedent parameters, A; = FR, A, = CS, and A; = FCP
can be described with linguistic terms that belongs to S; = {s,¢,...,5;;,—1,}, Where
i = 1,2,3 indicates the parameter assessed and J; is the cardinality of the lingusitic
term set used to assess the ith parameter. One consequent variable safety estimate
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can be described by N linguistic terms, i.e., Dy, D, ..., Dy—;. Let s,.k € §,, bealin-
guistic term corresponding to the ith attribute in the kth rule, with i = 1,2,3. Thus
the kth rule in a rule-base can be written as follows:

R,: IF FR is sf AND CS is s5 AND FCP is s; THEN safety estimate is

N—1
1Dy, vor)s (Dl,’}’lk)w--,(DN—l"YN—lk)},< D Ya = 1)’
i=0

with a rule weight 6,, and the attribute weights 8,,6,, 5, (1)

where v, (i €{0,...,N— 1}; k €{1,..., L}, with L being the total number of the
rules in the rule-base), is a belief degree measuring the subjective uncertainty of
the consequent “safety estimate is D;” drawn due to the antecedent “FR is s¥ AND
CS is s¥ AND FCP is 55 in the kth rule. If 27;01 v = 1, the output assessment or
the kth rule is said to be complete; otherwise, it is incomplete. The rule-base in the
form (1) is referred to as a fuzzy rule-base with belief structures.

Suppose a linguistic term set with seven grades is used for FR (i.e., J; = 7);
five grades for CS (i.e., J, = 5), seven grades for FCP (i.e., J5 = 7). In addition,
suppose D, € Sg ={so = ‘Poor,” s; = ‘Low,” s, = ‘Average,” s; = ‘High,’ s4 =
‘Good’} (k= 0,...,4), so |Sg| = 5. In this case, a sample of a rule base with 245
rules will be used,?® for example:

o Rule #1: IF the FR is very low AND the CS is negligible AND the FCP is highly unlikely
THEN the safety estimate is {(good, 1)}

e Rule #100: IF the FR is relatively low AND the CS is catastrophic AND the FCP is
unlikely THEN the safety estimate is {(average, 0.3), (low, 0.7)}

o Rule #245: IF the FR is highly frequent AND the CS is catastrophic AND the FCP is
definite THEN the safety estimate is {( poor, 1)}

Step #4: Fuzzy rule-base inference mechanism based on the evidential rea-
soning approach. Suppose a fuzzy rule-base with the belief structure is given by
R={R,,...,R;}. The kth rule in form 1 can be represented as follows:

R, : IF A is s* THEN safety estimate is D with belief degree y, (2)

where A represents the antecedent attribute vector (FR, CS, FCP), sk the packet
antecedents {s{,s5,s5}. D the consequent vector (Do, ..., Dy—1), i the vector of
the belief degrees (yor, ..., yn—1x) and k € {1,...,L}. Each fuzzy rule with belief
structure can be explained in the following way:

The packet antecedent A of an IF-THEN rule could be considered as a global
attribute, which is considered as being assessed to a linguistic term D; (the ith
possible consequent term in the kth rule) with a belief degree of vy (i €
{0,...,N — 1}). This assessment can be represented by

S(A) ={Di,yu); i=0,....N—1} (3)
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which is obviously a distributed assessment and is referred to as a belief struc-
ture, where y;; measures the degree to which D, is the consequent if the input
activates the packet antecedent A in the kth rule, 0 = 7;01 Vi =1 for all &.
Here i = 0,...,N — 1; k = 1,...,L, where L is the number of rules in the
rule-base and N is the number of the possible consequent terms in the kth
rule.

A fuzzy rule-base with belief structure established using rules given by Equa-
tion 3 can be summarized using the following rule expression matrix shown in
Table I. In the matrix, wy is the activation weight of s, which measures the degree
to which the kth rule is weighted and activated. wy is generated by weighting and
normalizing the individual matching degree to which the input belongs to the lin-
guistic term of each antecedent. It could be generated using various ways depend-
ing on the nature of an antecedent attribute and the available data.

The way to determine the activation wy is summarized as follows. For more
details, see Refs. 25 and 26.

(1) Input transformation. The input is transformed into the distributed repre-
sentation of linguistic values in antecedents using belief degrees. In general, we
may consider a linguistic term in the antecedent as an evaluation grade, the input
for an antecedent attribute A; can be assessed to a distribution representation of the
linguistic terms using belief degrees as follows:

S(Al) = {(Sl]’nl])’j = 0""’Ji - 1}, i =1,2,3 (4)

where s;; is the linguistic term of the ith attribute A;, such that it is the jth ordinal
label in S; = {s;9,...,S5;,—1} being J; the cardinality of the linguistic term set used
to assess the ith attribute, 7, is the likelihood to which the input for A; belongs to
the linguistic term s; with n; = 0 and Ef;ol n; =1 (i =1,2,3), referred to as the
individual matching degree. n; in Equation 4 could be generated using different
ways depending on the nature of an antecedent attribute and the available data,
which is described in the following three cases:

(a) Matching function method. While the input is in numerical form and the linguistic
value is characterized using fuzzy membership functions (suit for both quantitative
and qualitative).

Table I. Rule expression matrix for a fuzzy rule-base with belief structure.

Output . ...
Belief D() Dl D,' DN*I
Input
s'(wy) Yo1 Yu Yil YN-11
Sk(Wk) Yok Yik Yik YN—1k

st(wy) YoL YiL YiL YN-IL
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(b) Rule-based or utility-based transformation methods. While the input is in numerical
forms but the fuzzy membership function is not available (only suit for the quantita-
tive attribute).

(c) Subjective assessment method (suit for quantitative and qualitative attribute).

For more details about the above three cases, we refer to Refs. 25 and 26.
Here we only consider Case (a). The data may be given in the following numerical
form:

a single deterministic value with 100% certainty

a close interval defined by an equally likely range

a triangular distribution defined by a most likely value, with lower and upper least likely
values

e a trapezoidal distribution defined by a most likely value, with lower and upper least
likely values.

Corresponding to the rule-base 1, the general input form corresponding to the
antecedent attribute in the kth rule is given as follows:

(A7,&,) AND (A3, &,) AND (A3, &5) (5)

where g; expresses the degree of belief assigned by an expert to the association of
A7 (i=1,...,3) to reflect the uncertainty of the input data, here A7 (i =1,...,3) can
be any of the above input forms.
Finally 7;; in Equation 4 could be formulated in the following way:
7(A7,s;)-&;
77;']' = - s [ = 1a253 (6)

Ji—1

S [r(A75,)]

here (A%, g;) is the actual input corresponding to the ith antecedent, 7 is a match-
ing function, 7(A7,s;) = 7; is a matching degree to which A7 belong to s;;. One
possible matching function 7 is given as follows and is used in our case study in
Section 4:

7(A7,s;) = max[min(A7(x) A s;(x))] (7)

(2) Activation weight for a packet antecedent. Considering an input given by
Equation 5 corresponding to the kth rule defined as in form 1,

FRis (sf,nf) AND CS is (s¥,75) AND FCP is (s¥,n%) (8)
where ¥ is the m;; that represents the individual matching belief degree that
belongs to s¥ € S;, =1Si0>---,5;—1} of the individual antecedent A; appearing in
the kth rule.

