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Recent advances in the accessibility of databases containing represen-
tations of complex objects—exemplified by repositories of time-series
data, information about biological macromolecules, or knowledge about
metabolic pathways—have not been matched by availability of tools that
facilitate the retrieval of objects of particular interest while aiding to un-
derstand their structure and relations. In applications such as the analy-
sis of DNA sequences, on the other hand, requirements to retrieve objects
on the basic of qualitative characteristics are poorly met by descriptions
that emphasize precision and detail rather than structural features.
This paper presents a method for identification of interesting qual-
itative features in biological sequences. Our approach relies on a gen-
eralized clustering methodology, where the features being sought corre-
spond to the solutions of a multivariable, multiobjective optimization
problem and generally correspond to fuzzy subsets of the object being
represented. Foremost among the optimization objectives being consid-
ered are measures of the degree by which features resemble prototypical

aCorresponding author.
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structures deemed to be interesting by database users. Other objectives
include feature distance and, in some cases, performance criteria related
to domain-specific constraints.

Genetic-algorithm methods are employed to solve the multiobjective
optimization problem. These optimization algorithms discover candidate
features as subsets of the object being described that lie in the set of
all Pareto-optimal solutions—of that problem. These candidate features
are then inter-related employing domain-specific relations of interest to
the end users.

We present results of the application of a method termed Generalized
Analysis of Promoter (GAP) to identify one of the most important fac-
tors involved in the gene regulation problem in bacteria, which is crucial
for detecting regulatory behaviors or genetic pathways as well as gene
transcription: the RNA polymerase motif. The RNA polymerase or pro-
moter motif presents vague submotifs linked by different distances, thus,
making its recognition in DNA sequences difficult. Moreover, multiple
promoter motifs can be present in the same regulatory regions and all of
them can be potential candidates until experimental mutagenesis is per-
formed. GAP is available for public use in http://soar-tools.wustl.edu.

1. Introduction

One of the big challenges of the post genomic era is determining when,
where and for how long genes are turned on or off*. Gene expression is
determined by protein-protein interactions among regulatory proteins and
with RNA polymerase, and protein-DNA interactions of these trans-acting
factors with cis-acting DNA sequences in the promoters of regulated genes
22,11 Therefore, identifying these protein-DNA interactions, by means of
those DNA motifs that characterize the regulatory factors that operate in
the transcription of a gene!2?3, becomes crucial for determining which genes
participate in a regulation process, how they behave and how are they con-
nected to build genetic networks. The RNA polymerase or promoter is
an enzyme that transcribes a gene or recruits other regulatory factors to
interact with it, producing cooperative regulations 2. Different computa-
tional methods have been applied to discover promoter motifs or patterns
514,16,13,1 However, most of them failed to provide accurate predictions in
prokaryotic promoters because of the variability of the pattern, which com-
prises more than one vague submotif and variable distances between them.
Moreover, multiple occurrences of promoters in the same regulatory region
of one gene can be found (e.g. different promoters can be used for gene
activation and repression, or can interact with different regulatory factors

from the same regulatory pathway %7).
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This paper presents a method termed Generalized Analysis of Promot-
ers (GAP), which applies generalized clustering techniques 23 to the dis-
covery of qualitative features in complex biological sequences, particularly
multiple promoters in bacterial genomes. The motivation for the devel-
opment of this methodology is provided by requirements to search and
interpret databases containing representations of this type of objects in
terms that are close to the needs and experience of the users of those
data-based descriptions. These qualitative features include both interest-
ing substructures and interesting relations between those structures, where
the notion of interestingness is provided by domain experts by means
of abstract qualitative models or learned from available databases. The
GAP method represents promoter features as fuzzy logic expressions with
fuzzy predicates, whose membership functions are learned from probabilis-
tic distributions3?21:3%. The proposed method takes adventage of a new
developed Multi-Objective Scatter Search (MOSS) algorithm to identify
multiple promoters occurrences within genomic regulatory regions by opti-
mizing multiple criteria that those features that describe promoters should
satisfy. This methodology formalizes previous attempts to produce exhaus-
tive searches of promoters', most of which emphasize the processing of
detailed system measurements rather than that of qualitative features of
direct meaning to users (called perceptions by Zadeh) 32.

