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Abstract

In group decision-making, experts’ preferen-
ces are usually expressed by means of fuzzy
preference relations. Because not all ex-
perts may be capable of maintaining consis-
tency between all the possible pair of feasi-
ble options of the problem, it is worthwhile
evaluating the degree of inconsistency of a
fuzzy preference relation so that more im-
portance can be given to the more consis-
tent experts. To do this, a new consistency
measure of a fuzzy preference relation, based
on the additive consistency property, is pro-
posed. This consistency measure is also used
to propose an IOWA operator to aggregate
experts’ fuzzy preference relations into a co-
llective one in such a way that high weighting
values are associated to those experts with
high consistency degrees.

Keywords: Additive consistency, IOWA operator,
Group decision-making, majority.

1 Introduction

Decision-making is a process of selecting the best al-
ternative from a feasible for the purpose of attaining
a goal or goals. Most major decisions are made by
group that may include people from different depart-
ments or from different organizations [1, 3]. Thus,
many different representation formats can be used to
express preferences: i) preference ordering of the alter-
natives, ii) utility functions, iii) fuzzy preference rela-
tions [1]. The latter has been widely used due to their
effectiveness as a tool for modelling decision processes
and, above all, its utility and easiness of use when we
want to aggregate experts’ preferences into group pre-
ferences [3, 4].

Due to the complexity of most decision-making pro-
blems, experts’s preferences may not satisfy formal
properties that fuzzy preference relations are assumed
to verify. One of these properties, consistency, is asso-
ciated with the transitivity property. It is obvious that
consistent information, that is, information which does
not imply any kind of contradiction, is more relevant
than information that contains some contradictions.

A classical choice scheme for a GDM problem follows
two steps before it achieves a final decision [1]: aggre-
gation and exploitation. The aggregation step of a
GDM problem consists of combining the experts’ indi-
vidual preferences into a group collective one in such a
way that it summarizes or reflects the properties con-
tained in all the individual preferences. The exploita-
tion phase transforms the global information about the
alternatives into a global ranking of them. This can
be done in different ways, the most common one being
the use of a ranking method to obtain a score function.

In this paper, we will focus on the aggregation phase
of the resolution scheme for a GDM problem, where
the information provided is expressed in terms of fuzzy
preference relations which are not supposed to be fully
consistent. In these cases, more importance should
be given to the experts that provide the more consis-
tent information. To do this, we will develop a new
Induced Ordered Weighted Averaging (IOWA) opera-
tor to aggregate the individual preferences relations
that take into account their associated consistency de-
grees. We call this the Additive Consistency IOWA
(AC-IOWA) operator.

The rest of paper is set out as follows: section 2 briefly
presents the concept of fuzzy preference relation. Sec-
tion 3 deals with the issue on consistency of fuzzy pre-
ference relations, and in particular focuses on the the
additive consistency, and the introduction of a measure
of consistency based on it. In section 4 the aggrega-
tion of preferences using OWA and IOWA operators is
presented, an the AC-IOWA operator is defined. Sec-
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tion 5 gives an example, and in section 6 we point out
our concluding remarks and future research.

2 Fuzzy Preference Relations

In GDM problems the best alternative(s) among a fi-
nite set of feasible options, X = {x1, ..., xn}, (n ≥ 2),
according to the preferences provide by a group of ex-
perts E = {e1, . . . , em}, has to be chosen. In such
a decision situation, alternatives are usually pairwise
compared, which makes the fuzzy preference relation
the best representation format.

Definition 1. [4] A fuzzy preference relation P on a
set of alternatives X is a fuzzy set on the product set
X×X, that is characterized by a membership function

µP : X ×X → [0, 1]

When cardinality of X is small, the preference relation
may be conveniently represented by the n× n matrix
P = (pij) being pij = µP (xi, xj) ∀i, j ∈ {1, . . . , n}
interpreted as the preference degree or intensity of the
alternative xi over xj : pij = 1/2 indicates indifference
between xi and xj (xi ∼ xj), pij = 1 indicates that xi

is absolutely preferred to xj , and pij > 1/2 indicates
that xi is preferred to xj (xi Â xj). Based on this
interpretation we have that pii = 1/2 ∀i ∈ {1, . . . , n}
(xi ∼ xi).

As can be seen from the previous definition, an expert
only needs to provide every pij value to efficiently ex-
press its criteria over the set of alternatives. However,
as it will be shown in the next section, this informa-
tion does not guarantee that certain “basic” properties
that are usually assumed for fuzzy preference relations
are satisfied.

3 On Consistency of Fuzzy Preference
Relations

In terms of fuzzy preference relations, full consistency
implies no contradiction between any preference va-
lues. When an expert has to express his preferences
over a set of n alternatives, he has to provide n2 prefe-
rence values, and to maintain full consistency between
all of them can be a difficult task.