The activation weight wy of the packet antecedent A in the kth rule is gener-
ated by weighting and normalizing the 7, given by Equation 9 as follows:

Wi = (gk'”’?k)/(}:] 0;”’];) 9)
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where

0, is the relative weight of the kth rule

d; (i =1,2,3) is the weight of the ith antecedent attribute

e IT7_, (nF)® is the global matching degree, §; = 8;/(max;—; ., 3{8;})
L is the number of rules in the rule-base.

Note that the “AND” connective is used for three antecedents in a rule. In other
words, the consequent of a rule is not believed to be true unless all the antecedents
of the rule are activated. In such cases, the simple multiplicative aggregation func-
tion is used to calculate 7;. Note that 0 =< w, < 1(k=1,...,L) and Xr_, w, = 1.

Having represented each rule-base using rule expression matrix, the ER
approach,?>~2* which is developed on the basis of a distributed assessment frame-
work and the evidence combination rule of the D-S theory, can be used to combine
rules and generate final conclusions, the detailed algorithm can be found in Refs. 25
and 26.

The aggregation of consequents, i.e., the safety estimate S(e;(a;)) across the
rules is expressed as follows for the assessment done by the ith expert on the /th
potential cause to a technical failure:

S(ei (al)) = {(POOV, 19(1)1')’ (LOW’ 0€i)’ (Average, ﬁéi)’ (ngh’ aéi)’ (GOOd, ﬁéllz)}
(10)

where e; represents the ith expert (i =1,..., p) and a, represents the [th (I =1,...,q)
potential cause to a technical failure. 9/, represents the belief degree to which the
safety of a, is believed to be assessed to D, € S by the expert ¢;. The inference
procedure is based on the fuzzy rule-base and evidential reasoning approach,
referred to as a FURBER approach.?® The final result is still a belief distribution
on safety expression, which gives a panoramic view about the safety level for a
given input.

2.2. Safety Synthesis Framework

Considering that safety level is expressed as a linguistic variable in a qualita-
tive format, it is difficult to establish their membership functions. The ordinal fuzzy
linguistic approach (symbolic approach) is considered here by the direct compu-
tation on linguistic values?” instead of the semantic approach by using the associ-
ated membership function.’® The 2-tuple aggregation approach (see the Appendix)
can be applied to synthesize the safety estimate. The 2-tuple linguistic representa-
tion model has been presented in Ref. 27 that presents different advantages to
manage linguistic information over semantic and symbolic models,?! some con-
cepts and properties are detailed in the Appendix of this article.

In this phase for the synthesis purpose, we transform the safety estimate
into a linguistic 2-tuple, i.e., transform the distribution assessment S(e;(a;)) in
Equation 10 on the S into linguistic 2-tuples over the Sg. A function ! is intro-
duced that transforms a distribution assessment in a linguistic term set Sg into a
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numerical value in the interval of granularity of Sg, [0, T — 1], where T is the
cardinality of Ss:

xi:S(ei(a) = [0,7—1]

T—1

DIRLY
=0 ;

X (s 90), =0, . T—1}) = =2 — = g (11)
9L

Here Sg = {so = ‘Poor,” s, = ‘Low,” s, = ‘Average,’ s3 = ‘High,” s, = ‘Good’} and
T=|S¢| =5 9.(t=0,...,|Ss| — 1) are obtained from Equation 10. Therefore,
applying the A function (Definition A.2.2, Appendix) to B! (i = 1,...,p; [ =
1,...,q) we shall obtain a safety estimate whose values are linguistic 2-tuples (by
the ith expert on the /th potential cause to a technical failure), e.g., if B/ = 1.2,
then its equivalent linguistic 2-tuple representation is:

A(1,2) = (Low, 0.2)

2.3. Cost Modeling

Cost and safety are two of the most important criteria in design of complex
engineering systems, but usually they are in conflict because higher safety nor-
mally leads to higher costs. The cost incurred for safety improvement associated
with a design option is usually affected by many factors,'® for example,

cost for provision of redundancies of critical components
provision of protection systems

alarm systems

use of more reliable components

cost for redesign of the system

e o o o o

These factors can be different in each engineering system and often include
uncertainties. Therefore, it may be more appropriate to model cost incurred in
safety improvement associated with design options on a subjective basis.

In the literature!-!® cost was estimated and described using fuzzy sets over
the linguistic variables belonging to the linguistic term set, for example:

{Very Low, Low, Moderately Low, Average, Moderately High, High, Very High}

In this article we develop a cost and safety model dealing with multigranular
linguistic information without loss of information. To do so, we shall use linguis-
tic hierarchies that are linguistic structures that will be described in Section 3.
These structures follow different rules. Because of this, according to the granular-
ity of safety assessments, we propose to express the cost assessments for the dif-
ferent factors in the linguistic term set, S, with nine labels (triangular shaped and
symmetrically distributed) (see Figure 2).
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Figure 2. Linguistic assessments for cost factors, Sc.

Sc = {None, Very Low, Low, Moderately Low, Average, Moderately High,
High, Very High, Unacceptable}

The use of S¢ will prevent the loss of linguistic information in linguistic com-
putations of our evaluation model. In our approach, the jth expert, ¢;, provides an
assessment for the kth cost factor f;, of the ith design, O;,j=1,...,p;k=1,...,n;
i=1,...,m, expressed by means of labels c{; € S¢ (see Table II).

To obtain a cost assessment for a design from each expert, we shall aggregate
the assessments for each factor using the weighted average 2-tuple operator (see
Appendix, Definition A.2.4). With this operator we can give different importance
to each cost factor. So, the cost for the ith design option by the jth expert is obtained
as follows (see Table III):

SW_AM (€00 (e 00 = 8( 3 B/ S ) =) (12
k=1 i=1
where

(c,0) is the equivalent linguistic 2-tuple (Remark A.2.1) of the linguistic
cost assessment provided by the jth expert to the kth cost factor f; (alarm
systems, cost for redesign,...) of the ith design option O;

i’; is its equivalent numerical value (Proposition A.2.1)

wy is the importance of the factor f;

(ci ;) is the overall cost linguistic assessment for the ith design option
synthesized from the jth expert e;.

Table II. Expert’s j linguistic assessments for cost factors.

Designs 0, On

e
J Factors

1 1
Ji Cyj Cnj

n n
fa i .. Coni
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Table III. Expert’s j overall cost assessment
for all the design options.

