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Abstract

In this paper, we present a new approach for training set selection in large size data sets. The algorithm consists on the

combination of stratification and evolutionary algorithms. The stratification reduces the size of domain where the selection is

applied while the evolutionary method selects the most representative instances. The performance of the proposal is compared

with seven non-evolutionary algorithms, in stratified execution. The analysis follows two evaluating approaches: balance

between reduction and accuracy of the subsets selected, and balance between interpretability and accuracy of the representation

models associated to these subsets. The algorithms have been assessed on large and huge size data sets. The study shows that the

stratified evolutionary instance selection consistently outperforms the non-evolutionary ones. The main advantages are: high

instance reduction rates, high classification accuracy and models with high interpretability.
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1. Introduction

In data mining (DM), the construction of classi-

fication rules from data is a basic problem [1]. Data

sets can be so large that it is impractical to train the

classification rule using all available data.

Instance selection is an approach which selects a set

of the available data for training [2]. The DM
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algorithm generates, using the subset selected as

input, representation models which predict the out-

come class of new unseen instances. In training set

selection the objective is to select the highest quality

training subsets so the models generated by DM

algorithm presents the highest performances [3–5].

There are multiple instance selection approaches

focused in data sets quality to classify by means of

nearest neighbor classifiers [6–13], but they are not

directed toward the extraction of models from the

subsets selected.

As training set selection can be viewed as a search

problem, it could be solved using evolutionary
.
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algorithms (EAs, [14]). EAs offer interesting results in

knowledge discovery and DM [15,16]. In [17], the

evolutionary instance selection is studied, comparing

it performances with non-evolutionary ones, having as

conclusion that evolutionary one outperforms the

other methods.

When the size of data sets evaluated grows,

the issue of scalability is present. The scaling up

problem (due to this size) produces excessive

storage requirement, increases times complexity

and affects to generalization accuracy. In EAs these

drawbacks are increased for the size of the chromo-

some used to represent the solutions in training set

selection.

In this paper, we propose the combination of EAs

with the stratification strategy for training set

selection to face off to the drawbacks introduced

by the scaling up problem. In large size data sets it is

impractical to evaluate the algorithms over the

complete data set so the stratification is a way to

carry out the executions. Combining the subset

selected per strata we can obtain the subset selected

for the whole data set. The stratification reduces the

data set size where the selection is carried out, while

the EAs select the best local training subset. In that

topic there are no proposals in this sense to the best

of our knowledge.

The aim of this paper is to study the stratified

evolutionary instance selection applied for training set

selection in large size data sets. The approach is

compared with non-evolutionary ones following the

stratified strategy. As representative and efficient EA

model has been chosen the heterogeneous recombina-

tion and cataclysmic mutation algorithm (CHC

algorithm [18]), considering the performances it

offers in [17] due to its balanced behavior in diversity

and convergency.

In order to do this, this paper is set out as follows. In

Section 2, we introduce the main ideas about training

set selection, describing the process and the scaling

problem which affects it due to large size data sets. In

Section 3, we describe the new approach proposed,

giving details of how stratified EAs can be applied to

the training set selection problem. In Section 4, we

explain the methodology followed in the experiments.

Section 5 deals with the results and the analysis in

large and huge size data sets. Finally, in Section 6, we

reach our conclusion.
2. Training set selection

This section describes the training set selection,

showing the drawbacks introduced by the size of data

sets evaluated. In Section 2.1 we situate the training

set selection process in the data reduction domain.

Section 2.2 is dedicated to describe the key points of

training set selection. Finally, Section 2.3 presents the

scaling up problem induced by the large size of data

sets.

2.1. Data reduction

As we know, DM techniques learn models from the

data sets [19,20]. When the size of these data sets is

large, DM techniques present problems to generate

models which generalize properly [21]. To address

this situation, data reduction is a feasible way. The

objective of data reduction methods is to select the

most representative information from data set. This

information, introduced as input in DM algorithm, can

increase the models capabilities and generalization

properties.