3.1 Additive Consistency

Definition 1 does not imply any kind of consistency
of a fuzzy preference relation. In fact, preferences ex-
pressed by an expert in a fuzzy preference relation can
be contradictory. As studied in [2], for making a ratio-
nal choice, a set of properties to be satisfied by such
fuzzy preference relations have been suggested. One

of these properties is additive transitivity [5]:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k ∈ {1, . . . , n}
(1)

or equivalently:

pij + pjk + pki = 1.5 ∀i, j, k ∈ {1, . . . , n}. (2)

This type of transitivity has the following interpre-
tation: suppose we do want to establish a ranking
between three alternatives xi, xj and xk. If we do
not have any information about these alternatives it
is natural to start assuming that we are in an indiffe-
rence situation, that is, xi ∼ xj ∼ xk, and therefore
when giving preferences this situation is represented
by pij = pjk = pik = 0.5. Suppose now that we have a
piece of information that says alternative xi ≺ xj , that
is pij < 0.5. It is clear that pjk or pki have to change,
otherwise there would be a contradiction, because we
would have xi ≺ xj ∼ xk ∼ xi. If we suppose that
pjk = 0.5 then we have the situation: xj is preferred
to xi and there is no difference in preferring xj to xk.
We must conclude then that xk has to be preferred to
xi. Furthermore, as xj ∼ xk then pji = pki, and so
pij +pjk+pki = pij +pjk+pji = 1+0.5 = 1.5. We have
the same conclusion if pki = 0.5. In the case of being
pjk < 0.5, then we have that xk is preferred to xj and
this to xi, so xk should be preferred to xi. On the other
hand, the value pki has to be equal or greater than pji,
being equal only in the case of pjk = 0.5 as we have
seen. Interpreting the value pji−0.5 as the intensity of
preference of alternative xj over xi, then it seems rea-
sonable to suppose that the intensity of preference of
xk over xi should be equal to the sum of the intensities
of preferences when using and intermediate alternative
xj , that is, pki − 0.5 = (pkj − 0.5) + (pji − 0.5). The
same reasoning can be applied in the case of pjk > 0.5.

From the previous equations we obtain the following
expression:

pij + pjk − 0.5 = pik ∀i, j, k ∈ {1, . . . , n}. (3)

A fuzzy preference relation is additive consistent when
for every three options in the problem xi, xj , xk ∈ X
their associated preference degrees pij , pjk, pik satisfy
(3). An additive consistent fuzzy preference relation
will be referred as consistent throughout the paper,
as this is the only transitivity property we are consi-
dering.

3.2 Consistency Measure

Additive consistency can be used to calculate the value
of a preference degree pik using other preference de-
grees in a fuzzy preference relation. Indeed,

cpj
ik = pij + pjk − 0.5 (4)
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where cpj
ik means the calculated value of pik via j, that

is, using pij and pjk. Obviously, if the information
provided in a fuzzy preference relation is completely
consistent then cpj

ik (∀j) and pik coincide. However,
the information given by an expert usually does not
satisfy (3), because the information provided by an
expert usually suffers from a certain degree of incon-
sistency. In these cases, the value

εpik =

n∑

j=1
j 6=i,k

∣∣∣cpj
ik − pik

∣∣∣

n− 2
(5)

can be used to measure the error expressed in a prefe-
rence degree between two options. This error can be
interpreted as the consistency level between the prefe-
rence degree pik and the rest of the preference values of
the fuzzy preference relation. Clearly, when εpik = 0
then there is no inconsistency at all between pij and
the other preference values, and the higher the value
of εpik the more inconsistent is pik with respect to the
rest of information.

The consistency level for the whole fuzzy preference
relation P is defined as follows:

CLP =

n∑

i,k=1
i 6=k

εpik

n2 − n
. (6)

When CLP = 0, then the preference relation P is
fully additive consistent, otherwise, the higher CLP

the more inconsistent is P .

4 A new IOWA Operator Based on
Additive Consistency

The collective fuzzy preference relation, which indi-
cates the global preference between all pairs of alter-
natives, is obtained by aggregating all the individual
preferences. To do this, several different aggregation
operators have been proposed, including the OWA [6]
and IOWA [8, 9] operators.