L’j 01 ‘e Om

(Cljaa]j) (ijaamj)

Remark 1. Cost assessments have a different interpretation of suitability for a
design option regarding safety assessment. In other words, high cost assessments
indicate the low suitability of a design option. Therefore, to calculate a value for
the suitability of a design option, we shall take into account this feature.

So far, cost and safety assessments have been assessed by means of linguistic
values but in different linguistic utility spaces.

2.4. Multi-Expert Multi-Criteria Decision Making Schema

We shall model our evaluation problem as a MEMC-DM problem where all
the experts provide their assessments for different cost factors and his/her opin-
ions for FR, CS, and FRP that will be synthesized to obtain the safety assess-
ments. The cost and safety assessments used as inputs for the DM problem are
summarized in Table IV: where (s, ;) (i=1,...m;j=1,...,p; a; €[-0.5,0.5))
are the safety assessments synthesized from the opinions of the expert e; for the
design option O;, i.e., estimated based on the fuzzy rule-based system produced at
lower levels, and then synthesized to obtain the safety assessment of the system by
means of linguistic 2-tuples in the linguistic term set Sg. While (¢, aijc- (i=1,...,m
j=1....p; af €[—0.5,0.5)) are the overall cost assessment obtained by aggre-
gating the cost of the different cost factors, provided by the expert ¢; for the design
option O;, assessed in the linguistic term set Sc.

Note that Sg and S¢ are linguistic term sets with different granularity and
semantics. Therefore our MEMC-DM problem is defined over a multigranular lin-
guistic domain.

A solution for a MEMC-DM problem is derived from the individual prefer-
ence problems following a common resolution scheme composed by two phases:*?

Table IV. Safety and cost assessments
synthesized from e;.

Criteria

Design options Safety Cost

0, (Sljaais}') (Cl_,‘yaf;)

Onm (smj,a,flj) (cm,-,a,if)
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e aggregation phase: that combines the expert preferences, and
e exploitation one: that obtains a solution set of alternatives from a preference relation

The main difficulty for managing MEMC-DM problems defined in multigran-
ular linguistic information contexts is how to aggregate this type of information.

The 2-tuple fuzzy linguistic representation model presented in Ref. 27 has
shown itself as a good choice to manage nonhomogeneous information in aggre-
gation processes.?®33 This representation model together with the structure of the
Linguistic Hierarchies?® provide a preference modeling and a computational model
able to manage multigranular linguistic information in a precise way. In this article,
we present in Section 4 an evaluation model that uses the linguistic hierarchies to
obtain the most suitable design option for a large engineering system.

3. LINGUISTIC HIERARCHIES

The hierarchical linguistic contexts were introduced in Ref. 28 to improve
the precision of the processes of Computing with Words in multigranular linguistic
contexts, which is the aim of this article.

A Linguistic Hierarchy is a set of levels, where each level represents a lin-
guistic term set with different granularity to the remaining levels. Each level is
denoted as I(t,n(t)):

e ¢is a number that indicates the level of the hierarchy.
e (1) is the granularity of the term set of the level 7.

We assume that levels containing linguistic terms are triangular shaped, sym-
metrical, and uniformly distributed. In addition, the linguistic term sets have an
odd number of linguistic terms being the middle one the value of indifference.

The levels belonging to a linguistic hierarchy are ordered according to their
granularity, i.e., for two consecutive levels z and 7 + 1, n(¢ + 1) > n(¢). Therefore,
the level ¢ + 1 is a refinement of the previous level ¢.

From the above concepts, we define a linguistic hierarchy (LH ) as the union
of all levels ¢:

LH = | l(t,n(2))

Given an LH, we denote as S”") the linguistic term set of LH corresponding
to the level r of LH characterized by a granularity of uncertainty n(z):

S0 = {50 st

Generically, we can say that the linguistic term set of level ¢ + 1 is obtained
from its predecessor as

I(t,n(1)) = 1(t+1,2-n(t) — 1)

A graphical example of a linguistic hierarchy can be seen in Figure 3.
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Figure 3. Linguistic hierarchy.

In Ref. 28 different transformation functions between labels of different levels
were developed without loss of information. To understand how these functions
are working, there were defined transformation functions between two consecu-
tive levels and afterward between any levels of the hierarchy. These transforma-
tion functions use the linguistic 2-tuple computational model.

DEFINITION 1. Let LH = U, [(t,n(t)) be a linguistic hierarchy whose linguistic
term sets are denoted as 8™ = {s(')'(') Yt ,s,:’((;)),l }, and let us consider the 2-tuple
linguistic representation. The transformation function between a label from level t
and a label belonging to level t + 1, satisfying the linguistic hierarchy basic rules,

is defined as
TF/, ,:l(t,n(2)) > I(t + 1,n(t + 1))
A (s a" D) (n(t+1) = 1)
n(t) =1 )

DEFINITION 2. Let LH = \J, [(t,n(t)) be a linguistic hierarchy whose linguistic
term sets are denoted as S"") = {s(')'(t) Yt ,s,ﬁ'((,’)),, }, and let us consider the 2-tuple
linguistic representation. The transformation function between a label from level t
and a label belonging to level t — 1, satisfying the linguistic hierarchy basic rules,

is defined as
TF_ | :1(t,n(2)) > I(t — 1,n(t — 1))

AN (s @) (n(r—1) — 1))
n(r)—1

TEL, (57 a") = A(
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From Definitions 1 and 2 we can generalize these transformation functions to
transform linguistic labels between any two linguistic levels of the hierarchy. This
generalization can be carried out in a recursive way or in a nonrecursive one.

DEFINITION 3. Let L = U, I(t,n(t)) be a linguistic hierarchy whose linguistic
term sets are denoted as {s{"",... ,s;’((,’)),l}. The recursive transformation function
between a label belonging to a level t and a level t' = t + a, with a € Z, is de-
fined as

TF! :1(t,n(1)) = I(t',n(1"))
if |a| > 1 then
n n — -t /t— ! n n
TF:/(SI‘ (’),a (t)) — TFtt/+[(l 1)/ |1—t H(Tth+[(1‘7t/)/\t7t,\](si (t),a (r)))
if la| =1 then
TF! (57, a"") = TF! (10, )

t+[(t—1")/|t—1"|
This recursive transformation function can be easily defined in a nonrecur-
sive way, as can be seen in the following definition:

DEFINITION 4. Let LH = \J, [(t,n(t)) be a linguistic hierarchy whose linguistic
term sets are denoted as S" = {5, ... ,s;'((l’))_l }, and let us consider the 2-tuple
linguistic representation. The transformation function from a linguistic label in
level t to a label in level t' is defined as

TF! : 1(t,n(t)) = I(t',n(t"))

(An&)(si"(’),a"(”)-(n(t') - 1))
n(t) —1

TF, (s;",a" ") = A,

PrOPOSITION 1. The transformation function between linguistic terms in differ-
ent levels of the linguistic hierarchy is bijective:

