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Abstract. In decision-making, information is usually provided by
means of fuzzy preference relations. However, there may be cases in
which experts do not have an in-depth knowledge of the problem to be
solved, and thus their fuzzy preference relations may be incomplete,
i.e. some values may not be given or may be missing. In this paper we
present a procedure to find out the missing values of an incomplete
fuzzy preference relation using the values known. We also define an
expert consistency measure, based on additive consistency property.
We show that our procedure to find out the missing values maintains
the consistency of the original, incomplete fuzzy preference relation
provided by the expert. Finally, to illustrate all this, an example of the
procedure is presented.
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1 Introduction

Decision-making procedures are increasingly being used in various different fields
for evaluation, selection and prioritisation purposes, that is, making preference
decisions about a set of different choices. Furthermore, it is also obvious that
the comparison of different alternative actions according to their desirability in
decision problems, in many cases, cannot be done using a single criterion or
one person. Indeed, in the majority of decision making problems, procedures
have been established to combine opinions about alternatives related to differ-
ent points of view. These procedures are based on pair comparisons, in the sense
that processes are linked to some degree of credibility of preference of one al-
ternative over another. Many different representation formats can be used to
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express preferences. Fuzzy preference relation is one of these formats, and it is
usually used by an expert to provide his/her preference degrees when comparing
pairs of alternatives [1, 3, 5, 7].

Since each expert is characterised by their own personal background and
experience of the problem to be solved, experts’ opinions may differ substantially
(there are plenty of educational and cultural factors that influence an expert’s
preferences). This diversity of experts could lead to situations where some of
them would not be able to efficiently express any kind of preference degree
between two or more of the available options. Indeed, this may be due to an
expert not possessing a precise or sufficient level of knowledge of part of the
problem, or because that expert is unable to discriminate the degree to which
some options are better than others. In these situations such an expert is forced
to provide an incomplete fuzzy preference relation [9].

Usual procedures for multi-person decision-making problems correct this lack
of knowledge of a particular expert using the information provided by the rest
of the experts together with aggregation procedures [6]. These approaches have
several disadvantages. Among them we can cite the requirement of multiple ex-
perts in order to learn the missing value of a particular one. Another drawback is
that these procedures normally do not take into account the differences between
experts’ preferences, which could lead to the estimation of a missing value that
would not naturally be compatible with the rest of the preference values given
by that expert. Finally, some of these missing information-retrieval procedures
are interactive, that is, they need experts to collaborate in “real time”, an option
which is not always possible.

Our proposal is quite different to the above procedures. We put forward
a procedure which attempts to find out the missing information in an expert’s
incomplete fuzzy preference relation, using only the preference values provided
by that particular expert. By doing this, we assure that the reconstruction of
the incomplete fuzzy preference relation is compatible with the rest of the infor-
mation provided by that expert. In fact, the procedure we propose in this paper
is guided by the expert’s consistency which is measured taking into account only
the provided preference values. Thus, an important objective in the design of our
procedure is to maintain experts’ consistency levels. In particular, in this paper
we use the additive consistency property [4] to define a consistency measure of
the expert’s information.

In order to do this, the paper is set out as follows. Section 2 presents some
preliminaries on the additive consistency property. In Section 3, a new consis-
tency measure and the learning procedure are described. We also include a brief
discussion of the possible situations in which the procedure will be successful
in discovering all the missing values and we provide the sufficient conditions
that will guarantee this. In Section 4, we present a simple but illustrative exam-
ple of how the iterative procedure to discover the missing values in incomplete
fuzzy preference relations works. Finally, our concluding remarks and topics for
possible future research are pointed out in Section 5.
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2 Preliminaries: Additive Consistency

Preference relations are one of the most common representation formats of in-
formation used in decision-making problems because they are a useful tool in
modelling decision processes, above all when we want to aggregate experts’ pref-
erences into group preferences [3, 4, 5, 8]. In particular, fuzzy preference relations
have been used in the development of many important decision-making proce-
dures.

Definition 1 [5, 7] A fuzzy preference relation P on a set of alternatives X is
a fuzzy set on the product set X × X, i.e., it is characterized by a membership
function

µP : X × X −→ [0, 1]

When cardinality of X is small, the preference relation may be conveniently
represented by the n × n matrix P = (pij) being pij = µP (xi, xj) ∀i, j ∈
{1, . . . , n} interpreted as the preference degree or intensity of the alternative xi

over xj : pij = 1/2 indicates indifference between xi and xj (xi ∼ xj), pij = 1
indicates that xi is absolutely preferred to xj , and pij > 1/2 indicates that xi is
preferred to xj (xi � xj). Based on this interpretation we have pii = 1/2 ∀i ∈
{1, . . . , n} (xi ∼ xi).

