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In this paper, we present a procedure to estimate missing preference values when dealing with
pairwise comparison and heterogeneous information. This procedure attempts to estimate the
missing information in an expert’s incomplete preference relation using only the preference
values provided by that particular expert. Our procedure to estimate missing values can be applied
to incomplete fuzzy, multiplicative, interval-valued, and linguistic preference relations. Clearly, it
would be desirable to maintain experts’ consistency levels. We make use of the additive consistency
property to measure the level of consistency and to guide the procedure in the estimation of the
missing values. Finally, conditions that guarantee the success of our procedure in the estimation of
all the missing values of an incomplete preference relation are given. C© 2008 Wiley Periodicals,
Inc.

1. INTRODUCTION

Decision-making procedures, which try to find the best alternative(s) from a
feasible set, are increasingly being used in various different fields for evaluation,
selection, and prioritization purposes. Obviously, the comparison of different alter-
native actions according to their desirability in decision problems, in many cases,
cannot be done using a single criterion or one person. Indeed, in the majority of
decision-making problems, procedures have been established to combine opinions
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about alternatives related to different points of view.1,2 These procedures are based
on pair comparisons, in the sense that processes are linked to some degree of cred-
ibility of preference of one alternative over another. According to the nature of
the information expressed for every pair of alternatives many different represen-
tation formats can be used to express preferences: fuzzy preference relations,3,8

multiplicative preference relations,9−13 interval-valued preference relations,14−17

and linguistic preference relations.18,19

Since each expert is characterized by their own personal background and ex-
perience of the problem to be solved, experts’ opinions may differ substantially
(educational and cultural factors obviously influence an expert’s preferences). This
diversity of experts could lead to situations where some of them would not be able
to efficiently express any kind of preference degree between two or more of the
available options. Indeed, this may be due to an expert not possessing a precise or
sufficient level of knowledge of part of the problem, or because that expert is unable
to discriminate the degree to which some options are better than others. In these situ-
ations such an expert is forced to provide an incomplete fuzzy preference relation.20

Usual procedures for group decision-making problems correct this lack of
knowledge of a particular expert using the information provided by the rest of
the experts together with aggregation procedures.21 These approaches have several
disadvantages. Among them we can cite the following:

• The requirement of multiple experts to estimate the missing value of a particular expert.
• These procedures normally do not take into account the differences between experts’

preferences, which could lead to the estimation of a missing value that would not naturally
be compatible with the rest of the preference values given by that expert.

• Some of these missing information-retrieval procedures are interactive, that is, they need
experts to collaborate in “real time,” an option which is not always possible.

In this paper, we put forward a general procedure that attempts to estimate the
missing information in any of the above formats of incomplete preference relations:
fuzzy, multiplicative, interval valued and linguistic. Our proposal is different to the
above procedures because the estimation of missing values in an expert’s incom-
plete preference relation is done using only the preference values provided by that
particular expert. By doing this, we assure that the reconstruction of the incomplete
preference relation is compatible with the rest of the information provided by that
expert. In fact, because an important objective in the design of our procedure is
to maintain experts’ consistency levels, the procedure we propose in this paper is
guided by a consistency property and only uses the known preference values. In
particular, we use the additive consistency property of a fuzzy preference relation,22

and its corresponding concept in the other preference relation formats, to define a
consistency measure of the expert’s information.23

To do this, the paper is set out as follows: Section 2 presents the four types of
preference relations covered and the definition of an incomplete preference relation.
Section 3 deals with the additive transitivity and consistency of preference relations
to be used to guide the procedure in the estimation of the missing values. We also
derive consistency measures for each one of the preference relation formats based
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on the additive consistency property. Both the estimation procedure, details of its
implementation and examples of its application for each preference relation format
are studied in Section 4. In Section 5, sufficient conditions to guarantee that all the
missing values of an incomplete preference relation can be estimated are provided.
Finally, our concluding remarks are pointed out in Section 6.

2. INCOMPLETE PREFERENCE RELATION

The intensity of preference between any two alternatives of a set of feasible ones
X = {x1, . . . , xn}, (n ≥ 2) may be adequately represented by means of a preference
relation. Different types of preference relations can be defined according to the
domain used to evaluate the intensity of preference. This is expressed in the following
definition:

DEFINITION 1. A preference relation P on a set of alternatives X is characterized by a
function µP : X × X −→ D, where D is the domain of representation of preference
degrees.

When cardinality of X is small, the preference relation may be conveniently rep-
resented by an n × n matrix P = (pij ), being pij = µP (xi, xj ) ∀i, j ∈ {1, . . . , n}
interpreted as the preference degree or intensity of the alternative xi over xj measured
in D.

The four main types of preference relations used in the literature are fuzzy
preference relations, multiplicative preference relations, interval-valued preference
relations, and linguistic preference relations.