TF,’, (TF;, (10 @)y = (s80 qn1))

4. DECISION MODEL: EVALUATING THE DESIGN OPTIONS

The aim of this article is the development of an evaluation model to choose
the best design option among several ones for a large engineering system taking
into account the features of safety and cost despite both of them are conducted in
different utility spaces. To achieve our objective in Section 2, we presented an
MEMC-DM schema defined in a multigranular linguistic framework to evaluate
the different designs. Therefore, to evaluate and rank the different options we
present a multigranular linguistic decision model that uses a linguistic hierarchy,
LH*, to model and manage the multigranular linguistic information without loss
of information. This decision model consists of the following phases (graphically
Figure 4):
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Aggregation phase

Normalization process
Input Assessments Explotation phase
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Cost & Safety infarmation in the BLTS Ranking
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Combining Linguistic
2.tuples assessed

in the BLTS

Figure 4. Multigranular linguistic decision model.

o Aggregation phase: It combines the safety and cost assessments provided by the experts
to obtain an overall suitability assessment for each design option. In our case as the
input information is assessed in a multigranular linguistic domain, this phase consists of
two steps:

(1) Normalization process: Safety and cost assessments are conducted in two different
utility spaces, Sg and S¢, contained in LH*. To operate over these assessments, this
process unifies both criteria assessments into a sole utility space called Basic Lin-
guistic Term Set (BLTS). This unification process is carried out in a precise way
without loss of information.

(2) Aggregation process: It combines the unified information to obtain an overall value
of suitability for each design option.

o Exploitation phase: It ranks the different design options according to assessments obtained
in the aggregation phase by means of a choice degree.

We propose this decision-making model for evaluating the different design
options and choose the best one for an engineering system.

In the next subsections, we present each phase of the linguistic decision model,
but first of all we shall choose a linguistic hierarchy for modeling the cost and
safety assessments we shall use in our problem.

4.1. Safety and Cost Problem Modeled by Means of Linguistic Hierarchies

In Sections 2.2 and 2.3, we have modeled the safety and the cost assessments
of each design option expressed by means of linguistic values assessed in different
linguistic utility spaces, Sg and S¢, with five and nine labels, respectively. There-
fore, we have to choose a linguistic hierarchy, LH*, which contains levels with
these cardinalities for modeling our problem. In our case we shall choose as LH*,
the linguistic hierarchy showed in the Figure 5.

4.2. Decision Process

Once we have chosen the Linguistic Hierarchy, LH™, to model the safety and
cost assessments. Here we shall describe the decision model used to solve our
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evaluation problem that we have modeled as a Multi-Expert Multi-Criteria decision-
making process, in which each expert ¢; provides his/her opinions about the
different safety parameters and cost factors. And such as it has been indicated in
Sections 2.2 and 2.3, the cost and safety assessments are synthesized. So the inputs
provided by the expert ¢; for our evaluation problem have been summarized in the
Table IV.

In the following subsections the two phases involved in the resolution pro-
cess of the decision model are described in detail that evaluates the different design
options for an engineering system: (i) aggregation phase and (ii) exploitation one.

4.2.1. Aggregation Phase

In this phase the multigranular linguistic information synthesized from the
opinions provided by the experts (Table IV) is combined to obtain collective eval-
uation value for all the design options. This phase combines the multigranular
linguistic information in two steps.

4.2.1.a. Normalization Process. Due to the fact that the cost and safety
assessments are assessed in a multigranular linguistic framework to combine both
types of assessments firstly they must be conducted into a common utility space
called the Basic Linguistic Term Set (BLTS), represented by S7. In this problem
we could choose as BLTS any linguistic level of LH*, but in our case we have
decided to choose as BLTS to unify the input assessments a linguistic term set
with five linguistic labels that corresponds to the second level, S>, of LH* (Figure 5).

Q05 S5 5 5 L5 LS
Sr=38 _{SO’SI’SZ’S39S4}

We have chosen this term set as BLTS because of minimizing the number of
operations. On the one hand, safety assessments are expressed in this term set so
we do not have to transform these assessments to unify them, and on the other
hand the utility space we shall use in our problem the suitability utility of each
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design option is represented using a five labels linguistic term set with the follow-
ing syntax:

S = {Slightly Preferred, Moderate Preferred, Average,
Preferred, Greatly Preferred}

but with the same semantics as Sr. So the results obtained in Sy are directly trans-
lated to Sg.

Remark 2:  We need St and Sg because during the aggregation process we cannot
use Sg due to its syntax might lead to misunderstandings because cost is in conflict
with safety and this syntax does not reflect the conflict. Hence during the aggre-
gation computations we shall use S; with the notation s, to refer to the aggregated
values and when we obtain the suitability utility values then they will be expressed
by means of labels in Sg.

The multigranular information is unified by means of the transformation func-
tion between the levels of the hierarchy (Definition 4):

Ayl (sP,a" D) (n(1") — 1))
n(t) —1

TF) (s}, a"") = An(,,)<

Once we have chosen the common utility space to express the preferred
design options, we make uniform all the safety and cost assessments into the BLTS.
The safety assessments are directly transformed into the BLTS because they are
expressed in a term set with the same semantics, while the cost assessments
will be unified by means of the transformation function TF3 (c;;, @), c; € S¢. For
instance:

ij>

TF{ (ModerateLow,0) = (s5,—0.5)

After this transformation process expert, safety and cost assessments pro-
vided by the expert e; are expressed by means of linguistic 2-tuples in the common
utility space, BLTS. Therefore, from Table I'V the normalization process will obtain
(see Table V). Here 57 € Sz =8 = {s7.57.53,53,5;}, aj € [~0.5,0.5), af €
[—0.5,0.5),i=1,...,m;j=1,..., p. This process is applied to all the expert opinions.

Table V. Safety and cost unified assessments
by e; expressed in St.

Criteria

Design options Safety Cost

04 (sijai)) (sijai)

On (532 @) (S )
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Table VI. Unified assessments in S for safety
and cost by e;.

Criteria
Design options Safety Cost
0, (s7,—0.3) (s3,—0.12)
On (s3,0.34) (s3,0.23)

4.2.1.b. Aggregation Process. Let suppose that the Table VI contains the
unified safety and cost assessments by the expert e;. This process combines the
unified cost and safety assessments of all the experts to obtain a global evaluation
value for each design option in a two-step process.