Therefore, this chapter is organized as follows: Section 2 describes the
generalized clustering framework; Section 3 explines the problem ofdis-
coverying and describing bacterial promoters; Section 4 applies the GAP
method to the promoter discovery problem in Escherichia coli (E. coli)
genome; Section 5, shows the results obtained by the proposed method and
its evaluation; and Section 6 summarizes the concluding remarks.

2. Generalized Clustering

The method presented in this paper belong to a family of techniques for the
discovery of interesting structures in datasets by classification of its points
into a finite number of fuzzy subsets, or fuzzy clustering. Fuzzy cluster-
ing methods were introduced by Ruspini?” to provide a richer representa-
tion scheme, based on a flexible notion of partition, for the summarization
of dataset structure, and to take advantage of the ability of continuous-
analysis techniques to express and treat classification problems in a formal
manner.
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In Ruspini’s original formulation the clustering problem was formulated
as a continuous-variable optimization problem over the space of fuzzy par-
titions of the dataset. This original formulation of the clustering problem as
an optimization problem has been largely retained in various extensions of
the approach, which differ primarily on the nature of the functionals being
optimized and on the constraints that the partition must satisfy>.

The original approach proposed by Ruspini, however, focused on the
determination of the clustering as a whole, i.e., a family of fuzzy subsets
of the dataset providing a disjoint, exhaustive partition of the set into in-
teresting structures. Recent developments, however, have emphasized the
determination of individual clusters as fuzzy subsets having certain optimal
properties. From this perspective, a fuzzy clustering is a collection of opti-
mal fuzzy clusters—that is, each cluster is optimal in some sense and the
partition satisfies certain conditions—rather than an optimal partition—
that is, the partition, as a whole, is optimal in the sense that it minimizes
some predefined functional defining classification quality. Redirecting the
focus of the clustering process to the isolation of individual subsets hav-
ing certain desirable properties provides also a better foundation for the
direct characterization of interesting structure while freeing the clustering
process from the requirement that clusters be disjoint and that partitions
be exhaustive.

In the context of image-processing applications, for example, features
may correspond to certain interesting prototypical shapes. In these appli-
cations not every image element may belong to an interesting feature while
some points might belong to more than one cluster (e.g., the intersection of
two linear structures). It was, indeed, n the context of image-processing ap-
plications that Krishnapuram and Keller® reformulated the fuzzy clustering
problem so as to permit the sequential isolation of clusters. This method-
ology, called possibilistic clustering, does not rely, like previous approaches,
on prior knowledge about the number of clusters while permitting to take
full advantage of clustering methods based on the idea of prototype.

Prototype-based classification methods® are based on the idea that a
dataset could be represented, in a compact manner, by a number of pro-
totypical points. The well-known fuzzy c-means method of Bezdek—the
earliest fuzzy-clustering approach exploiting this idea—seeks to describe a
dataset by a number of prototypical points lying in the same domain as the
members of that dataset. Extensions of this basic idea based on generaliza-
tion of the notion of prototypical structure in a variety of ways (e.g., as line
or curve segments in some euclidean space) are the basis for methods that
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seek to represent datasets in terms of structures that have been predefined
as being of particular interest to those seeking to understand the underlying
physical systems being studied. Generally speaking, however, these methods
require that prototypical structures belong to certain restricted families of
objects so as to exploit their structural properties (e.g., the linear structure
of line segments or hyperplane patches).

The generalized clustering methodology presented in this paper belongs
to this type of approaches, extending them by consideration of arbitrary
definitions of interesting structures provided by users by users by means of
a family of parameterized models M = [M,] and a set of relations between
them 2835, In addition to a variety of geometric structures, these mod-
els may also be described by means of structures (e.g., neural networks)
learned from significant examples of the features being defined or in terms
of very general constraints that features might satisfy to some degree (soft
or fuzzy constraints). As is the case with possibilistic clustering methods,
our approach is based on the formulation of the qualitative-feature iden-
tification problem in terms of the optimization of a continuous functional
Q(F,M,) that measures the degree of matching between a fuzzy subset
F of the dataset and some instantiation M, of the family of interesting
models?®.