1. Fuzzy Preference Relations. Fuzzy preference relations have been widely used to model
preferences for decision-making problems. In this case, a difference scale [0, 1] is used
to measure the intensity of preference of one alternative over another.3,5,6

DEFINITION 2. A fuzzy preference relation P on a set of alternatives X is a fuzzy set on
the product set X × X, that is it is characterized by a membership function

µP : X × X −→ [0, 1]

Every value in the matrix P represents the preference degree or intensity of preference
of the alternative xi over xj :

• pij = 1/2 indicates indifference between xi and xj (xi ∼ xj ).
• pij = 1 indicates that xi is absolutely preferred to xj .
• pij > 1/2 indicates that xi is preferred to xj (xi � xj ).

On the basis of this interpretation, we have pii = 1/2 ∀i ∈ {1, . . . , n} (xi ∼ xi).
2. Multiplicative Preference Relations. In this case, the intensity of preference represents the

ratio of the preference intensity between the alternatives. According to Miller’s study,24

Saaty suggests measuring every value using a ratio scale, precisely the 1–9 scale.11,12
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DEFINITION 3. A multiplicative preference relation A on a set of alternatives X is charac-
terized by a function

µA: X × X −→ [1/9, 9]

The following meanings are associated with the numbers:

1 equally important
3 weakly more important
5 strongly more important
7 demonstrably or very strongly more important
9 absolutely more important
2,4,6,8 compromise between slightly differing judgments

3. Interval-Valued Preference Relations. Interval-valued preference relations are used as an
alternative to fuzzy preference relations when there exists a difficulty in expressing the
preferences with exact numerical values, but there is enough information to be able to
estimate the intervals.14−17

DEFINITION 4. An interval-valued preference relation P on a set of alternatives X is
characterized by a membership function

µP : X × X −→ P[0, 1]

where P[0, 1] = {[a, b] | a, b ∈ [0, 1], a ≤ b}.

An interval-valued preference relation P can be seen as two “independent” fuzzy prefer-
ence relations, the first one PL corresponding to the left extremes of the intervals and the
second one PR to the right extremes of the intervals, respectively,

P = (pij ) = ([plij , prij ]) with PL = (plij ) PR = (prij ) and plij ≤ prij ∀i, j.

4. Linguistic Preference Relations Based on the 2-Tuple Linguistic Model. There are sit-
uations where it could be very difficult for the experts to provide precise numeri-
cal or interval-valued preferences, in which cases linguistic assessments may be used
instead.18,19,25 In this paper, we will make use of the 2-tuple linguistic model26,27 to
express expert’s preferences. Different advantages of this representation to manage
linguistic information over semantic and symbolic models were given in Herrera and
Martı́nez27:

(a) The linguistic domain can be treated as continuous, whereas in the symbolic model it
is treated as discrete.

(b) The linguistic computational model based on linguistic 2-tuples carries out processes
of computing with words easily and without loss of information.

This linguistic model takes as a basis the symbolic representation model and in addition
defines the concept of symbolic translation to represent the linguistic information by
means of a pair of values called linguistic 2-tuple, (s, α), where s is a linguistic term and
α is a numeric value representing the symbolic translation.

DEFINITION 5. Let β ∈ [0, g] be the result of an aggregation of the indexes of a set of
labels assessed in a linguistic term set S = {s0, s1, . . . , sg−1, sg}, that is, the result of a
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symbolic aggregation operation. Let i = round(β) and α = β − i be two values, such
that, i ∈ [0, g] and α ∈ [−0.5, 0.5), then α is called a symbolic translation.

Based on the symbolic translation concept, a linguistic representation model to represent
the linguistic information by means of 2-tuples (si , αi), si ∈ S and αi ∈ [−0.5, 0.5) was
developed. This model defines a set of transformation functions between linguistic terms
and 2-tuples, and between numeric values and 2-tuples.

DEFINITION 6. Let S = {s0, s1, . . . , sg−1, sg} be a linguistic term set and β ∈ [0, g] a value
supporting the result of a symbolic aggregation operation, then the 2-tuple that expresses
the equivalent information to β is obtained with the following function:

� : [0, g] −→ S × [−0.5, 0.5)

�(β) = (si , α)

where i = round(β), that is, si is the closest index label to “β” and “α = β − i” is the
value of the symbolic translation.

There exists a function, �−1, such that given a 2-tuple it returns its equivalent numerical
value β ∈ [0, g] ⊂ R:

�−1 : S × [−0.5, 0.5) −→ [0, g]

�−1(si , α) = i + α = β

A linguistic term can be seen as a linguistic 2-tuple with a 0 symbolic translation value,
that is, si ∈ S ≡ (si , 0). Therefore, this linguistic model can be used to provide preference
relations:

DEFINITION 7. A linguistic preference relation P on a set of alternatives X is a set of
2-tuples on the product set X × X, that is, it is characterized by a membership function

µP : X × X −→ S × [−0.5, 0.5).