1. Individual evaluation value, I;: In this step an evaluation value /;; is computed by the
expert ¢; for the ith design options O; according to its synthesized and unified cost
and safety assessments. To compute this evaluation value, we propose the use of the
weighted aggregation operator (Definition A.2.4). We have a set of pairs of assess-
ments {(s;, @), (c;,a®)} expressed in S7 for each design option. Taking into account
Remark 2, since the cost assessments have a decreasing interpretation for the suitability,
the individual evaluation [;; for the ith design option by ¢; is obtained using the follow-
ing expression:

I; = W_AM*((s;;,a®),(c;a“))

g

=AM (sy,0%) 0 + A (Neg(cy, @) (1 - w) = (57, @)

ij»

where Neg(c;;, a) (see the Appendix for the 2-tuple Neg operator ) is the assessment
for the cost of the ith design option synthesized from e; taking into account its decreas-
ing interpretation and (s;;, %) is the assessment for the safety of the i th design option.
And w is the weight for the safety assessment and 1 — w the weight for the cost assess-
ment. This individual evaluation value is initially expressed in S but we want to express
itin Sg so we have to translate the results from Sy to Sg just using the Sk syntax. Let us
suppose a value of w = 0.6. We obtain the individual evaluations from Table VII.
These individual values are expressed in terms assessed in Sg as in Table VIII.

2. Global evaluation value, G;: So far, we have an individual suitability value, I;; (i =
l,....,m;j=1,...,p),of the ith design option expressed by means of a linguistic 2-tuple
in S and Sz by the expert ¢;. To obtain a global suitability assessment for each design
option, we shall apply another aggregation operator to the individual assessments of all

Table VII. Individual evaluation
value for design options in Sz by e;.

Options Utility

0, (s7,—0.13)

O, (s7,—0.49)
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Table VIII. Individual evaluation value for
design options in S by e;.

Options Utility
0, (Moderated Preferred, —0.13)
O (Moderated Preferred, —0.49)

experts. Now, we could consider that all the experts are equally important (arithmetic
mean) or we could assign different weights to each expert (weighted average). Let us
suppose we consider all the experts equally important; the global evaluation value G; is
given as

ro1
G, = AM*((I)) = A( > ; Al(lij)>, (i=1,....m;j=1,...,p)
Jj=1
Initially this value is obtained in Sy but afterward will be expressed in Sg.

4.2.2.  Exploitation Phase

Finally the decision process applies a choice degree to obtain a selection set
of alternatives. Different choice functions have been proposed in the choice theory
literature.>*~3® The choice functions rank the alternatives according to different
possibilities and from the ranking the best ones are obtained.

In our problem the information is expressed by means of the linguistic 2-tuple
representation model that has defined a total order over itself. Then we can rank
the results using this order.

5. EXAMPLE

In this section we shall develop an example for evaluating different designs
for a floating production storage offloading (FPSO) systems* according to the
safety and cost analysis of those designs. It is essential that anticipated hazards
due to technical factors be identified, risk control options proposed, and risk reduc-
tion or control measures taken to reduce the risk to as low as reasonably practical
(ALARP). Scenarios involving potential major hazards that might threaten an FPSO
or loss of operational control are assessed at an early stage in the design of new
facilities to optimise technical and operational solutions.*’

The safety assessment is carried out on risk introduced by the collision of
FPSO and shuttle tanker during tandem offloading operation. Only technical fail-
ures caused risk is assessed here, though the operational failure has been also rec-
ognized as one of the major causes of collision.

According to the literature survey, the technical failures that might cause col-
lisions between an FPSO and a shuttle tanker during tandem offloading operations
are malfunction of propulsion systems.* The four major causes to these technical
failures are:
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(1) controllable pitch propeller (CPP) failure
(2) thruster failure

(3) position reference system (PRS) failure
(4) dynamics positioning (DP) system failure

The cost factors evaluated in this case are:

(1) cost for provision of redundancies of critical components ( f;)
(2) provision of protection systems ( f>)

(3) alarm systems ( f3)

(4) use of more reliable components ( f3)

For the purpose of safety modeling, it is assumed that each input parameter
(i.e., FR, CS, and FCP) will be fed in term of any one of the four input forms
described in Subsection 2.1: numerical values, interval values, parametrical fuzzy
numbers. Moreover, seven levels of linguistic variable may be used for FC, five
levels for CS, and seven levels for FCP.

Suppose a panel of experts from different disciplines participated in the analy-
ses of three designs. Each one focuses on the above identified four causes to tech-
nical failures, which result in collision between an FPSO and a shuttle tanker. They
will use different input assessments to describe the collision risk scenarios in terms
of FR, CS, and FCP. And the linguistic term set S¢ to express the cost incurred for
the safety improvement in the different designs. In the following, we consider
design option O in detail for the illustration purpose of safety and cost assessment
and synthesis. The final results only will be shown for the other two designs.

5.1. Safety Assessments

For each design, the safety estimate of each technical failure is assessed by
five experts separately. Considering design option O, the assessment made by the
four experts in terms of FR, CS, and FCP is depicted in Table IXa for collision
between an FPSO and a shuttle tanker during tandem offloading operation due to a
CPP caused technical failure. Other three types of assessments are depicted in
Table IXb, Table IXc, and Table IXd, respectively.

The expert e; used the triangular distribution input form to address the inher-
ent uncertainty associated with the data and information available while carrying
out an assessment on the three input parameters. The FR is described triangularly
as (6.5, 8.0, 9.5), the CS as (7.5, 8.5, 9.5), and the FCP as (5.5, 7.0, 8.5).

In the rule base, 245 rules with belief structure have been established.>> The
evaluation of safety estimate for design O; made by the experts for collision risk
between FPSO and shuttle tanker due to CPP caused technical failure are per-
formed separately according to the general safety modeling framework in Sec-
tion 2.1 using the FURBER approach.

The Window-based and graphically designed intelligent decision system
(IDS),?® which has been developed based on the evidential reasoning approach, is
used to implement the combination of the rules and generate safety estimates. The
final assessment result for CPP by expert ¢, is obtained generated as follows:

{(Good, 0), (High, 0), (Average, 0.0057), (Fair, 0.3735), (Poor, 0.6208)}
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Table IXa. Expert judgment for technical failure caused by
malfunction of the CPP.

Expert FR CS FCP
el (6.5,8,9.5) (7.5, 8.5,9.5) (5.5,7,8.5)
e (5.5,7.5,9) (7,8.5,10) (5,7.5,9.5)
e3 [6, 8] [7,9] [6.5,9]
ey {5.5,6.5,9, 10} {5.5,7, 8, 10} 5.7, 8, 8.5}
es 7.75 8.25 7.6

Table IXb. Expert judgment for technical failure caused by
malfunction of the thruster.

Expert FR CS FCP
e 6,7,7.5) (6.5,7,8) (4.5,5.5,6)
e (6,6.5,8) (7,8,9) (6,7.5,8)
e [5.5,7.5] [6, 8] [6, 8]
ey {5,6,7, 8} {5,7,8,9} {5,6,7,9}
es 7.15 7.95 7.25

Table IXc. Expert judgment for technical failure caused by
malfunction of the PRS.

Expert FR CS FCP
el (6.5,7,7.5) (8,8.5,9) (5.5,7,8)
e (6,7.5,8) (7.5,8,9.5) (5,6,7)
e [6.5, 8] [7,7.5] [6.5,7.5]
ey {6,7, 8,9} {5,7,8,8.5} {6,7, 8,9}
es 7.5 7.2 7.1

Table IXd. Expert judgment for technical failure caused by
malfunction of the DP.