To describe data reduction, we consider data as flat

file and composed by terms called attributes or

features. Each line in the file consists of attribute-

values and forms an instance in a multi-dimensional

space defined by the attributes. Data reduction can be

achieved in many ways:
� b
y selecting features [22], we reduce the number of

columns in the data set;
� b
y discretizing feature-values [23], we reduce the

number of possible values of discretized features;
� a
nd by selecting instances [2,24], we reduce the

number of rows in the data set.

We focus our attention in data reduction by means

of instance selection (IS). In IS we want to isolate the

smallest set of instances which enable us to predict the

class of a query instance with the same quality as

initial data set [25].

By reducing the ‘useful’ data set size we can:
� r
educe space complexity;
� d
ecrease computational cost;
� d
iminish the size of formulas obtained by a

subsequent induction algorithm on the reduced
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and less noise data sets. This may facilitate

interpretation tasks.

IS raises the problem of defining relevance for a

prototype subset. From the statistical viewpoint, rel-

evance can be partly understood as the contribution to

the overall accuracy, that would be e.g. obtained by a

subsequent induction. We emphasize that removing

instances does not necessarily lead to a degradation of

the results: we have observed experimentally that a

little number of instances can have performances c-

omparable to those of the whole sample, and some-

times higher. Two reasons come to mind to explain

such an observation. First, some noises or repetitions

in data could be deleted by removing instances. Se-

cond, each instance can be viewed as a supplementary

degree of freedom. If we reduce the number of inst-

ances, we can sometimes avoid over-fitting situations.

The training set selection is developed by means of

IS algorithms. In the following section this process is

described.

2.2. Model construction via training set selection

There may be situations in which there are too

much data and these data in most cases are not equally

useful in the training phase of the learning algorithm.

IS mechanisms have been proposed to choose the most

suitable points in the data set to become instances for

the training data set used by the learning algorithm.
Fig. 1. The training set selection process.
Fig. 1 shows the general framework for the

application of the IS algorithm in training set

selection. Starting from the data set, TR, the IS

algorithm finds a suitable subset, TSS, then a learning

or DM algorithm is applied to evaluate each subset

selected (C4.5 in our case [26]) to obtain the model

from the data set. This model is assessed using the test

data set, TS.

2.3. The scaling up problem

The majority IS algorithms cannot deal with large

size data sets, In this section we study the effect of the

data set size in both groups of algorithms, evolutionary

and non-evolutionary.

To test the effect of increasing the data set size, we

have evaluated large and huge size data sets. The main

difficulties the algorithms have to face are the

following:
� E
fficiency: The efficiency of non-evolutionary IS

algorithms evaluated is at least of Qðn2Þ, being n the

number of instances in the data set. There are

another set of IS algorithms (like Rnn in [27], Snn in

[28], Shrink in [29], etc.) but most of them present

an efficiency order much greater than Qðn2Þ.
Logically, when the size grows, the time needed

by each algorithm also increases.
� R
esources: Most of the algorithms assessed need to

have the complete data set stored in memory to

carry out their execution. If the size of the data set

was too big, the computer would need to use the

disk as swap memory. This loss of resources has an

adverse effect on efficiency due to the increased

access to the disk.
� G
eneralization: Algorithms are affected in their

generalization capabilities due to the noise and over

fitting effect introduced by larger size data sets.
� R
epresentation: EAs are also affected by represen-

tation, due to the size of their chromosomes. When

the size of these chromosomes is too big, the

algorithms experience convergence difficulties, as

well as costly computational time.