The previous definition does not imply any kind of consistency. In fact, pref-
erences expressed in the fuzzy preference relation can be contradictory. As stud-
ied in [4], to make a rational choice, a set of properties to be satisfied by such
fuzzy preference relations have been suggested. Transitivity is one of the most
important properties concerning preferences, and it represents the idea that the
preference value obtained by directly comparing two alternatives should be equal
to or greater than the preference value between those two alternatives obtained
using an indirect chain of alternatives [2]. One of these properties is the additive
transitivity [8]:

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k ∈ {1, . . . , n} (1)

or equivalently:

pij + pjk − 0.5 = pik ∀i, j, k ∈ {1, . . . , n} (2)

In this paper, we will consider a fuzzy preference relation to be “additive
consistent” when for every three options in the problem xi, xj , xk ∈ X their
associated preference degrees pij , pjk, pik fulfil Equation 2. An additive consistent
fuzzy preference relation will be referred to as consistent throughout this paper,
as this is the only transitivity property we are considering.
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3 A Learning Procedure to Estimate Missing Values
in Fuzzy Preference Relations
Based on Additive Consistency

As we have already mentioned, missing information is a problem that we have
to deal with because usual decision-making procedures assume that experts are
able to provide preference degrees between any pair of possible alternatives. We
note that a missing value in a fuzzy preference relation is not equivalent to a lack
of preference of one alternative over another. In fact, a missing value may be
the result of the incapacity of an expert to quantify the degree of preference
of one alternative over another, and thus the expert decides not to give a pref-
erence value to maintain the consistency of the values provided. In such cases,
these missing values can be estimated from the existing information using, as a
guidance criterion, the consistency degree of that information.

To do this, in this section, we firstly give a definition of a consistency measure
of a fuzzy preference relation based on the additive consistency property. We will,
then, design the learning procedure to estimate missing values from existing ones.
Finally, we will provide sufficient conditions that guarantee the success of the
learning procedure in estimating all the missing values of an incomplete fuzzy
preference relation.

3.1 Consistency Measure

Equation 2 can be used to calculate the value of a preference degree pik using
other preference degrees in a fuzzy preference relation. In fact,

cpj
ik = pij + pjk − 0.5 (3)

where cpj
ik means the calculated value of pik via j, that is, using pij and pjk.

Obviously, when the information provided in a fuzzy preference relation is com-
pletely consistent then cpj

ik, ∀j ∈ {1, . . . , n} and pik coincide. However, the
information given by an expert does not usually fulfil Equation 2. In such cases,
the value

εpik =

n∑
j=1

j �=i,k

∣∣∣cpj
ik − pik

∣∣∣
n − 2

(4)

can be used to measure the error expressed in a preference degree between two
options. This error can be interpreted as the consistency level between the pref-
erence degree pik and the rest of the preference values of the fuzzy preference
relation. Clearly, when εpik = 0 then there is no inconsistency at all, and the
higher the value of εpik the more inconsistent pik is with respect to the rest of
the information.
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The consistency level for the whole fuzzy preference relation P is defined as
follows:

CLP =

n∑
i,k=1
i�=k

εpik

n2 − n
(5)

When CLP = 0 the preference relation P is fully (additive) consistent, oth-
erwise, the higher CLP the more inconsistent P is.

3.2 A Proposal for Learning Missing Values

In the following definitions we express the concept of an incomplete fuzzy pref-
erence relation:

Definition 2 A function f : X −→ Y is partial when not every element in the
set X necessarily maps to an element in the set Y . When every element from
the set X maps to one element of the set Y then we have a total function.

Definition 3 An incomplete fuzzy preference relation P on a set of alterna-
tives X is a fuzzy set on the product set X × X characterized by a partial mem-
bership function.

As per this definition, we call a fuzzy preference relation complete when its
membership function is a total one. Clearly, the usual definition of a fuzzy pref-
erence relation (Section 2) includes both definitions of complete and incomplete
fuzzy preference relations. However, as there is no risk of confusion between
a complete and an incomplete fuzzy preference relation, in this paper we refer
to the first type as simply fuzzy preference relations.