Our approach recognizes, however, that simple reliance on optimization
of a single performance index ) would typically result in the generation
of a large number of features with small extent and poor generalization as
it is usually easier to match smaller subsets of the dataset than significant
portions of it. For this reason, it is also necessary to consider, in addition to
measures @ of representation quality, additional criteria S gauging the size
of the structure being represented. In addition, it may also be necessary
to consider also application-specific criteria introduced to assure that the
resulting features are valid and meaningful (e.g., constraints preventing
selective picking of sample points so that they lie, for example, close to a
line in sample space).

This multiobjective problem might be treated by aggregation of the mul-
tiple measures of feature desirability into a global measure of cluster quality
28 A problem with this type of approach, which is close in spirit to mini-
mum description length methods?®, is the requirement to provide a-priori
relative weights to each one of the objectives being aggregated. It should
be clear that assignment of larger weight to measures @ of quality repre-
sentation would lead to small features with higher degrees of matching to
models in the prototype families while, conversely, assigning higher weights
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to measures S of cluster extent would tend to produce larger clusters albeit
with poor modeling ability. Ideally, a family of optimization problems, each
similar in character to the others but with different weights assigned to
each of the aggregated objectives, should be solved so as to produce a full
spectrum of candidate clusters.

Rather than following such a path—involving the solution of multiple
problems—our approach relies, instead, on a reformulation of the general-
ized clustering problem as a multiobjective optimization problem involving
several measures of cluster desirability?”. In this formulation, subsets of
the dataset of potential interest are locally optimal in the Pareto sense,
i.e., they are locally nondominated solutions of the optimization problem.?.
Locally nondominated solutions of a multiobjective optimization problem
are those points in feature space such that their neighbors do not have
better objective values for all objectives while being strictly superior in at
least one of them. (i.e., a better value, for a neighbor, of some objective
implies a lower value of another). The set of these solutions is called the
local Pareto-optimal or local effective frontier. We employ a multiobjective
genetic algorithm (MGA)?? based on an extension of methods originally
proposed by Marti and Laguna 812 to solve this problem. This method is
particularly an attractive tools to solve such complex optimization problems
because of their generality and their ability, stemming from application of
multimodal optimization procedures, to isolate local optima.

3. Problem: Discovering Promoters in DNA Sequences

Biological sequences, such as DNA or protein sequences, are a good example
of the type of complex objects that maybe described in terms of meaning-
ful structural patterns. Availability of tools to discover these structures and
to annotate the sequences on the basis of those discoveries would greatly
improve the usefulness of these repositories that currently rely on methods
developed on the basis of computational efficiency and representation accu-
racy rather than on terms of structural and functional properties deemed
to be important by molecular biologists.

An important example of biological sequences are prokaryotic promoter
data gathered and analyzed by many compilations ®°'7 that reveal the
presence of two well conserved sequences or submotifs separated by vari-
able distances and a less conserved sequence. The variability of the distance

bThe notions of proximity and neighborhood in feature space is application dependent
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between submotifs and their fuzziness, in the sense that they present sev-
eral mismatches, hinder the existence of a clear model of prokaryotic core-
promoters. The most representative promoters in E. coli (i.e. ¢”’subunits)

are described by the following conserved patterns:

(1) TTGACA: This pattern is an hexanucleotide conserved sequence whose
middle nucleotide is located approximately 35 pair of bases upstream
of the transcription start site. The consensus sequence for this pattern
is TTGACA and the nucleotides reported in 17 reveal the following nu-
cleotide distribution: Tg9T79Gg1As6Cs4A54, where for instance the first
T is the most seen nucleotide in the first position of the pattern and is
present in 69 % of the cases. This pattern is often called -35 region.

(2) TATAAT: This pattern is also an hexanucleotide conserved sequence,
whose middle nucleotide is located approximately 10 pair of bases up-
stream of the transcription start site. The consensus sequence is TATAAT
and the nucleotide distribution in this pattern is T77A76T60A61A56T82,
which is often called -10 region'”.

(3) CAP Signal: In general, a pyrimidine (C or T) followed by a purine (A or
G) compose the CAP Signal. This signal constitutes the transcription
start site (TSS) of a gene.