Expert FR CS FCP
e (7,75,8) (7.5,8.5,9) (6,7,7.5)
e (6.5,7,8) (6.5,7,8.5) (5.5,6,7)
e3 [7,9] [7.5,9.5] [7,8]
es {6.5,7,7.5, 8} 16,6.5,7, 8} {6.5,7,7.5,9}
es 7.95 8.25 7.9

This result can be interpreted in such a way that the safety estimate of CPP to
technical failure is “Average” with a belief degree of 0.0057, “Fair” with a belief
degree of 0.3735, and “Poor” with a belief degree of 0.6208. The similar compu-
tations are performed for the other four experts for CPP, and for the other three
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potential causes (the Thruster, PRS, and DP) to technical failure. The safety esti-
mate results estimates attained generated for CPP, thrusters, PRS, and DP caused
technical failure by five experts are summarized in Tables Xa—d, respectively.

Furthermore, these safety assessment results are transformed into linguistic
2-tuple values using Equation 11, for example, the linguistic 2-tuple value of assess-
ment by the expert e; for CPP caused technical failure of design O is

4

> 1)

t=0

4
> 9
t=0

xi{(s,,9)),t=0,...,4}) = = 0.3849 = (Poor, 0.3849)

The similar computation is performed for safety assessment of design O; by
the other four experts using the FURBER approach for the CPP caused technical
failure and the other three potential causes to technical failure, and the results
attained for thrusters, PRS, and DP caused technical failure by five experts are
shown in Table XI.

From these values we obtain a safety value for the design O, for each expert
using the arithmetic mean for linguistic 2-tuples as shown in Table XII. The simi-
lar computations are performed for safety assessment for other two design options.
The results are summarized in Table XIII.

5.2. Cost Assessments

Let us suppose the linguistic cost assessments are provided by the experts in
the linguistic term set S¢ for the corresponding factors of the safety improvement
in design option O;. These values are shown in Table XIV.

To synthesize a cost value for the design option O, we aggregate these assess-
ments with arithmetic mean for linguistic 2-tuples, leading to the results in
Table XV.

The similar computations are performed for cost assessment for the other two
design options. The results are summarized in Table XVI.

5.3. Decision Process

Now we apply the decision model presented in Section 4 using as input the
cost and safety assessments synthesized in the Tables XV and XVI.

5.3.1. Aggregation Phase

5.3.1.a. Normalization Process. The assessments for the safety and cost are
transformed into linguistic 2-tuples assessed in S7 (shown in the Tables XVII and
XVIII).
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Table Xa. Safety estimate by each expert on collision risk between FPSO and shutter tanker
due to CPP caused technical failure.

Safety estimate

E FR CS FCP Good  High  Average Low Poor

er (65,8,9.5) (75,85,9.5) (55.7.8.5) 0 0 0.0057 03735  0.6208
e;  (55,7.5,9.0)  (7,85,10) (5,7.5,9.5) 0 0 0.0075 03750  0.6175
es  [6,8] [7,9] [6.5,9] 0 0 0.0033 03090  0.6876
es  {55,659,10) {557.8,10} {5 7,8,8.5} 0 0 0.0233 04751 05016
es 175 8.25 7.6 0 0 00123 03641  0.6236

Table Xb. Safety estimate by each expert on collision risk between FPSO and shutter tanker
due to the thruster caused technical failure.

Safety estimate

E FR CS FCP Good  High  Average Low Poor
er  (6,7,7.5) (6.5,7,8) (4.5,5.5,6) 0 0 0.0373 0.7802  0.1825
e, (6,6.5,38) (7,8,9) (6,7.5,8) 0 0 0.0640 0.4165  0.5195
e; [55,55,75,75] [6,6,8,8] [6,6,38,38] 0 0 0.0375 0.6503  0.3122
e, 1{5,6,7,8} {5,7,8,9y {5,6,7,9} 0 0 0.0274 0.5540  0.4186
es 7.15 7.95 7.25 0 0 0.0013 0.4179  0.5808

Table Xc. Safety estimate by each expert on collision risk between FPSO and shutter tanker
due to the PRS caused technical failure.

Safety estimate

E FR CS FCP Good  High  Average Low Poor
e (6.5,7,7.5) (8,8.5,9) (5.5,7,8) 0 0 0.0047  0.6151  0.3802
ex  (6,7.5,8) (7.5,8,9.5) (5,6,7) 0 0 0.0041 0.6142  0.3817
es [65,658.8] [7,7,7.5,7.5] [6.5,6.5,7.5,7.5] 0 0 0.0055  0.3845  0.6100
ey {6,7,8,9} {5,7,8,8.5} 16,7, 8,9} 0 0 0.0204  0.5111  0.4685
es 1.5 7.2 7.1 0 0 0.0080  0.3694  0.6226

Table Xd. Safety estimate by each expert on collision risk between FPSO and shutter tanker
due to the DP system caused technical failure.

Safety estimate

E FR CS FCP Good  High  Average Low Poor
er  (7,7.5,8) (7.5,8.5,9) 6,7,7.5) 0 0 0.0102  0.3595  0.6303
e (65,7,8) (6.5,7,8.5) (5.5,6,7) 0 0 0.0097 0.6926  0.2977
es  [7,7,9,9] [7.5,7.5,9.5,9.5] [7,7,8,38] 0 0 0.0097 0.3930  0.5973
es 1{6.5,7,75.8} {6,6.5,7, 8} {6.5,7,7.5,9} 0 0 0.0200  0.5733  0.4067
es 1.95 8.25 79 0 0 0.0256  0.2688  0.7056
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Table XI. Safety estimate by each expert on collision risk between FPSO and shutter tanker.

(3] € es3 ey es
CPP (Poor, 0.3849) (Poor, 0.39) (Poor, 0.3156) (Low, —0.4783)  (Poor, 0.3887)
Thruster  (Low,—0.1452)  (Low, —0.4555)  (Low, —0.2747)  (Low, —0.3912)  (Poor, 0.4205)
PRS (Low, 0.3755) (Low, —0.3776)  (Poor, 0.3955) (Low, —0.4481)  (Poor, 0.3854)
DP (Poor, 0.3799) (Low, —0.288) (Poor, 0.4124) (Low, —0.3867)  (Poor, 0.32)

Table XII. Safety estimate on collision risk between FPSO and shutter tanker for design O;.

el [} es ey es

0, (Low, —0.2523) (Low, —0.4301) (Poor, 0.4622) (Low, —0.4261) (Poor, 0.37865)

Table XIII. Safety estimate for all the design options.

e] [} es3 [} es

0, (Low, —0.2523) (Low, — 0.4301) (Poor, 0.4622) (Low, —0.4261) (Poor, 0.3786)
0, (Poor, 0.4599) (Low, —1248) (Poor, 0.3823) (Low, —0.2857) (Poor, 0.4132)
03 (Low, 0.0755) (Low, —0.4761) (Poor, 0.2953) (Low, —0.4112) (Poor, 0.4351)

Table XIV. Cost estimated by each expert.