In the case of an incomplete fuzzy preference relations there exists at least
a pair of alternatives (xi, xj) for which pij is not known. We will introduce and
use throughout this paper the letter x to represent these unknown preference
values, i.e. pij = x. We also introduce the following sets:

A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i �= j} (6)

MV = {(i, j) | pij = x, (i, j) ∈ A } (7)

EV = A \ MV (8)

MV is the set of pairs of alternatives for which the preference degree of the first
alternative over the second one is unknown or missing; EV is the set of pairs
of alternatives for which the expert provides preference values. Note that we do
not take into account the preference value of one alternative over itself, as this
is always assumed to be equal to 0.5.
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In the case of working with an incomplete fuzzy preference relation, we note
that Equation 4 cannot be used. An obvious consequence of this is the need to
extend the above definition of CLP to include cases when the fuzzy preference
relation is incomplete. We do this as follows:

Hik = {j | (i, j), (j, k) ∈ EV } ∀i �= k (9)

εpik =

∑
j∈Hik

∣∣∣cpj
ik − pik

∣∣∣
#Hik

(10)

CEP = {( i, k) ∈ EV | ∃j : (i, j), (j, k) ∈ EV } (11)

CLP =

∑
(i,k)∈CEP

εpik

#CEP
(12)

We call CEP the computable error set because it contains all the elements for
which we can compute every εpik. Clearly, this redefinition of CLP is an exten-
sion of Equation 5. Indeed, when a fuzzy preference relation is complete, both
CEP and A coincide and thus #CEP = n2 − n.

To develop the iterative procedure to learn missing values, two different tasks
have to be carried out:

A) To establish the elements that can be discovered in each step of the proce-
dure, and

B) To produce the particular expression that will be used to find out a particular
missing value.

A) Elements to be Learnt in Step h

The subset of the missing values MV that can be learnt in step h of our procedure
is denoted by LMVh (learnable missing values) and defined as follows:

LMVh =

{
(i, k) ∈ MV \

h−1⋃
l=0

LMVl

∣∣∣∣∣ ∃j : (i, j), (j, k) ∈ EV ∪
(

h−1⋃
l=0

LMVl

)}

(13)
with LMV0 = ∅.

When LMVmaxIter = ∅ with maxIter > 0 the procedure will stop as there

will be no more missing values to learn. Furthermore, if
maxIter⋃

l=0

LMVl = MV

then all missing values are learnt and consequently the procedure was successful
in the completion of the fuzzy preference relation.
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B) Expression to Learn the Value pik

In order to learn a particular value pik with (i, k) ∈ LMVh, in iteration h, we
propose the application of the following three step function:

function learn p(i,k)

1. Iik =

{
j

∣∣∣∣∣ (i, j), (j, k) ∈ EV ∪
(

h−1⋃
l=0

LMVl

)}

2. Calculate cp′ik =

∑
j∈Iik

cpj
ik

#Iik

3. Make pik = cp′ik + z with z ∈ [−CLP, CLP] randomly selected,
subject to 0 ≤ pik + z ≤ 1

end function

With this procedure, a missing value pik is estimated using Equation 3 when
there is at least one chained pair of known preference values pij , pjk that allow
this. If there is more than one pair of preference values that allow the estimation
of pik using Equation 3 then we use their average value as an estimate of the
missing value, cp′ik. Finally, we add a random value z ∈ [−CLP , CLP ] to this
estimate in order to maintain the consistency level of the expert, but obviously
forcing the estimated value to be in the range of the fuzzy preference values
[0, 1].

The iterative learning procedure pseudo-code is as follows:

LMV0 = ∅
h = 1
while LMVh �= ∅{
for every (i, k) ∈ LMVh{

learn p(i,k)
}
h++

}

We consider this procedure to be successful when all missing values have been
estimated. However, as we have previously mentioned, there are cases when not
every missing value of an incomplete fuzzy preference relation can be learnt. In
the following, we provide an example illustrating this situation.
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3.3 Some Missing Values cannot be Learnt
by the Iterative Procedure

In this section we provide sufficient conditions to assure the learning of all missing
values in the incomplete fuzzy preference relation; an example where not all
missing values can be learned; and a brief discussion on the role of the additive
reciprocity property in the learning process of missing values.

A) Sufficient Conditions for Learning All Missing Values

As we will see later, there are cases where all missing information cannot be es-
timated using our learning procedure. However, to obtain conditions that guar-
antee that all the missing information in an incomplete fuzzy preference relation
could be estimated is of great importance. In the following, we provide sufficient
conditions that guarantee the success of the above learning procedure.