(4) Distance(TTGACA, TATAAT). The distance between the TTGACA
and TATAAT consensus submotifs follows a data distribution between
15 and 21 pair of bases. This distance is critical in holding the two sites
at the appropriate distance for the geometry of RNA polymerase 8.
The identification of the former RNA polymerase or promoters sites

becomes crucial to detect gene activation or repression, by the way in

which such promoters interact with different regulatory proteins (e.g. over-
lapping suggest repression and distances of approximately 40 base pairs
suggest typical activation). Moreover, combining the promoter sites with
other regulatory sites 37 can reveal different types of regulation, harbor-
ing RNA polymerase alone, RNA polymerase recruiting other regulatory
protein, or cooperative regulations among more than one regulator??. Dif-
ferent methods have been used to identify promoters ?16:13:% but several
failed to perform accurate predictions because of their lack of flexibility,
by using crisp instead of fuzzy models for the submotifs (e.g., TATAAT or

TTGACA 24), or restricting distances between submotifs to fixed values

(e.g., 17 base pairs!). The vagueness of the compound promoter motifs and

the uncertainty of identifying which of those predicted sites correspond to a

functional promoter can be completely solved only by performing mutagen-
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esis experiments?2. Thus more accurate and interpretable predictions would
be useful in order to reduce the experiment costs and ease the researchers
work.

4. Biological Sequence Description Methods

In this paper we present results of the application of GAP to the discovery
of interesting qualitative features in DNA sequences based inthose ideas
discussed in Section 2. The notion of interesting feature is formally defined
by means of a family of parameterized models M = {M,} specified by
domain experts®® who are interested in finding patterns such as epoch de-
scriptors of individual or multiple DNA sequences. These idealized versions
of prototypical models are the basis for a characterization of clusters as
cohesive sets that is more general than their customary interpretation as
“subsets of close points.” To address the promoter prediction problem we
take advantage of the ability of representing imprecise and incomplete mo-
tifs, the fuzzy sets representations flexibility and interpretability, and the
multi-objective genetic algorithms ability to obtain optimal solutions using
different criteria.

Our proposed method GAP represents each promoter submotif (i.e., -
10 and -35 regions and the distance that separates them) as fuzzy models,
whose membership functions are learned from data distributions'®2!. In
addition, as a generalized clustering method, GAP considers the quality of
matching with each promoter submotif model (Q), as well as the size of
the promoter extend (.9), by means of the distance between submotifs, as
the multiple objectives to be optimized. To do so, we used a Multi-objective
Scatter Search (MOSS) optimitation algorithm #12 which obtains a set
of multiple and optimal promoter descriptions for each promoter region.
Moreover, the former matching is also considered by MOSS as a multi-
modal problem, since there is more than one solution for each region. GAP,
by using MOSS, overcomes other methods used for DNA motif discov-
ery, such as Consensus/Patser based on weight probabilistic matrices (see
Section 5), and provides the desired trade-off between accurate and inter-
pretable solutions, which becomes particurary desirable for the end users.
The extension of the original Scatter Search (5S) heuristic '® uses the DNA
regions where promoters should be detected as inputs and finds all optimal
relationships among promoter submotifs and distance models. In order to
extend the original SS algorithm to a multi-objective environment we need
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to introduce some conceptslo’%:

A multi-objective optimization problem is defined as:

Mazimize Qu(x, M,), m=1,2,...,|M|;
subject to g;j(x) > 0, Je=1,2,...,J;
hi(z) =0, k=1,2,...,K;

ng) <z le(.U),izl,Q,...,n.

where M, is a generalized clustering model, | M| corresponds to the number
of models and @Q,,, the objectives to optimize, J to the number of inequal-
ity constraints, K to the number of equality constraints and finally n is
the number of decision variables. The last set of constraints restrict eaE(lj]})l

i

decision variable x; to take a value within a lower xEL) and an upper x
bound. Specifically, we consider the following instantiations:

e |[M| = 3. We have three models: M! and M2 are the models for
each of the boxes, TTGACA-box and TATAAT-box, respectively, and
M3 corresponds to the distance between these two boxes (recall Equa-
tions 1 and 2, and Figure 1).

|Q] = 3. We have three objectives consisting of maximizing
the degree of matching to the fuzzy models (fuzzy membership):
Q1(x, ML), Qa(z, M2) and Qz(x, M3)

e J = 1. We have just one constraint g;: the distance between boxes can
not be less than 15 and no more than 21 pair of bases.

K = 0. No equality constraints needed.

Only valid solutions are kept in each generation.

The boxes can not be located outside the sequence searched, that is,
it can not start at negative positions or grater than the length of the
query sequence.