Usual decision-making procedures assume that experts are capable of providing
preference degrees between any pair of possible alternatives. However, this may not
be always possible, which makes missing information a problem that has to be dealt
with. A missing value in a fuzzy preference relation is not equivalent to a lack of
preference of one alternative over another. A missing value can be the result of the
incapacity of an expert to quantify the degree of preference of one alternative over
another, in which case he/she may decide not to “guess” to maintain the consistency
of the values already provided. It must be clear that when an expert is not able to
express a particular value pij , because he/she does not have a clear idea of how the
alternative xi is better than alternative xj , this does not mean that he/she prefers both
options with the same intensity.

To model these situations, in the following we introduce the incomplete pref-
erence relation concept:
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DEFINITION 8. A function f : X −→ Y is partial when not every element in the set
X necessarily maps onto an element in the set Y . When every element from the set
X maps onto one element of the set Y then we have a total function.

DEFINITION 9. A preference relation P on a set of alternatives X with a partial
membership function is an incomplete preference relation.

As per this definition, a preference relation is complete when its membership
function is a total one. Clearly, Definition 1 includes both definitions of complete and
incomplete preference relations. However, as there is no risk of confusion between
a complete and an incomplete preference relation, in this paper we refer to the first
type as simply preference relations.

3. TRANSITIVITY AND CONSISTENCY OF
PREFERENCE RELATIONS

The definition of a preference relation does not imply any kind of consistency
property. In fact, the values of a preference relation may be contradictory. Obviously,
an inconsistent source of information is not as useful as a consistent one, and thus,
it would be quite important to be able to measure the consistency of the information
provided by experts for a particular problem.

Consistency is usually characterized by transitivity, which represents the idea
that the preference value obtained by directly comparing two alternatives should be
equal to or greater than the preference value between those two alternatives obtained
using an indirect chain of alternatives. Clearly, different transitivity conditions can
be used for different preference relations. In the following, we will introduce the
transitivity conditions that will be used in this paper to measure the consistency for
each one of the above preference relations.

3.1. Additive and Multiplicative Transitivity Properties

One of the properties suggested to model the concept of transitivity for fuzzy
preference relations is the additive transitivity property28

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k ∈ {1, . . . , n}

or equivalently,

pik = pij + pjk − 0.5 ∀i, j, k ∈ {1, . . . , n} (1)

This kind of transitivity has the following interpretation22: suppose we do want to
establish a ranking between three alternatives xi , xj , and xk , and that the information
available about these alternatives suggests that we are in an indifference situation,
that is, xi ∼ xj ∼ xk . When giving preferences, this situation would be represented
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by pij = pjk = pki = 0.5. Suppose now that we have a piece of information that
says alternative xi ≺ xj , i.e. pij < 0.5. This means that pjk or pik have to change,
otherwise there would be a contradiction, because we would have xi ≺ xj ∼ xk ∼ xi .
If we suppose that pjk = 0.5 then we have the situation: xj is preferred to xi and
there is no difference in preferring xj to xk . We must then conclude that xk has to be
preferred to xi . Furthermore, as xj ∼ xk then pji = pki , and so pij + pjk + pki =
pij + pjk + pji = 1 + 0.5 = 1.5. We have the same conclusion if pki = 0.5. In the
case of being pjk < 0.5, then we have that xk is preferred to xj and this to xi , so
xk should be preferred to xi . On the other hand, the value pki has to be equal to
or greater than pji , being equal only in the case of pjk = 0.5 as we have already
shown. Interpreting the value pji − 0.5 as the intensity of preference of alternative
xj over xi , then it seems reasonable to suppose that the intensity of preference of
xk over xi should be equal to the sum of the intensities of preferences when using
an intermediate alternative xj , that is, pki − 0.5 = (pkj − 0.5) + (pji − 0.5). The
same reasoning can be applied in the case of pjk > 0.5.

We consider a fuzzy preference relation to be “additive consistent” when for
every three options in the problem xi, xj , xk ∈ X their associated preference degrees
pij , pjk, pik fulfill expression (1). An additive consistent fuzzy preference relation
will be referred to as consistent throughout this paper, as this is the only transitivity
property we are considering.

In Chiclana et al.29, we studied the transformation function between (reciprocal)
multiplicative preference relations with values in the interval scale [1/9, 9] and
(reciprocal) fuzzy preference relations with values in [0, 1]. This study can be
summarized in the following proposition:

PROPOSITION 1. Suppose that we have a set of alternatives, X = {x1, . . . , xn},
and associated with it a multiplicative reciprocal preference relation A = (aij ),
with aij ∈ [1/9, 9] and aij · aji = 1 ∀i, j . Then, the corresponding fuzzy recipro-
cal preference relation, P = (pij ), associated with A, with pij ∈ [0, 1] and pij +
pji = 1 ∀i, j is given as follows:

pij = f (aij ) = 1

2
(1 + log9 aij )

The above transformation function is bijective and, therefore, allows us to trans-
pose concepts that have been defined for fuzzy preference relations to multiplicative
preference relations. Indeed, the additive transitivity condition for fuzzy prefer-
ence relations corresponds to the following multiplicative transitivity condition for
multiplicative preference relations22:

aik = aij · ajk ∀i, j, k. (2)

Expression (2) coincides with the original consistency property for multiplicative
preference relations defined by Saaty.11 This result supports the choice of the additive
transitivity property to model consistency of fuzzy preference relations.
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A multiplicative preference relation will be considered consistent when for
every three alternatives, (xi, xj , xk), their associated preference values verify (2).