These drawbacks produce considerable degrada-

tion in the behavior of IS algorithms. There is a group

of them that can’t be applied due to its efficiency (the

case of Snn in [28] with Q(n3)).
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Algorithms evaluated directly over the whole large

size data sets are unefficacy and unefficient.
3. The evolutionary stratified instance selection

algorithm

Trying to avoid the drawbacks previously men-

tioned, our proposal is directed towards the hybrida-

tion between EAs and stratified strategy. In Section 3.1

we offer the application of EAs in training set

selection. Section 3.2 describes the stratified strategy

and its integration with IS algorithms.

3.1. Evolutionary algorithms in training set selection

The application of EAs in training set selection is

accomplished by tackling two important issues: the

specification of the representation of the solutions and

the definition of the fitness function.

3.1.1. Representation

Let us assume a data set denoted TR with n

instances. The search space associated with the

instance selection of TR is constituted by all the

subsets of TR. Then, the chromosomes should

represent subsets of TR. This is accomplished by

using a binary representation. A chromosome consists

of n genes (one for each instance in TR) with two

possible states: 0 and 1. If the gene is 1, then its

associated instance is included in the subset of TR

represented by the chromosome. If it is 0, then this

does not occur.

3.1.2. Fitness function

Let TSS be a subset of instances of TR to evaluate

and be coded by a chromosome. We define a fitness

function that combines two values: the classification

performance (clas_per) associated with TSS and the
Fig. 2. Stratified
percentage of reduction (perc_red) of instances of TSS

with regards to TR:

fitness ðTSSÞ ¼ a � clas ratþ ð1� aÞ � perc red: (1)

The 1-NN classifier is used for measuring the classi-

fication rate, clas_rat, associated with TSS. It denotes

the percentage of correctly classified objects from TR

using only TSS to find the nearest neighbour. For each

object y in TSS, the nearest neighbour is searched for

amongst those in the set TSS\{y}. Whereas, perc_red

is defined as:

perc red ¼ 100ðjTRj � jTSSjÞ=jTRj: (2)

The objective of the EAs is to maximize the fitness

function defined, i.e., maximize the classification

performance and minimize the number of instances

obtained. In the experiments presented in this paper,

we have considered the value a = 0.5 in the fitness

function, as per a previous experiment in which we

found the best trade-off between precision and reduc-

tion with this value.

The evolutionary model applied is the CHC

algorithm, described in Section 4.1.2.

3.2. Stratification strategy

This strategy divides the initial data set into strata.

The strata are disjoints sets with equal class

distribution. The number of strata will determine

the size of them (see Fig. 2).

Using the proper number of strata, we can reduce

significantly the set size where the selection will be

applied. This situation allows us to avoid the

drawbacks commented in Section 2.3.

Following the stratified strategy, initial data set D is

divided into t disjoint sets Dj, strata of equal size, D1,

D2,. . ., and Dt. We maintain class distribution within

each set in the partitioning process.
strategy.
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In the stratified strategy, the IS algorithm is applied

in each Dj to obtain its DSj associated. The training set

selected is obtained using the DSj (see Eq. (3)) and it is

called stratified training subset selected (STSS).

STSS ¼
[

j2 J

DS j; J�f1; 2; . . . ; tg (3)

The test set TS will be the TR complementary one in

D.

TR ¼
[

j2 J

D j; J�f1; 2; . . . ; tg (4)

TS ¼ DnTR (5)

After evaluate all strata by means of the IS algorithm,

we have to reunite the results in a last phase, where the

final subset is created (STSS).

The evolutionary stratified instance selection

algorithm follows this model, using CHC as IS

algorithm to select each DSj.
Table 1

Algorithm’s parameters

Algorithm Parameters

Ib3 Aceptance level = 0.9; drop level = 0.7

CHC Population = 50; evaluations = 10000
4. Experimental methodology

We have carried out our study in training set

selection using two size problems: large and huge. We

evaluate the behavior of the algorithms increasing the

size of the data set where they are assessed.

Section 4.1 is dedicated to describe the algorithms

which appear in the experiments. In Section 4.2 we

present the data sets evaluated. Section 4.3 shows the

stratification and partition of the data sets that were

considered, and finally, in Section 4.4, we describe the

table contents that report the results.