Definition 1: A solution z is said to dominate solution y (z < y), if
both conditions 1 and 2 are true: (1) The solution z is no worse than y
in all objectives: f;(z) ¢ fi(y) for all i = 1,2,..., M; (2) The solution z
is strictly better than y in at least one objective: f;(z) < f;(y) for at least
one i € {1,2,..., M}. If © dominates the solution y it is also customary to
write that x is nondominated by .

In order to code the algorithm, three different models were developed.
Both submotif models were implemented by using their nucleotide con-
sensus frequency as discrete fuzzy sets, whose membership function has
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been learned from distributions!®

TATAAT-box was formulated as:

The first model corresponding to the

My, = prataat(€) = pi(1) U ... U pg () (1)

where the fuzzy discrete set corresponding to the first nucleotide of the
submotif T0.77A0.76T0‘60A0.61A0.56T0‘82 was defined as M%(l‘l) = A/OOS +
T/0.77 + G/0.12 + C/0.05, and the other fuzzy sets corresponding to po-
sitions 2-6 were calculated in a similar way accordingly to data distribu-
tions from!”. The second model corresponding to the TTGACA-box was
described as:

M2 = fitgaca (@) = (1) U o U pi2(2) (2)

where the fuzzy crisp set corresponding to the first nucleotide of the submo-
tif T0.69T0_79G0_61A0A56CO.54A0_54 was defined as /.L? (Z‘) = A/012+T/069+
(G /0.134C/0.06 and the other fuzzy sets corresponding to positions 2-6 were
calculated in a similar way accordingly to data distributions from!”. The
union operation corresponds to fuzzy set operations?+1®. The third model,
i.e., the distance between the previous submotifs, was built as a fuzzy set,
whose triangular membership function M2 (see Figure 1) was learned from
data distributions® centered in 17, where the best value (one) is achieved.
Therefore, the objective functions @, correspond to the membership to the
former fuzzy models M,.

FREQUENCY
SCORE

B I [
.A 15 m w 1 19 B 2 2 1 15 1 o 1 1 £} o ES
oisTANCE oisTANCE

Fig. 1. Graphical representation of M3

Combination Operator and Local Search. We used a block representation
to code each individual, where each block corresponds to one of the pro-
moter submotifs (i.e., TATAAT-box or TTGACA-box). Particularly, each
block was represented by two integers, where the first number corresponds
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to the starting point of the submotif, and the second one represents the
size of the box (see Figure 2). The combination process was implemented

Phenotype
ttgaca tataat
gtttatttaatgtttacccccataaccacataatcgegttacact
T 7
char 6 char 29
Genotype
Gen 0 Gen 1
[(6,6)] [(29,6)]

f1 =0.578595  f, =0.800000 f3 = 1.000000

Fig. 2. Example of the representation of an individual

as a one-point combine operator, where the point is always located between
both blocks. For example, given chromosomes with two blocks A and B, and
parents P = A;B; and P’ = AsB,, the corresponding siblings would be
S = A1By and S’ = A3 B;. The local search was implemented as a search
for nondominated solutions in a certain neighborhood. For example, a local
search performed over the chromosome space involves a specified number
of nucleotides located on the left or right sides of the blocks composing
the chromosome. The selection process considers that a new mutated chro-
mosome that dominates one of its parent will replace it, but if it becomes
dominated by its ancestors no modification is performed. Otherwise, if the
new individual is not dominated by the nondominated population found so
far, it replaces its father only if it is located in a less crowded region (see
Figure 3).

Algorithm. We modified the original SS algorithm to allow multiple-
objective solutions by adding the nondominance criterion to the solution
ranking!'?. Thus, nondominated solutions were added to the set in any or-
der, but dominated solutions were only added if no more nondominated
solutions could be found. In addition to maintaining a good set of non-
dominated solutions, and to avoid one of the most common problems of
multi-objective algorithms such as multi-modality!?, we also kept track of
the diversity of the available solutions through all generations. Finally, the
initial populations were created randomly and unfeasible solutions corre-
sponding to out of distance ranges between promoter submotifs (g;) were
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checked at each generation. Figure 4 clearly illustrates the MOSS algorithm
proposed in GAP.