4] € es €4 es
fi High Moderately high Average High Very high
b High Very high Very high Very high High
f Average Very high High Very high Very high
1 Very high Moderately high Average High Very high

Table XV. Cost assessments for design O, by each expert.

er [} e3 [} es

0, (High, —0.25) (High, 0) (Moderately high, 0.25) (High, —0.5) (Very high, —0.25)

Table XVI. Cost assessments for all the design options by each expert.

€] ey e3 ey es
0O, (High, —0.25) (High, 0) (Moderately high, 0.25) (High, —0.5) (Very high, —0.25)
0, (Moderately high, —0.25) (High, 0.25) (High, 0) (Very high, 0) (High, —0.25)

O3 (Very high, 0.25) (High,-0.25) (High, —0.25) (High, 0.25)  (High, 0.25)
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Table XVII. Safety estimate on collision risk for the design options in Sz.

e e e3 €4 €s

0, (s7,—0.2523) (s?, —0.4301) (sg, 0.4622) (s7, —0.4261) (sg, 0.3786)
0, (sg, 0.4599) (sf, —0.12438) (sg, 0.3823) (sf, —0.2857) (sg, 0.4132)
05 (s7,0.0755) (s?, —0.4761) (sg, 0.2953) (s7, —0.4112) (sg, 0.4351)

Table XVIII. Cost assessments for the design options in S7.

el [} e3 ey es
0, (s3, —0.125) (s3,0) (s3, —0.375) (s3, —0.25) (s3,0.375)
0, (s3,0.375) (s3,0.125) (s3,0) (s3,—0.5) (s3, —0.125)
03 (s3, —0.375) (s3, —0.125) (s3, —0.125) (s3, —0.125) (s3,0.125)

5.3.1.b. Aggregation Process. In this process, first we shall obtain an indi-
vidual value [;; for each expert and each design according his cost and safety assess-
ments. To do so, it is used the following aggregation expression:

Iij = W_AM*((Sij’aS)’(cijaac))

=AM (s5,0%) -0 + AN (Neg(cy,a))-(1 — w))

ij»
In this case we use w = 0.6. Hence, the individual values I;; for each design is
summarized in Table XIX.

Now we use the arithmetic mean for 2-tuple is used again to get the global
evaluation values for each design, which are shown in Table XX. These values are
computed in terms of Sy but finally expressed by means of terms of Sg that it is a
simple translation.

Table XIX. The individual utility assessments in Sy for each design by each expert.

(4] () e3 €y es
0, (53, —0.1020) (57, —0.2580) (53, —0.1726) (53, —0.1557) (s3,0.4771)
0, (s3, —0.0741) (s3,0.0500) (53, —0.3706) (53, —0.3715) (s3, —0.3021)

0; (s, —0.2047) (s, —0.2360) (53, —0.3729) (53, —0.2968) (53, —0.3890)

Table XX. The global utility assessments in Sg for each design.

o0 1 02 03

(Moderately preferred, —0.2423)  (Moderately preferred, —0.2137)  (Moderately preferred, —0.2999)
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5.3.2.  Exploitation Phase

In our example the exploitation phase chooses the design option with the high-
est value; in our case the best design option is

0O, (Moderately preferred, —0.2137)

6. CONCLUDING REMARKS

In this article we have presented an evaluation approach for design assess-
ment of complex engineering systems based on safety and cost analysis. To develop
this evaluation process and due to the vagueness and ignorance that is involved
in the safety and cost criteria, we have used fuzzy rule-based evidential reason-
ing approach for safety assessment and the fuzzy linguistic approach for the
cost assessments; finally a multigranular linguistic framework is used to synthe-
size the safety assessments and cost assessments. The use of a linguistic model
facilitates the process of dealing with vagueness and uncertainty more than the
use of traditional probabilistic models and tools. The linguistic approach pro-
vides a useful and natural way to support the solution of such complex decision
problems.

Our proposal for evaluating design options before its implementation for a
large engineering system is based on a cost and safety analysis that defines a multi-
granular linguistic framework where each criterion is conducted in different expres-
sion domains.

Once it has been defined as the evaluation framework that will be used by our
evaluation problem, we have modeled it as an MEMC decision model that is able
to deal with multigranular linguistic assessments without loss of information in
order to evaluate and rank the different options.

Finally we have demonstrated the application of the new approach using an
example of assessing three different possible designs in a large engineering
system.

The proposed framework offered great potential in safety assessment of engi-
neering systems, especially in the initial concept design stages or a system with a
high level of innovation where the related safety information is scanty or with
various types of uncertainty involved.
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APPENDIX A: LINGUISTIC BACKGROUND

In this section we shall review some core concepts about linguistic infor-
mation that we shall use in this article. First, we will briefly review the Fuzzy
Linguistic Approach, and afterward we shall revise the Linguistic 2-tuple repre-
sentation model and its computational model as well as the Linguistic Hierarchies.

A.1. Fuzzy Linguistic Approach

Usually, we work in a quantitative setting, where the information is expressed
by means of numerical values. However, many aspects of different activities in the
real world cannot be assessed in a quantitative form, but rather in a qualitative
one, i.e., with vague or imprecise knowledge. In that case, a better approach may
be to use linguistic assessments instead of numerical values. The fuzzy linguistic
approach represents qualitative aspects as linguistic values by means of linguistic
variables.’ This approach is adequate in some situations; for example, when attempt-
ing to qualify phenomena related to human perception, we are often led to use
words in natural language. This may arise for different reasons. There are some
situations where the information may be unquantifiable due to its nature, and thus
it may be stated only in linguistic terms (e.g., when evaluating the “comfort” or
“design” of a car, terms like “bad,” “poor,” “tolerable,” “average,” and “good” can
be used®”). In other cases, precise quantitative information may not be stated
because either it is not available or the cost of its computation is too high, then an
“approximate value” may be tolerated (e.g., when evaluating the speed of a car,
linguistic terms like “fast,” “very fast,” and “slow” are used instead of numerical
values).

The fuzzy linguistic approach has been applied with very good results to
different problems, such as “information retrieval,”*%#! “clinical diagnosis,”*°
“marketing,”*? “risk in software development,”*® “technology transfer strategy
selection,”** “educational grading systems,”* “scheduling,”? “consensus,”4*4’
“materials selection,”*® “decision-making,

EET3

9929,49,50 etc.