4.1. Instance selection algorithms for experiments

The algorithms selected in this study are the most

efficacy ones shown in [17] due to its balanced

behavior in diversity and convergency. The nature of

the algorithms, evolutionary or not let us classify them

in two groups:

4.1.1. Non-evolutionary algorithms

In this section we present the summary of non-

evolutionary IS algorithms included in this study. The

algorithms used will be:
� C
nn [30]: It tries to find a consistent subset, which

correctly classifies all of the remaining points in the

sample set. However, this algorithm will not find a

minimal consistent subset.
� D
rop1 [31]: Essentially, this rule tests to see if

removing an instance would degrade leave-one-out

cross-validation generalization accuracy, which is

an estimate of the true generalization ability of the

resulting classifier.
� D
rop2 [31]: Drop2 changes the order of removal of

instances. It initially sorts the instances in TR by the

distance to their nearest enemy (nearest instance

belonging to another class). Instances are then

checked for removal beginning at the instance

furthest from its nearest enemy. This tends to

remove instances furthest from the decision

boundary first, which in turn increases the chance

of retaining border points.
� D
rop3 [31]: Drop3 uses a noise filtering pass before

sorting the instances in TR. This is done using the

rule: Any instance not classified by its k-nearest

neighbours is removed.
� I
b2 [29]: It is similar to Cnn but using a different

selection strategy.
� I
b3 [29]: It outperforms Ib2 introducing the

acceptable instance concept to carry out the

selection. The parameters associated to Ib3 appear

in Table 1.

Table 1 presents the parameters associated with the

algorithms.

4.1.2. Evolutionary algorithms

EAs are general-purpose search algorithms that use

principles inspired by natural genetic populations to

evolve solutions to problems [32]. We have evaluated

the CHC algorithm as representative and efficient EA

model [18]. It has been chosen due to in [17], the CHC

is the algorithm which shows the best balance between

convergency and diversity among the EAs, selecting

the smallest and most representative subsets of

instances among all the algorithms studied.
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Table 2

Data sets

During each generation the CHC develops the

following steps:

Data set Instances Features Classes

Adult 30132 14 2
(1) I

Kdd Cup’99 494022 41 23
t uses a parent population of size n to generate an

intermediate population of n individuals, which

are randomly paired and used to generate n

potential offspring.
(2) T
hen, a survival competition is held where the

best n chromosomes from the parent and offspring

populations are selected to form the next

generation.
CHC also implements a form of heterogeneous re-

combination using HUX, a special recombination op-

erator. HUX exchanges half of the bits that differ

between parents, where the bit position to be exchanged

is randomly determined. CHC also employs a method

of incest prevention. Before applying HUX to two

parents, the Hamming distance between them is mea-

sured. Only those parents who differ from each other by

some number of bits (mating threshold) are mated. The

initial threshold is set at L/4, where L is the length of

the chromosomes. If no offspring are inserted into the

new population then the threshold is reduced by 1.

No mutation is applied during the recombination

phase. Instead, when the population converges or the

search stops making progress (i.e., the difference

threshold has dropped to zero and no new offspring

are being generated which are better than any members

of theparentpopulation)thepopulationisreinitializedto

introduce new diversity to the search. The chromosome

representing the best solution found over the course of

the search isused asa template to re-seed the population.

Re-seeding of the population is accomplished by

randomly changing 35% of the bits in the template

chromosome to form each of the other n�1 new chrom-

osomes in the population. The search is then resumed.

The parameters associated to CHC algorithm

appear in Table 1.