3.2. Extending the Additive Transitivity Property to
the Interval-Valued and Linguistic Cases

Additive transitivity property can be used to define a consistency property for
both interval-valued preference relations and linguistic preference relations based
on the 2-tuple linguistic model.

DEFINITION 10. An interval-valued preference relation P is additive consistent if
both left and right interval preference relations (PL, PR) are additive consistent,
that is,

plik = plij + pljk − 0.5 and prik = prij + prjk − 0.5 ∀i, j, k ∈ {1, . . . , n}

Using the function �−1 that transforms 2-tuple values into numerical values
in [0, g], we adapt the definition of additive transitivity to linguistic preference
relations as follows:

DEFINITION 11. A linguistic preference relation will be considered consistent if for
every three alternatives xi , xj , and xk , the following condition holds:

pik = �

(
�−1(pij ) + �−1(pjk) − g

2

)
∀i, j, k ∈ {1, . . . , n} (3)

3.3. Consistency Measures for Preference Relations

The transitivity conditions presented in the previous sections allow us to find
out whether a preference relation is consistent. However, they do not directly offer
the possibility of measuring the “level of inconsistency.” In Alonso et al.23, we
defined a consistency measure for fuzzy preference relations based on the additive
transitivity property for fuzzy preference relations. In this section, we will extend
this consistency measure to multiplicative, interval-valued, and linguistic preference
relations.

For fuzzy preference relations, expression (1) can be used to obtain the follow-
ing three estimates of the preference degree of alternative xi over alternative xk , pik,
using an intermediate alternative xj :

cp
j1
ik = pij + pjk − 0.5 ; cp

j2
ik = pjk − pji + 0.5; cp

j3
ik = pij − pkj + 0.5 (4)

Obviously, when the information provided in a fuzzy preference relation is com-
pletely consistent then cp

jl

ik (∀j ∈ {1, . . . , n}, ∀l ∈ {1, 2, 3}) and pik coincide.
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However, the information given in fuzzy preference relations does not usually fulfill
(1). In such cases, the value

εpik = 1

3

⎛
⎝ ∑

l∈{1,2,3}

∑n
j=1,j �=i,k t

j l

ik

(n − 2)

⎞
⎠ , where t

j l

ik = ∣∣cpjl

ik − pik

∣∣
can be used to measure the error expressed in a preference degree between two
options or alternatives. This error can also be interpreted as the consistency level
between the preference value pik and the rest of the preference values of the fuzzy
preference relation. Clearly, if εpik = 0 then there is no inconsistency at all, and the
higher the value of εpik the more inconsistent pik is with respect to the rest of the
information.

The value

CLP =
∑n

i,k=1,i �=k εpik

n2 − n
(5)

can be used to measure the consistency level of a fuzzy preference relation P . If
CLP = 0 then the preference relation P is fully consistent, otherwise, the higher
CLP the more inconsistent P is.

The measurement of consistency of multiplicative preference relations follows
a similar process as mentioned above. Indeed, the estimate values ca

jl

ik are obtained
using expression (2):

ca
j1
ik = aij · ajk; ca

j2
ik = ajk

aji

; ca
j3
ik = aij

akj

(6)

and the error between aik and every ca
jl

ik is defined as the following ratio:

εaik =

⎛
⎜⎝ ∏

l∈{1,2,3}

⎛
⎝ n∏

j=1,j �=i,k

t
j l

ik

⎞
⎠

1/(n−2)
⎞
⎟⎠

1/3

, where t
j l

ik =
{

max

(
ca

jl

ik

aik

,
aik

ca
jl

ik

)}

Clearly, if εaik = 1 then the preference degree aik is consistent with the rest of
information in the multiplicative preference relation. Otherwise, the higher εaik , the
more inconsistent aik is with respect to the rest of the information. Therefore, the
value

CLA =
⎛
⎝ n∏

i,k=1,i �=k

εaik

⎞
⎠

1/(n2−n)

(7)

can be used to measure the consistency level of a multiplicative preference relation.
If CLA = 1 then the multiplicative preference relation is fully consistent, otherwise,
the higher CLA the more inconsistent A is.
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The consistency level of an interval-valued preference relation is measured
using the corresponding consistency levels of both PL and PR:

CLP = (CLPL, CLPR) =
(∑n

i,k=1,i �=k εplik

n2 − n
,

∑n
i,k=1,i �=k εprik

n2 − n

)

When CLP = (0, 0), the interval-valued preference relation is completely consis-
tent.