We have to choose the appropriate linguistic descriptors for the term set and
their semantics. To accomplish this objective, an important aspect to analyze is the
“granularity of uncertainty,” i.e., the level of discrimination among different counts
of uncertainty. The universe of the discourse over which the term set is defined
can be arbitrary, usually linguistic term sets are defined in the interval [0, 1]. In
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Ref. 51 the use of term sets with an odd cardinal was studied, representing the
midterm by an assessment of “approximately 0.5,” with the rest of the terms being
placed symmetrically around it and with typical values of cardinality, such as 7
or 9. These classical cardinality values seem to satisfy Miller’s observation that
human beings can reasonably manage to bear in mind seven or so items.>?

One possibility of generating the linguistic term set consists of directly sup-
plying the term set by considering all terms distributed on a scale on which a total
order is defined.**->° For example, a set of seven terms S could be given as follows:

S = {sy: None; s,: Very Low; s,: Low; s5: Medium;
s4: High; s5: Very High; s¢: Perfect}

In these cases, it is usually required that there exist

e anegation operator Neg(s;) = s; such that j = ¢ — i (g + 1 is the cardinality)
e a minimization and a maximization operator in the linguistic term set: s; & 5; & i < J.

The semantics of the terms is given by fuzzy numbers defined in the [0,1]
interval, which are described by membership functions. A way to characterize a
fuzzy number is to use a representation based on parameters of its membership
function.’! Since the linguistic assessments given by the users are just approxi-
mate ones, some authors consider that linear trapezoidal membership functions
are good enough to capture the vagueness of those linguistic assessments, since it
may be impossible and unnecessary to obtain more accurate values.?’

This parametric representation is achieved by the 4-tuple (a, b, d, ¢), where b
and d indicate the interval in which the membership value is 1, with a and ¢ indi-
cating the left and right limits of the definition domain of the trapezoidal member-
ship function.>! A particular case of this type of representation are the linguistic
assessments whose membership functions are triangular, i.e., b = d, so we repre-
sent this type of membership function by a 3-tuple (a; b; ¢). For example, we may
assign the following semantics to the set of seven terms:

P = Perfect = (0.83; 1; 1)
VH = Very High = (0.67; 0.83; 1)
H = High = (0.5; 0.67; 0.83)
M = Medium = (0.33; 0.5; 0.67)
L =Low = (0.17;0.33; 0.5)
VL = Very Low = (0; 0.17; 0.33)
N = None = (0; 0; 0.17)

which is graphically shown in Figure A1. Other authors use a nontrapezoidal rep-
resentation, e.g., Gaussian functions.*

The most often used models for dealing with linguistic information are (i) the
semantic model®° that uses the linguistic terms just as labels for fuzzy numbers,
while the computations over them are done directly over those fuzzy numbers;
(ii) the second one is the symbolic model® that uses the order index of the linguistic



1192 MARTINEZ ET AL.
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Figure A1. A set of seven terms and their semantics.

terms to make direct computations on labels. However, our proposal for comput-
ing with cost and safety linguistic assessments assessed in different utility spaces
takes as representation base the linguistic 2-tuple representation model presented
in Ref. 27 that has shown itself as a good choice to manage nonhomogeneous
information.2%33 In the following subsection we review this representation model.

A.2. The 2-Tuple Linguistic Representation Model

This model was presented in Ref. 27 for overcoming the drawback of the loss
of information presented by the classical linguistic computational models:>?
(i) the semantic model and (ii) the symbolic one. The 2-tuple fuzzy linguistic rep-
resentation model is based on the symbolic method and takes as the base of its
representation the concept of Symbolic Translation.

DEerFINITION A.2.1. The Symbolic Translation of a linguistic term s; € § =
{50, ...} is a numerical value assessed in [—0.5,0.5) that supports the “differ-
ence of information” between an amount of information B € [0, g| and the closest
value in {0,..., g} that indicates the index of the closest linguistic term in S (s;),
being [0, g] the interval of granularity of S.

From this concept a new linguistic representation model is developed, which
represents the linguistic information by means of 2-tuples (s;,«;),s; € S and o; €
[—0.5,0.5).

This model defines a set of functions between linguistic 2-tuples and numer-
ical values.

DEFINITION A.2.2. Let S = {so,...,S,} be a linguistic term set and B € [0, g] a
value supporting the result of a symbolic aggregation operation, then the 2-tuple
that expresses the equivalent information to B is obtained with the following
function:

A:[0,g] — S X (—0.5,0.5)

5; i = round(3)

A(B) = (siva), with {a —B—i aE[-050.5)
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where round(-) is the usual round operation, s; has the closest index label to “S3,”
and “a” is the value of the symbolic translation.

PROPOSITION A.2.1. Let S = {so,...,S,} be a linguistic term set and (s;, ;) be a
linguistic 2-tuple. There is always a A~ function, such that from a 2-tuple it returns
its equivalent numerical value B € [0, g] in the interval of granularity of S.

Proof. 1Tt is trivial; we consider the following function:
A8 X [-0,5,0.5) — [0, ¢]

Al(s,,a) =i+a=p [

Remark A.2.1. From Definitions 1 and 2 and Proposition 1, it is obvious that the
conversion of a linguistic term into a linguistic 2-tuple consist of adding a value 0
as symbolic translation:

S ES= (Sivo)

This model has a computational technique based on the 2-tuples that were pre-
sented in Ref. 27.

1. Aggregation of 2-tuples. The aggregation of linguistic 2-tuples consist of
obtaining a value that summarizes a set of values; therefore, the result of the aggre-
gation of a set of 2-tuples must be a linguistic 2-tuple. In Ref. 27 we can find
several 2-tuple aggregation operators based on classical aggregation operators as
the arithmetic mean and weighted mean operators:

DEFINITION A.2.3. Letx={(r,a;),...,(r,,a,)} be a set of 2-tuples; the extended
Arithmetic Mean AM™ using the linguistic 2-tuples is computed as

n 1 1 n
AM*((ry, a),...,(r,,@,)) = A(z;A_l(ri’ai)) = A(; EBz)

DEFINITION A.2.4. Let {(r|,a;),...,(r,,a,)} be a set of linguistic 2-tuples and
W = {w,...,w,} his associated weights. The 2-tuple weighted mean, W_AM", is
computed as

iAil(rhai)'Wi éﬁi'wi

i=1 i=1

W_AM*((rl’al)v'-'»(rn’an)):A =A

n n
i=

2. Comparison of 2-tuples. The comparison of information represented by
2-tuples is carried out according to an ordinary lexico-graphic order. Let (s;, )
and (s;, @») be two 2-tuples represented two assessments:
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e If k < Ithen (s, ;) is smaller than (s;, ).

o If k = [then
(1) If @; = a, then (s;, @) and (s, ) represent the same value.
(2) If a; < a, then (sy, ay) is smaller than (s;, ).
(3) If a; > a5 then (s;, ) is bigger than (s, a,).

3. Negation operator of a 2-tuple. The negation operator over 2-tuples is
defined as

Neg(si,a) = A(g — A (5, @)

where g + 1 is the cardinality of S, s; € § = {s0,...,5,}.