It is clear that if a value j exists so that for all i ∈ {1, 2, . . . , n} both (i, j)
and (j, k) do not belong to MV , then all the missing information can be learnt in
the first iteration of our procedure (LMV1 = MV ) because for every pik ∈ MV
we can use at least the pair of preference values pij and pjk to estimate it.

In [4], a different sufficient condition that guarantees the learning of all miss-
ing values was given. This condition states that any incomplete fuzzy preference
relation can be converted into a complete one when the set of n − 1 values
{p12, p23, . . . , pn−1n} is known. Another condition, more general than the previ-
ous one, is when a set of n−1 non-leading diagonal preference values, where each
one of the alternatives is compared at least once, is known. This general case
includes that one when a complete row or column of preference values is known.
However, in these cases the additive reciprocity property is also assumed.

B) Impossibility of Learning All the Missing Values

The following is an illustrative example of an incomplete fuzzy preference relation
where our procedure is unable to learn all the missing values.

Suppose an expert provides the following incomplete fuzzy preference relation

P =

⎛
⎜⎜⎜⎜⎝

− e e x x
e − x e x
x x − x x
e x x − e
x x e e −

⎞
⎟⎟⎟⎟⎠

over a set of five different alternatives, X = {x1, x2, x3, x4, x5}, where x means
“a missing value” and e means “a value is known”.

Remark 1. We note that the actual values of the known preference values are
not relevant for the purpose of this example.
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At the beginning of our iterative procedure we obtain:

LMV1 = {(1, 4), (2, 3), (2, 5), (4, 2), (4, 3), (5, 1)}

as we can find pairs of preference values that allow us to calculate the missing
preference values in these positions. Indeed, the following table shows all the
pairs of alternatives that are available to calculate each one of the above missing
values:

Missing value (i, k) Pairs of values to be learnt pik

(1, 4) (1, 2), (2, 4)
(2, 3) (2, 1), (1, 3)
(2, 5) (2, 4), (4, 5)
(4, 2) (4, 1), (1, 2)
(4, 3) (4, 1), (1, 3); (4, 5), (5, 3)
(5, 1) (5, 4), (4, 1)

The other missing values cannot be learnt in this first iteration of the proce-
dure. If we substitute all the x′s values learnt in this iteration by the number 1
(indicating the step in which they have been learnt) we obtain:

P =

⎛
⎜⎜⎜⎜⎝

− e e 1 x
e − 1 e 1
x x − x x
e 1 1 − e
1 x e e −

⎞
⎟⎟⎟⎟⎠

In the next iteration, in order to construct the set LMV2 we can use the
values expressed directly by the expert as well as the values learnt in iteration
1. In our case we have LMV2 = {(1, 5), (5, 2)}:

Missing value (i, k) Pairs of values to be learnt pik

(1, 5) (1, 2), (2, 5); (1, 4), (4, 5)
(5, 2) (5, 1), (1, 2); (5, 4), (4, 2)

and the incomplete fuzzy preference relation at this point is:

P =

⎛
⎜⎜⎜⎜⎝

− e e 1 2
e − 1 e 1
x x − x x
e 1 1 − e
1 2 e e −

⎞
⎟⎟⎟⎟⎠

In the next iteration LMV3 = ∅. The procedure ends and it does not succeed
in the completion of the fuzzy preference relation. The reason for this failure
is that the expert did not provide any preference degree of the alternative x3

over the rest of the alternatives. Fortunately, this kind of situation is not very
common in real-life problems, and therefore the procedure will usually be suc-
cessful in finding out all the missing values. Clearly, if additive reciprocity is also
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assumed (this is a direct consequence of the additive transitivity property) then
the chances of succeeding in estimating all the missing values would increase, as
we show next.

C) Additive Reciprocity Property

In most studies, preference relations are usually assumed to be reciprocal. In
particular, additive reciprocity is used in many decision models as one of the
properties that fuzzy preference relations have to verify [1, 5]. Additive reci-
procity is defined as:

pij + pji = 1 ∀i, j ∈ {1, 2, . . . , n} (14)

Our iterative procedure does not imply any kind of reciprocity. In fact, it
permits missing values in fuzzy preference relations to be estimated when this
condition is not satisfied (as we show in Section 4). Furthermore, the procedure
itself does not assure that the learnt values will fulfil the reciprocity property.