For linguistic preference relations, we use expression (5) in conjunction with
(3) to define its consistency level as follows:

cp
j1
ik = �

(
�−1(pij ) + �−1(pjk) − g

2

)
; cp

j2
ik = �

(
�−1(pjk) − �−1(pji) + g

2

)
;

cp
j3
ik = �

(
�−1(pij ) − �−1(pkj ) + g

2

)

εpik = 1

3

⎛
⎝ ∑

l∈{1,2,3}

∑n
j=1,j �=i,k t

j l

ik

(n − 2)

⎞
⎠ , where t

j l

ik = ∣∣�−1
(
cp

jl

ik

) − �−1(pik)
∣∣

and

CLP =
∑n

i,k=1,i �=k εpik

n2 − n

When εpik = 0, the preference degree pik is consistent with respect to the rest of
information in the preference relation. The linguistic preference relation is consistent
when CLP = 0.

When working with an incomplete preference relation, the above expressions
for CLP and CLA cannot be used, and therefore have to be extended. To do this,
the following sets are introduced:

B = {(i, j ) | i, j ∈ {1, . . . , n} ∧ i �= j}

MV = {
(i, j ) ∈ B | pij is unknown

}
EV = B \ MV

MV is the set of pairs of alternatives for which the preference degree of the first
alternative over the second one is unknown or missing; EV is the set of pairs of
alternatives for which the expert provides preference values. Note that we do not
take into account the preference value of one alternative over itself, as xi ∼ xi is
always assumed.
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We provide the necessary changes and the expression to compute the consis-
tency level of an incomplete fuzzy preference relation:

H 1
ik = {j �= i, k | (i, j ), (j, k) ∈ EV } ; H 2

ik = {j �= i, k | (j, k), (j, i) ∈ EV };

H 3
ik = {j �= i, k | (i, j ), (k, j ) ∈ EV }

K = {
l ∈ {1, 2, 3}| Hl

ik �= ∅}
; CEP = {

(i, k) ∈ EV | ∃j ∈ H 1
ik ∪ H 2

ik ∪ H 3
ik

}

εpik = 1

#K

⎛
⎝∑

l∈K

∑n

j∈Hl
ik

t
j l

ik

#Hl
ik

⎞
⎠ ; CLP =

∑
(i,k)∈CEP

εpik

#CEP

We call CEP the computable error set because it contains all the elements for
which we can compute every εpik . Clearly, this redefinition of CLP is an extension
of expression (5). Indeed, when a fuzzy preference relation is complete, both CEP

and B coincide and thus #CEP = n2 − n.

4. ESTIMATION OF MISSING VALUES IN PREFERENCE RELATIONS

As we have already mentioned, missing information is a problem that has to be
addressed because experts are not always able to provide preference degrees between
every pair of possible alternatives. This section is devoted to the presentation of an
iterative procedure to estimate missing values of incomplete preference relations and
the sufficient conditions to guarantee the successful estimation of all the missing
values. First, we will describe the general procedure and we will then point out the
implementation details for each type of preference relations. Appropriate examples
will be used to illustrate the application of the iterative procedure.

4.1. General Procedure

To develop the iterative procedure to estimate missing values, two different
tasks have to be carried out: (A) establish the elements that can be estimated in each
step of the procedure, and (B) produce the particular expression that will be used to
estimate a particular missing value.

4.1.1. Elements to be Estimated in Every Iteration of the Procedure

The subset of missing values MV that can be estimated in step h of our
procedure is denoted by EMVh (estimated missing values) and obtained as follows:

KVh = EV ∪
(

h−1⋃
l=0

EMVl

)
; UVh = MV \

(
h−1⋃
l=0

EMVl

)
;

EMVh = {
(i, k) ∈ UVh

∣∣ ∃j ∈ H 1
ik ∪ H 2

ik ∪ H 3
ik

}
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with EMV0 = ∅, and where KVh stands for known values in iteration h and UVh

means unknown values in iteration h.
When EMVmaxIter = ∅ with maxIter > 0, the procedure stops because there will

not be any more missing values to be estimated. Furthermore, if
⋃maxIter

l=0 EMVl =
MV then all missing values are estimated and consequently the procedure is said to
be successful in the completion of the fuzzy preference relation.

4.1.2. Expression to Estimate a Particular Missing Value

In iteration h, the following function is applied to obtain the estimate cp′
ik of a

missing preference value with (i, k) ∈ EMVh:

function estimate p(i,k)

0. K = ∅
1.1. H 1

ik = {j �= i, k | (i, j ), (j, k) ∈ KVh } ; if (H 1
ik �= ∅) then K = K ∪ {1}

1.2. H 2
ik = {j �= i, k | (j, k), (j, i) ∈ KVh } ; if (H 2

ik �= ∅) then K = K ∪ {2}
1.3. H 3

ik = {j �= i, k | (i, j ), (k, j ) ∈ KVh } ; if (H 3
ik �= ∅) then K = K ∪ {3}

2. Calculate cp′
ik

3. Assure that cp′
ik belongs to the range of its corresponding type of

preference relation

end function

The function estimate p(i, k) computes the final estimate value of the missing
preference degree of the alternative xi over the alternative xk as the corresponding
average of all the estimate values that can be calculated using all the possible
intermediate alternatives xj for each one of the three possible expressions. Finally,
the function checks if the estimated value is in the range of the particular type of
preference relation. Steps 2 and 3 are dependent on the type of preference relation,
and will be described later.