4.2. Data sets for experiments

To evaluate the behavior of the algorithms applied in

different size data sets, we have carried out the exp-

eriments increasing complexity and size of data sets. We

have selected large and huge size data sets as we can see

in Table 2. These data sets can be found in the University

of California, Irvine, Repository (UCI Repository [33]).
4.3. Partitions and stratification: An specific model

We have evaluated each algorithm in a 10-fold

cross validation process. In the validation process TRi,

i = 1, . . ., 10 is a 90% of D and TSi its complementary

10% of D.

In our experiments, we have executed the IS

algorithms following two perspectives for the 10-fold

cross validation process:

In the first one, we have executed the IS algorithms

as we can see in Fig. 3. We call it 10-fold cross

validation classic (Tfcv classic). The idea is use this

result as baseline versus the stratification ones.

In Tfcv classic the subsets TRi and TSi, i = 1,. . ., 10

are obtained as Eqs. (6) and (7) indicate:

TRi ¼
[

j2 J

D j; J ¼ f j=1 � j

� b � ð j� 1Þ and ði � bÞ þ 1 � j � tg (6)

TSi ¼ DnTRi (7)

where t is the number of strata, and b is the number of

strata grouped (b = t/10, to carry out the 10-fold cross

validation).

Each set TSSi is obtained by the IS algorithm

applied to TRi subset.

The second way is to execute the IS algorithms in a

stratified process as Fig. 4 shows. We call it 10-fold

cross validation strat (Tfcv strat).

In Tfcv strat each TRi is defined as we can see in

Eq. (6), by means of the union of Dj subsets (see

Fig. 4).

In Tfcv strat (see Fig. 4) STSSi is generated using

the DSj instead of Dj (see Eq. (8)).

STSSi ¼
[

j2 J

DS j; J ¼ f j=1 � j � b � ði� 1Þ

and ði � bÞ þ 1 � j � tg (8)

STSSi contains the instances selected by IS algorithms

in TRi following the stratified strategy.
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Fig. 3. Training set selection in 10-fold cross validation.
The subset TSi is defined by means of Eq. (7). Both,

TRi and TSi are generated in the same way in Tfcv

classic and Tfcv strat.

4.4. Table of results

In the following section we will offer the structure

of table where we present the results.
Fig. 4. Training set selection in stra
Our table shows the results obtained by the

evolutionary and non-evolutionary IS algorithms,

respectively. In order to observe the level of

robustness achieved by all algorithms, the table

presents the average in the 10-fold cross vali-

dation process of the results offered by each

algorithm in the data sets evaluated. Each column

shows:
tified 10-fold cross validation.
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Table 3

Results for adult data set

Tim. Num. rules % reduc. %Ac. trn (TR) %Ac. test (TS)

C4.5 classic 2 327 88.72 85.40

Cnn strat 1 21 97.34 52.17 36.45

Drop1 strat 44 1 95.09 24.92 26.31

Drop2 strat 48 179 70.33 85.61 83.09

Drop3 strat 41 75 95.57 82.96 77.29

Ib2 strat 1 12 99.57 49.42 36.37

Ib3 strat 3 162 76.69 85.17 82.73

Icf strat 33 138 85.62 79.99 82.21

CHC strat 20172 4 99.38 83.78 82.76
� T
Ta

Re

C4

Cn

Dr

Dr

Dr

Ib2

Ib3

Icf

CH
he first column shows the name of the algorithm.

In this column the name is followed by the sort of

validation process: strat or classic meaning the

validation process followed.
� T
he second column contains the average execution

time (in seconds) associated to each algorithm. The

algorithms have been run in a Pentium 4, 2.4 Ghz,

256 RAM, 40 GB HD.
� T
he third column offers the mean number of rules

associated to the decision tree generated by C4.5.
� T
he fourth column shows the average reduction

percentage from the initial training sets.
� T
he fifth column contains the accuracy when C4.5

is applied using the training set selected. It shows

the training accuracy associated to the model

generated using the subset selected (STSS) in

TR.
� L
ast column offers the test accuracy of the

algorithms in the model obtained by C4.5 (TS

assessed using STSS).
ble 4

sults for Kdd Cup’99 data set

Tim. Num. rules %

.5 classic 365 252

n strat 8 83 8

op1 strat 7 3 9

op2 strat 105 82 7

op3 strat 131 59 5

strat 7 58 8

strat 3 74 7

strat 242 68 2

C strat 1960 9 9
5. Experimental results and analysis

This section shows the results and its associated

analysis in the evaluation of large and huge size data

sets.