However, if we assume that the fuzzy preference relation has to be reciprocal,
then this would allow some of the missing values that were not possible without it
to be estimated. In the previous example all p3k values that it was not possible to
estimate could have been easily learnt assuming the additive reciprocity property.

In what follows, we describe how to implement the use of the additive reci-
procity in our procedure, and the changes we need to implement to assure that
estimated values fulfil this property.

Firstly, we need to guarantee that the incomplete fuzzy preference relation
given by the expert fulfils the reciprocity property, i.e. pij+pji = 1 ∀(i, j), (j, i) ∈
EV . This means that the first step of our procedure has to be the computation
of those missing values with a known reciprocal one, i.e.

pij ← 1 − pji ∀(i, j) ∈ MV ∧ (j, i) ∈ EV. (15)

The following steps of our procedure will be as described above but restricted
to the learning of missing values above the leading diagonal of the incomplete
fuzzy preference relation, i.e. pij with i < j. The last step of each iteration will
consist in the computation of the corresponding missing values pji below the
leading diagonal again using the reciprocity property.

4 Illustrative Example

In this section we use a simple but illustrative example to show the iterative
procedure for learning missing values in incomplete fuzzy preference relations.

Let us suppose that an expert provides the following incomplete fuzzy pref-
erence relation

P =

⎛
⎜⎜⎝

− x 0.4 x
x − 0.7 0.85
x 0.4 − 0.75

0.3 x x −

⎞
⎟⎟⎠
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The first thing to do is to calculate the consistency level of P , CLP . To do
this, we start calculating all possible εpik. In this case, we can only calculate
εp24 and εp34 as in the rest of the cases pik is missing and there is no pij , pjk to
calculate the corresponding cpj

ik.

εp24 = |p23 + p34 − 0.5 − p24| = |0.7 + 0.75 − 0.5 − 0.85| = 0.1

εp34 = |p32 + p24 − 0.5 − p34| = |0.4 + 0.85 − 0.5 − 0.75| = 0

These low values of εp24 and εp34 mean that the inconsistency between p24

and the rest of the given information is low while the consistency of p34 and the
rest of the given information is total.

The next step consists in calculating CLP as the average of all the εpik

values:

CLP =
εp24 + εp34

2
= 0.05

At this point, we apply our iterative procedure:

LMV1 = {(1, 2), (1, 4), (2, 1), (3, 1), (4, 3)}

For each element (i, k) ∈ LMV1 we calculate cp′ik. For example, cp′12 is ob-
tained as:

cp′12 =
εp13 + εp32 − 0.5

1
= 0.4 + 0.4 − 0.5 = 0.3

Using the same procedure we obtain:

cp′14 = 0.65; cp′21 = 0.65; cp′31 = 0.55; cp′43 = 0.2

Next, we proceed to add to each one of the above values a random value
z ∈ [−0.05, 0.05] in order to maintain the expert’s level of consistency. As a result
of this, we obtain the following incomplete fuzzy preference relation:

P =

⎛
⎜⎜⎝

− 0.32 0.4 0.61
0.68 − 0.7 0.85
0.5 0.4 − 0.75
0.3 x 0.24 −

⎞
⎟⎟⎠

In the second iteration of our procedure we have LMV2 = {(4, 2)},

cp′42 =
(p41 + p12 − 0.5) + (p43 + p32 − 0.5)

2
= 0.13

and p42 = 0.13 + z with z ∈ [−0.05, 0.05] chosen randomly, which gives us:

P =

⎛
⎜⎜⎝

− 0.32 0.4 0.61
0.68 − 0.7 0.85
0.5 0.4 − 0.75
0.3 0.17 0.24 −

⎞
⎟⎟⎠
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Obviously, LMV3 = ∅ which means that our procedure was successful in
the process of discovering all the missing values of the original incomplete fuzzy
preference relation P .

5 Concluding Remarks and Future Research

In this paper we have discussed the importance of consistency in decision-making
problems, and we have presented a common issue that must be addressed when
attempting to solve this kind of problem: incompleteness of information.

In particular, we have focused our attention on incomplete fuzzy preference
relations and the issue of finding out their missing values. To do this, we have
presented a new iterative procedure to learn missing values which is guided by
the additive consistency level of the information known.

In future research, a new induced OWA (IOWA) operator will be developed
to aggregate information giving more importance to those experts whose fuzzy
preference relations are most consistent. Finally, a general decision procedure,
implementing both the learning procedure and the new IOWA operator, will be
developed to solve group decision-making problems with incomplete information
and inconsistency in the sources of information.
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