1: Randomly select which block g in the representation of the individual ¢ to apply
local search.
2: Randomly select a number n in [—neighbor, neighbor] and move the block g, n
nucleotides. Notice that it can be moved upstream or downstream. Resulting block
will be ¢’ and resulting individual will be called ¢’.
if ¢’ meets the restrictions then
if ¢/ dominates ¢ then
Replace ¢ with ¢’
end if
if ¢’ does not dominate ¢ and ¢’ is not dominated by ¢ and ¢’ is not dominated
by any solution in the Non-Dominated set then
Replace ¢ with ¢ if crowd(c’) < crowd(c).
9:  end if
10: end if

14

Fig. 3. Local search

1: Start with P = (). Use the generation method to build a solution and the local
search method to improve it. If z ¢ P then add z to P, else, reject x. Repeat until
P has the user specified size.
2: Create a reference set RefSet with b/2 nondominated solutions of P and b/2 solu-
tions of P more diverse from the other b/2. If there are not enough nondominated
solutions to fill the b/2, complete the set with dominated solutions.
NewSolution «— true
while Exists a Solution not yet explored (NewSolution = true) do
NewSolution «— false
Generate subsets of RefSet where there is at least one nondominated solution
in each one.

Generate an empty subset N to store nondominated solutions.
while subset to examine do
Select a subset and mark it as examined.
Apply combination operators to the solutions in the set.
Apply local search to each new solution x found after the combination process
as explained in Figure 3 and name it z°.
12: if z® is nondominated by any € N and z° ¢ N then
13: Add zb to N.
14: end if
15:  end while
16:  Add solutions y € N to P if there are no solution z € P that dominates y.
16:  NewSolution < true.
17: end while

i
= oY X

Fig. 4. MOSS algorithm
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5. Experimental Algorithm Evaluation

The GAP method was applied to a set of known promoter sequences re-
ported in®. In this work 261 promoter regions and 68 the alternative so-
lutions (multiple promoters) defined in® for the corresponding sequences
(totalizing 329 regions) constituted the input of the method.

To evaluate the performance of GAP, we first compare the obtained re-
sults with the ones retrived by a typical DNA sequence analysis method, the
Consensus/Patser 4. Then, we compare the ability of MOSS with the other
two Multiobjective Evolutionary Algorithms (MOEAS), i.e., the Strength
Pareto Evolutionary Algorithm (SPEA)33 and the (u + \) Multi-Objective
Evolutionary Algorithm (MuLambda)?°.

All of the former MOEA algorithms share the same following properties:

e They store optimal solutions found during the search in an external
set.

e They work with the concept of Pareto dominance to assign fitness values
to the individuals of the population.

Particularly, SPEA is a well known algorithm that have some special

features 33, including:

e The combination of above techniques in a single algorithm.

e The determination of the fitness value of an individual by using the
solutions stored in the external population, where dominance from the
current population becomes irrelevant.

e All individuals of the external set participate in the selection procedure.

e A niching method is given to preserve diversity in the population. This
method is based on Pareto optimality and does not require a distance
parameter (e.g., the niche ratio in a sharing function'?).

MuLambda is a relative new algorithm with a very different design from
other Pareto approaches. This algorithm has the following characteristics2?:

e It does not use any information from the dominated individuals of the
population. Only nondominated individuals are kept from generation
to generation.

e The population size is variable.

e It makes clustering to reduce the number of nondominated solutions
stored without destroying the features of the optimal Pareto front.

As we explained earlier, the MOSS approach has the following proper-
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ties:

e The local search is used to improve those solutions found during the
execution of the algorithm.

e The diversity of the solutions is kept by including in every generation
a set of diverse solutions into the current population.

To compare the results obtained from the former three algorithms, we
use the same objective functions described in Section 4 and execute these
algorithms 20 times with different seeds for each input sequence. A promoter
is said to be found if it appears in, at least, one of the execution result sets.
The parameters used in the experiments are listed in Table 1.

Parameter Value
Number of generations 200
RefSet 16
Non-Dominated population size 300

Table 1. Parameters for algorithms

Our method overcomes Consensus/Patser!* by detecting te 93.1 % of the
available promoters, while this method, based on weight matrices, identify
the 74 %. Moreover, GAP, by using MOSS also overcomes the other MOEA
algorithms as it is illustrated in Table 2.