5.1. Experimental results

Tables 3 and 4 contain the results obtained in the

evaluation of Adult and Kdd Cup’99 data sets,

respectively. The number of strata used in Adult data

set is t = 10. In Kdd Cup’99 the number of strata is

t = 100.

5.2. Analysis of the results

The analysis is developed paying attention to the

balance among reduction, accuracy and interpret-

ability offered by the algorithms assessed. The study

of third, fourth and sixth columns in Tables 3 and 4
reduc. %Ac. trn (TR) %Ac. test (TS)

99.97 99.94

1.61 98.48 96.43

9.97 38.63 34.97

6.66 81.40 76.58

6.74 77.02 75.38

2.01 95.81 95.05

8.92 99.13 96.77

3.62 99.98 99.53

9.68 97.68 97.53
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allow us to make the following comments according to

the balance among the three objectives:
� M
ost of the non-evolutionary algorithms which

present higher reduction rates, decrease their

prediction capabilities. Stratified CHC is the one

which provides the highest reduction rates in the

problems evaluated, independently of their size. In

both cases, it reduces more than 99% of the initial

data set.
� I
n the case of accuracy rate (sixth column), C4.5

assessed without any kind of reduction is the best

one. Our proposal is only slightly improved by non-

evolutionary algorithms which offer lower reduc-

tion rates.
� M
ost of non-evolutionary algorithms present much

bigger decision trees than evolutionary one. C4.5

applied without any kind of reduction generates the

biggest decision trees. Our proposal presents the

smaller decision trees among all algorithm

assessed.

The main conclusion that can be drawn is that

Stratified CHC is the algorithm among the studied

which offers the most interpretable training set sele-

cted, with the best accuracy and reduction rates ass-

ociated in large and huge size data sets.

Briefly summarizing this comments, we conclude

that when stratified CHC is applied to training set

selection in large size data sets it produces the most

interpretable models with highest accuracy and

reduction rates. This small model size increases the

decision tree’s speed in classification, reducing its

storage necessities and increasing its human inter-

pretability.
6. Conclusions

In this paper the stratified evolutionary instance

selection algorithm for training set selection in large

size data sets is presented. It selects the minor number

of most representative instances which maintain

classification capabilities and increase the interpret-

ability of the models generated by DM algorithms.

While the stratification face off the scaling up

problem, CHC selects the most representative

instances.
The main conclusions reached in the experimental

study are the following:
� S
tratified CHC outperforms the classical algo-

rithms, simultaneously offering the best balance

among data reduction, accuracy and interpretability.

Our proposal significantly reduces the size of the

decision tree associated to the model obtained. This

characteristic produces decision trees that are easier

to interpret.
� I
n large and huge size data sets, non-evolutionary

algorithms do not present balanced behavior. If the

algorithm reduces the size then its accuracy rate is

poor. When accuracy increases there is no reduc-

tion. The stratified version of CHC offers the best

results when the data set size increases.

Therefore, as a final concluding remark, we co-

nsider Stratified strategy combined with CHC to be

the best mechanism for training set selection in DM.

Our proposal offers as principal characteristics its

balance among reduction, precision and interpret-

ability.

It has become a powerful tool to obtain smaller and

high quality training sets and therefore scaling down

data. CHC can select the most representative

instances, satisfying the objectives of high accuracy

and reduction rates, and the most interpretable models.

Stratified strategy permits the reduction of the search

space so we can carry out the evaluation of the

algorithms in acceptable execution time.
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