The general iterative estimating procedure pseudocode is

0. Initializations
1. EMV0 = ∅
2. h = 1
3. while EMVh �= ∅ {
4. for every (i, k) ∈ EMVh {
5. function estimate p(i,k)
6. }
7. h++
8. }
9. Post-processing operations
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Both initializations and postprocessing operations steps are dependent on the
type of preference relation.

4.2. Fuzzy Preference Relations: Implementation Details

In this case, steps 2 and 3 of the estimation function are

2. Calculate cp′
ik = 1

#K

⎛
⎝∑

l∈K

∑n

j∈Hl
ik

cp
jl

ik

#Hl
ik

⎞
⎠

3.1. if cp′
ik < 0 then pik = 0

3.2. else if cp′
ik > 1 then pik = 1

3.3. else pik = cp′
ik

There is no need to implement any special initialization nor any kind of post-
processing operations in this case. The following example illustrates the application
of the above procedure.

Example 1. Suppose that an expert provides the following incomplete fuzzy pref-
erence relation P over a set of four alternatives X = {x1, x2, x3, x4}.

P =

⎛
⎜⎜⎜⎝

− x 0.4 x

x − 0.7 0.85

x 0.4 − 0.75

0.3 x x −

⎞
⎟⎟⎟⎠

With the application of only the first iteration of our procedure, all the missing
values are successfully estimated:

H 1
12 = {3} H 2

12 = ∅ H 3
12 = {3} ⇒ cp′

12 = 1
2 ((p13 + p32 − 0.5)

+ (p13 − p23 + 0.5)) = 0.25

H 1
14 = {3} H 2

14 = ∅ H 3
14 = ∅ ⇒ cp′

14 = p13 + p34 − 0.5 = 0.65

H 1
21 = {4} H 2

21 = ∅ H 3
21 = {3} ⇒ cp′

21 = 1
2 ((p24 + p41 − 0.5)

+ (p23 − p13 + 0.5)) = 0.725 ≈ 0.73

H 1
31 = {4} H 2

31 = ∅ H 3
31 = ∅ ⇒ cp′

31 = p34 + p41 − 0.5 = 0.55

H 1
42 = ∅ H 2

42 = {2} H 3
42 = ∅ ⇒ cp′

42 = p32 − p34 + 0.5 = 0.15

H 1
43 = {1} H 2

43 = {2} H 3
43 = ∅ ⇒ cp′

43 = 1
2 ((p41 + p13 − 0.5)

+ (p23 − p24 + 0.5)) = 0.275 ≈ 0.28
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Therefore, we have

⎛
⎜⎜⎜⎝

− x 0.4 x

x − 0.7 0.85

x 0.4 − 0.75

0.3 x x −

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

− 0.25 0.4 0.65

0.73 − 0.7 0.85

0.55 0.4 − 0.75

0.3 0.15 0.27 −

⎞
⎟⎟⎟⎠

The consistency levels for the incomplete fuzzy preference relation is

CEP = {(2, 3), (2, 4), (3, 2), (3, 4)} ⇒ εp23 = 0.1; εp24 = 0.05;

εp32 = 0; εp34 = 0.05 ⇒

CLP = (εp23 + εp24 + εp32 + εp34)/4 = 0.05

The consistency level for the complete fuzzy preference relation is 0.054, which is
quite similar to the above one.

4.3. Multiplicative Preference Relations: Implementation Details

For incomplete multiplicative preference relations, we adapt the estimation
function in the following way:

2. Calculate cp′
ik =

⎛
⎜⎝∏

l∈K

⎛
⎝ n∏

j∈Hl
ik

ca
jl

ik

⎞
⎠

1/#Hl
ik

⎞
⎟⎠

1/#K

3.1. if cp′
ik < 1/9 then aik = 1/9

3.2. else if cp′
ik > 9 then aik = 9

3.3. else aik = cp′
ik

Example 2. Suppose that we have the following incomplete multiplicative prefer-
ence relation over a set of four alternatives X = {x1, x2, x3, x4}:

A =

⎛
⎜⎝

− 0.80 1.55 1
1.25 − x 3.74
0.65 x − 1.93

1 0.33 0.52 −

⎞
⎟⎠
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The complete multiplicative preference relation obtained after just one iteration
is ⎛

⎜⎜⎜⎝
− 0.80 1.55 1

1.25 − x 3.74

0.65 x − 1.93

1 0.33 0.52 −

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

− 0.80 1.55 1

1.25 − 1.87 3.74

0.65 0.56 − 1.93

1 0.33 0.52 −

⎞
⎟⎟⎟⎠

4.4. Interval-Valued Preference Relations: Implementation Details

Interval-valued preference relations need some initialization steps to create the
left and right interval fuzzy preference relations, PL and PR, as well as postpro-
cessing operations to unify the estimated left and right interval fuzzy preference
relations into the final estimated interval-valued preference relation. Also, steps 2
and 3 are