4.1 OWA and IOWA operators

A fundamental aspect of the OWA operators is the
reordering of the arguments to aggregate, based upon
the magnitude of their respective values:

Definition 2. [6] An OWA operator of dimension n
is a function φ : Rn → R, that has associated to it
a set of weights or weighting vector W = (w1, . . . , wn)
such that, wi ∈ [0, 1] and

∑n
i=1 wi = 1, and is defined

to aggregate a list of values {p1, . . . , pn} according to

the following expression,

φ(p1, . . . , pn) =
n∑

i=1

wi · pσ(i)

being σ a permutation of {1, . . . , n} such that pσ(i) is
the i-th highest value in the set {p1, . . . , pn}.
In the process of quantifier guided aggregation, given
a collection of n criteria represented as fuzzy subsets
of the alternatives X, the OWA operator has been
used to implement the concept of fuzzy majority in
the aggregation phase by means of a fuzzy linguistic
quantifier which indicates the proportion of criteria
‘necessary for a good solution’ [7]. This implementa-
tion is done by using the quantifier to calculate the
OWA weights. When a fuzzy quantifier Q is used to
compute the weights of the OWA operator φ, then it
is symbolized by φQ.

In [7], Yager proposed a procedure to evaluate the
overall satisfaction of Q important (uk) criteria (ex-
perts) (ek) by the alternative x. In this procedure,
once the satisfaction values to be aggregated have been
ordered, the weighting vector associated to an OWA
operator using a linguistic quantifier Q are calculated
following the expression

wi = Q

(∑i
k=1 uσ(k)

T

)
−Q

(∑i−1
k=1 uσ(k)

T

)
(7)

being T =
∑n

k=1 uk the total sum of importance, and
σ the permutation used to produce the ordering of the
values to be aggregated. This approach for the inclu-
sion of importance degrees associates a zero weight to
those expert with zero importance degree.

In the OWA aggregation the weights are not associa-
ted with the arguments bur with the order position of
the arguments. However, as it happens with fuzzy pre-
ference relations, the values to be aggregated cannot
be directly compared, or sometimes, a different order
for the arguments is preferred to be used. To allow
different orders in an OWA operator, Yager and Filev
defined the Induced OWA operator as follows:
Definition 3. [8, 9] An IOWA operator of dimen-
sion n is a function ΦW : (R× R)n → R, to which
a set of weights or weighting vector is associated,
W = (w1, . . . , wn), such that wi ∈ [0, 1] and Σiwi =
1, and it is defined to aggregate the set of second ar-
guments of a list of n 2-tuples {〈u1, p1〉, . . . , 〈un, pn〉}
according to the following expression,

ΦW (〈u1, p1〉, . . . , 〈un, pn〉) =
n∑

i=1

wi · pσ(i)

being σ a permutation of {1, . . . , n} such that
〈uσ(i), pσ(i)〉 is the 2-tuple with uσ(i) the i-th highest
value in the set {u1, . . . , un}.
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In the above definition, the reordering of the set of va-
lues to be aggregated, {p1, ..., pn}, is induced by the
reordering of the set of values {u1, ..., un} associated
to them, which is based upon their magnitude. Due
to this use of the set of values {u1, ..., un}, Yager and
Filev called them the values of an order inducing va-
riable and {p1, ..., pn} the values of the argument va-
riable [9]. As we have mentioned, the main difference
between the OWA and the IOWA operators resides on
the reordering step of the argument variable. An im-
mediate consequence of this definition is that if the
order inducing variable is the argument variable then
the IOWA operator is reduced to the OWA operator.

4.2 Additive Consistency IOWA operator

As said in section 3, consistent information should be
given more importance in the aggregation process of
a GDM problem. The general procedure for the in-
clusion of importance degrees in the aggregation pro-
cess involves the transformation of the preference va-
lues, pk

ij , under the importance degree uk to gene-
rate a new value, p̄k

ij . This activity is carried out by
means of a transformation function (t-norm operator)
g, p̄k

ij = g(pk
ij , uk).

In our case, we may as well implement the consistency
degrees by an alternative approach, which consists of
using them as the order inducing values of the IOWA
operator. Indeed, the closer CLP is to 0 the more
consistent the information represented by P , and thus
more importance should be placed on that informa-
tion. In other words, we could use these values to de-
fine the ordering of the preferences to be aggregated,
in which case we would be implementing the concept of
consistency in the aggregation process of our decision-
making. This kind of aggregation process defines an
IOWA operator that we call the Additive Consistency
IOWA (AC-IOWA) operator and denote it as ΦAC

W .

Definition 4. If a set of experts, E = {e1, . . . , em},
provides preferences about a set of alternatives, X =
{x1, . . . , xn}, by means of the fuzzy preference rela-
tions, {P 1, . . . , Pm}, then the AC-IOWA operator of
dimension n, ΦAC

W , is an IOWA operator whose set of
order inducing values is {1− CLP 1 , ..., 1− CLP m}.

The application of the AC-IOWA operator, with an
appropriate RIM quantifier Q function to obtain the
weighting vector, will associate more important weight
in the aggregation to the most consistent experts. This
is illustrated in the next section.