2. Calculate cp′
ik = (cpl′ik, cpr ′

ik)

=
⎛
⎝ 1

#K

⎛
⎝∑

l∈K

∑n

j∈Hl
ik

cpl
jl

ik

#Hl
ik

⎞
⎠ ,

1

#K

⎛
⎝∑

l∈K

∑n

j∈Hl
ik

cpr
jl

ik

#Hl
ik

⎞
⎠

⎞
⎠

3.1. if cpl′ik < 0 then plik = 0 else plik = cpl′ik
3.2. if cpr ′

ik > 1 then prik = 1 else prik = cpr ′
ik

3.3. pik = (plik, prik)

Example 3. Suppose a set of four alternatives X = {x1, x2, x3, x4}, and the follow-
ing incomplete interval-valued preference relation:

P =

⎛
⎜⎜⎜⎝

− (0.45, 0.60) (0.55, 0.75) (0.30, 0.40)

(0.40, 0.55) − (0.45, 0.80) x

(0.25, 0.45) (0.20, 0.55) − x

(0.60, 0.70) x x −

⎞
⎟⎟⎟⎠

In this case, our procedure is capable of estimating the missing values in just one
iteration:

⎛
⎜⎜⎜⎝

− (0.45, 0.60) (0.55, 0.75) (0.30, 0.40)

(0.40, 0.55) − (0.45, 0.80) x

(0.25, 0.45) (0.20, 0.55) − x

(0.60, 0.70) x x −

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

− (0.45, 0.60) (0.55, 0.75) (0.30, 0.40)

(0.40, 0.55) − (0.45, 0.80) (0.28, 0.37)

(0.25, 0.45) (0.20, 0.55) − (0.15, 0.25)

(0.60, 0.70) (0.63, 0.72) (0.75, 0.85) −

⎞
⎟⎟⎟⎠
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4.5. Linguistic Preference Relations: Implementation Details

In the initialization step for linguistic preference relations, we apply the trans-
formation function �−1 to obtain a numeric preference relation. As a postprocess-
ing operation, the estimated numeric preference relation is transformed back into
a linguistic preference relation by applying the inverse transformation function, �.
Steps 2 and 3 for this case are

2. Calculate cp′
ik = 1

#K

⎛
⎝∑

l∈K

∑n

j∈Hl
ik

�−1
(
cp

jl

ik

)
#Hl

ik

⎞
⎠

3.1. if cp′
ik < 0 then cp′

ik = 0
3.2. else if cp′

ik > g then cp′
ik = g

3.3. pik = �(cp′
ik)

Example 4. Let X = {x1, x2, x3, x4} be a set of four alternatives and S =
{MW, W, E, B, MB} the set of linguistic labels used to provide preferences, with
the following meaning:

MW = Much Worse W = Worse E = Equally Preferred

B = Better MB = Much Better

Suppose the following incomplete linguistic preference relation

P =

⎛
⎜⎜⎜⎝

− x W x

x − x E

B x − W

x B B −

⎞
⎟⎟⎟⎠

Note that the expert did not provide any α values, which is a common practice
when expressing preferences with linguistic terms. In these cases, we set α = 0

P =

⎛
⎜⎜⎜⎝

− x (W, 0) x

x − x (E, 0)

(B, 0) x − (W, 0)

x (B, 0) (B, 0) −

⎞
⎟⎟⎟⎠
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First, we apply �−1 to obtain the corresponding β values in [0, 4]:

P =

⎛
⎜⎜⎜⎝

− x (W, 0) x

x − x (E, 0)

(B, 0) x − (W, 0)

x (B, 0) (B, 0) −

⎞
⎟⎟⎟⎠ �−1−→

⎛
⎜⎜⎜⎝

− x 1 x

x − x 2

3 x − 1

x 3 3 −

⎞
⎟⎟⎟⎠

Applying the estimation procedure, we have:

⎛
⎜⎜⎜⎝

− x 1 x

x − x 2

3 x − 1

x 3 3 −

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

− x 1 0

x − 2.67 2

3 1.67 − 1

4 3 3 −

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

− 0.61 1 0

3.61 − 2.67 2

3 1.67 − 1

4 3 3 −

⎞
⎟⎟⎟⎠

Finally, the application of � produces the final 2-tuple linguistic preference
relation:⎛
⎜⎜⎜⎝

− 0.61 1 0

3.61 − 2.67 2

3 1.67 − 1

4 3 3 −

⎞
⎟⎟⎟⎠ �−→

⎛
⎜⎜⎜⎝

− (W, −0.39) (W, 0) (MW, 0)

(MB, −0.39) − (B, −0.33) (W, 0)

(B, 0) (E, −0.33) − (W, 0)

(MB, 0) (B, 0) (B, 0) −

⎞
⎟⎟⎟⎠

5. SUFFICIENT CONDITIONS TO ESTIMATE ALL
MISSING VALUES

It is very important to establish conditions that guarantee that all the missing
values of an incomplete preference relation can be estimated. In the following, we
provide sufficient conditions to guarantee the success of the above procedure.