5 Example

Suppose that three experts e1, e2 and e3 provide the
following fuzzy preference relations over a set of five

alternatives {x1, ..., x5}:

P 1 =




− 0.3 0.0 0.2 0.2
0.7 − 0.2 0.4 0.3
0.9 0.8 − 0.7 0.8
0.8 0.6 0.3 − 0.6
0.8 0.6 0.2 0.5 −




P 2 =




− 0.3 0.8 0.4 0.2
0.7 − 0.5 0.6 0.8
0.2 0.6 − 0.4 0.6
0.5 0.3 0.7 − 0.5
0.6 0.6 0.4 0.5 −




P 3 =




− 0.6 0.6 0.3 0.4
0.4 − 0.6 0.5 0.3
0.4 0.4 − 0.3 0.3
0.7 0.5 0.7 − 0.7
0.6 0.7 0.7 0.3 −




To apply the AC-IOWA operator we need to calcu-
late the CLP value associated with every fuzzy prefe-
rence relation. To do so we must first calculate every
εpij , ∀i, j ∈ {1, ..., 5}, i 6= j for every preference rela-
tion. Lets take as an example the calculation of εp34

on P 1:

εp34 =
|cp1

34 − p34|+ |cp2
34 − p34|+ |cp5

34 − p34|
3

where

cp1
34 = p31 + p14 − 0.5 = 0.9 + 0.2− 0.5 = 0.6

cp2
34 = p32 + p24 − 0.5 = 0.8 + 0.4− 0.5 = 0.7

cp5
34 = p35 + p54 − 0.5 = 0.8 + 0.5− 0.5 = 0.8

and thus

εp34 =
|0.6− 0.7|+ |0.7− 0.7|+ |0.8− 0.7|

3
= 0.07

Calculating every εpij for P 1 we have:

εP 1 =




− 0.0 0.03 0.0 0.1
0.07 − 0.07 0.03 0.17
0.13 0.07 − 0.07 0.13
0.07 0.03 0.0 − 0.1
0.07 0.03 0.1 0.03 −




Finally, the CLP value for P 1 is obtained as the ave-
rage of every εpij :

CLP1 = (3× 0.0 + 5× 0.03 + 3× 0.1
+6× 0.07 + 1× 0.17 + 2× 0.13) / 20 = 0.07

Following the same steps we can calculate each CLP

for every fuzzy preference relation:

CLP 2 = 0.28 CLP 3 = 0.14
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From the results obtained we can conclude that the
expert e1 is the most consistent while e2 is the most
inconsistent one.

Once every consistency level has been obtained we can
aggregate experts’ preferences into a global fuzzy pre-
ference relation PGlobal using the AC-IOWA opera-
tor. In this example we will guide the IOWA opera-
tor by means of the fuzzy linguistic quantifier“most
of”. Yager in [7] considers the parameterized family of
RIM quantifiers Q(r) = rα, α ≥ 0, and the particular
function with α = 2 to represent the linguistic quanti-
fier “most of”. This function is strictly increasing but
when used with the IOWA or OWA operators, associa-
tes high weighting values to those experts with a low
consistency value. In order to overcome this drawback,
two approaches could be adopted: i) the experts are
ordered using the opposite criteria, i.e. the first one
being the one with lowest consistency degree, or ii) a
RIM quantifier with α < 1 is used. We choose the
second one, and in particular we use the RIM func-
tion Q(r) = r1/2 to represent the linguistic quantifier
“most of”. Using expression (7), the corresponding
weighting vector is (0.61, 0.24, 0.15):

P Global = ΦAC
most(

〈
0.07, P 1

〉
,
〈
0.28, P 2

〉
,
〈
0.14, P 3

〉
)

= 0.61 · P 1 + 0.24 · P 3 + 0.15 · P 2

=




− 0.37 0.26 0.25 0.25
0.63 − 0.34 0.45 0.38
0.68 0.67 − 0.56 0.65
0.73 0.53 0.46 − 0.61
0.72 0.65 0.35 0.45 −




In the exploitation step of the resolution process, this
collective fuzzy preference relation is transformed into
a global ranking of the alternatives from which a final
solution for the GDMP problem is obtained.

6 Concluding Remarks and Future
Works

In this work we have presented an IOWA operator
that gives more importance to those experts providing
fuzzy preference relations with a high level of consis-
tency. To measure the consistency level of a fuzzy
preference relation, a new consistency measure based
on the concept of additive transitivity has been in-
troduced. This consistency measure has been used to
define the order inducing variable for the IOWA ope-
rator. Therefore, the higher the consistency level of
a fuzzy preference relation the higher it contributes
to the collective fuzzy preference relation. This is a
natural and rational assumption to achieve good qua-
lity solutions to GDM problems where the information
provided does not comply common properties (as con-
sistency) usually required to solve them.

In future research, a complete decision model for GDM
problems with inconsistent fuzzy preference relations
will be developed, in which the consistency measure
will be used to estimate or reconstruct possible missing
values in fuzzy preference relations.
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