1. If for all (i, k) ∈ MV (i �= k), there exists at least a j ∈ H 1
ik ∪ H 2

ik ∪ H 3
ik, then all missing

preference values can be estimated in the first iteration of the procedure (EMV1 = MV ).
2. Under the assumption of the additive consistency property, a different sufficient con-

dition was given in Herrera-Viedma et al.22 This condition states that any incomplete
preference relation can be completed when the preference values of the first alterna-
tive over the second one is known for the following set of n − 1 pairs of alternatives
{(x1, x2), (x2, x3), . . . , (xn−1, xn)}.

3. In Herrera-Viedma et al.30, a more general condition than the previous one is that of having
a set of n − 1 nonleading diagonal preference values, where each one of the alternatives
is compared at least once. This general case includes the one when a complete row or
column of preference values is known.

As a consequence of this last condition, the only cases where an incomplete
preference relation cannot be completed using the above procedure are those where
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Table I. Pairs of values that allow the
estimation of missing values in iteration 1.

Missing value (i, k) Pairs of values to estimate pik

(1, 4) (1, 2), (2, 4); (2, 4), (2, 1)
(2, 5) (2, 4), (5, 4)
(4, 2) (4, 1), (1, 2); (4, 1), (2, 1)
(5, 1) (5, 4), (4, 1)
(5, 2) (5, 4), (2, 4)

there is one or more alternative for which no preference degree is known. This is
illustrated in the following example:

Example 5. Suppose an expert provides the following incomplete preference rela-
tion over a set of five different alternatives, X = {x1, x2, x3, x4, x5},

P =

⎛
⎜⎜⎜⎜⎜⎝

− e x x x

e − x e x

x x − x x

e x x − x

x x x e −

⎞
⎟⎟⎟⎟⎟⎠

where x means “a missing value” and e means “a value is known.” We note that the
actual values of the known preference values or even the type of preference relation
are not relevant for the purpose of this example.

At the beginning of our iterative procedure, we have

EMV1 = {(1, 4), (2, 5), (4, 2), (5, 1), (5, 2)}

and Table I shows all the pairs of alternatives that are available to estimate each one
of the above missing values.

At this point, the preference relation is

P =

⎛
⎜⎜⎜⎝

− e x 1 x

e − x e 1
x x − x x

e 1 x − x

1 1 x e −

⎞
⎟⎟⎟⎠

where 1 values mean the ones that have been reconstructed in the first iteration.
In iteration 2, the estimated values of iteration 1 are added to the values

expressed directly by the expert to construct the set EMV2. In our case, we have
EMV2 = {(1, 5), (4, 5)} and Table II.

International Journal of Intelligent Systems DOI 10.1002/int



PROCEDURE TO ESTIMATE MISSING PAIRWISE PREFERENCE VALUES 173

Table II. Pairs of values that allow the estimation of missing
values in iteration 2.

Missing value (i, k) Pairs of values to estimate pik

(1, 5) (1, 2), (2, 5); (2, 5), (2, 1); (1, 2), (5, 2); (1, 4), (5, 4)
(4, 5) (4, 2), (2, 5); (2, 5), (2, 4); (4, 1), (5, 1); (4, 2), (5, 2)

The incomplete fuzzy preference relation obtained is

P =

⎛
⎜⎜⎜⎝

− e x 1 2
e − x e 1
x x − x x

e 1 x − 2
1 1 x e −

⎞
⎟⎟⎟⎠

where numbers 1 and 2 indicate the steps in which the missing values were estimated.
In iteration 3, EMV3 = ∅, and thus, the procedure ends and fails in the comple-

tion of the preference relation. The reason for this failure is that the expert did not pro-
vide any information for the alternative x3 (p3i , pi3 ∈ MV, ∀i, 1 ≤ i ≤ n, i �= 3).
Fortunately, this kind of situation is not very common in real problems, and there-
fore the procedure will usually succeed in estimating all the missing values of an
incomplete preference relation.

6. CONCLUSIONS

We have looked at the issue of incomplete preference relations, that is, pref-
erence relations with some values missing or not known. We have proposed an
iterative procedure to estimate missing preference values in different types of in-
complete preference relations: fuzzy, multiplicative, interval valued, and linguistic
preference relations. Our proposal estimates the missing information in an expert’s
incomplete preference relation using only the preference values provided by that
particular expert. By doing this, we assure that the reconstruction of the incomplete
preference relation is compatible with the rest of the information provided by that
expert. Because an important objective in the design of our procedure was to main-
tain experts’ consistency levels, the procedure is guided by the additive consistency
property. Also, measures of consistency based on the additive consistency property
have been introduced for each one of the four types of preference relations.

We have provided conditions under which all the missing values on incom-
plete preference relations can be estimated using the proposed iterative procedure.
However, there may still be cases in which not every missing value in an incom-
plete preference relation can be estimated using this procedure. This is a problem
that was not covered in this paper, being an issue for further research in the near
future.
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