Total  %total

| Original  Alternative  %originals ~ %alternatives

MOSS 243 59 93.10% 86.76% | 302 91.79%
SPEA 217 43 83.14% 63.24% | 260 79.03%
(n+2) GA 223 52 85.44% 76.47% | 275 83.59%

Table 2. Results with different Multi-Objective Genetic Algorithms for all sequences.
The Original column indicates the number of conserved promoter locations reported
in the literature. The Alternative column indicates alternative locations also reported

in the literature

We should note that there exist more than one possible description
for each promoter region, as it is illustrated in Figure 5 for the Ada gene
reported in Harley & Reynolds compilation®. These alternative descriptions
were also found by MOSS in a higher percentage than the other methods
(86.76 %). The complete set of results is illustrated in the Appendix.
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gttggtttttgcgtgatggtgaccgggcagcctaaaggctatcecctt

Fig. 5. Different solutions for the Ada sequence - Three different alternative locations
for the preserved sequences were included in the final set of the MOSS method matching
with the three alternatives reported in the literature

In addition to the number of promoters detected by using different
MOEA algorithms, we use two other functions C3* and D (see Equations
3 and 4) to have a better understanding of each algorithm performance.

Definition 2: Let X', X” C X two set of decision vectors. The function
C maps the ordered pairs (X', X") to the [0, 1] interval:

~ Had" e X";3d € X' :d < d"} 3
- |X”‘ ( )

C(X/,XH)

DX X"Y={d e X";d" € X" :d" £d' Nd' #d"}] (4)

The value C(X’, X"”) =1 in the former definitions means that all solu-
tions in X" are equal to or dominated by the solutions in X’. Its opposite
value, C(X’, X"") = 0, represents the situation where no solutions in X"
are covered by any solutions in X'. Both C(X’, X”) and C(X”, X") must
be considered since C(X’, X") it is not necessary equal to 1 — C(X”, X’).
Function D(X’, X") counts the number of individuals in X’ that do not
dominate X" and are not found in X"”.

We show in Table 3 the average results obtained for the comparissons
among the MOEA algorithms. The first Table measures the C'(X’, X"),and
the other measures the D(X’, X”). This numbers were obtained by execut-
ing the algorithms 20 times with different seeds and calculating the average
value for both functions and sequences.

C(X',X") | MOSS | SPEA | p+2A D(X',X") | MOSS | SPEA | pu+2A
MOSS - 0.538 | 0.360 MOSS - 14.204 | 12.977
SPEA | 0.013 - 0.054 SPEA | 0.170 - 0.876
pA+X | 0.029 | 0.349 - p4X | 1.066 | 2.284 -

Table 3. Sequence results

As we previously suggested, function D counts the number of nondom-
inated individuals of an algorithm that were not found in the other two
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MOEAs. The MOSS algorithm achieves the best value of D in all experi-
ments, while SPEA and MuLambda present lower values. Moreover those
results obtained by MOSS do not present much fluctuation between dif-
ferent sequences. MOSS leads the rankings followed by MuLambda and
SPEA in the last position of the table. In addition, the diversity of solu-
tions found by MOSS is considerably better than the other two algorithms
(aproximately seven times better according to the D value). Finally, MOSS
becomes the most robust algorithm by finding, in average, a specific pro-
moter 16.81 times of the 20 runs. In contrast, SPEA obtains a promoter
6.48 times of the total 20 runs and and MuLambda 9.33 of the times.

6. Concluding Remarks

Generalized-clustering algorithms—solving multivariable, multiobjective,
optimization problems—provide effective tools to identify interesting fea-
tures that help to understand complex objects such as DNA sequences. We
have proposed GAP, a promoter recognition method that was tested by
predicting F.coli promoters. This method combines the advantages of fea-
ture representation based on fuzzy sets and the searching abilities of multi-
objective genetic algorithms to obtain accurate as well as interpretable so-
lutions. Particularly, these kinds of solutions are the most useful ones for
the end users. That is, allows to detect multiple occurrences of promoters,
sheding light on different putative transcription start sites. The ability of
finding multiple promoters becomes more useful when the whole intergenic
regions are considered, allowing to predict distinct regulatory activities,
harboring activation or repression. The present approach can be extended
to identify other DNA motifs, which are also conected by variable distances,
such as binding sites of transcriptional regulators (e.g., direct or inverted
repeats). Therefore, by combining multiple and heterogeneous DNA motifs
(e.g., promoters, binding sites, etc.), we can obtain different descriptions
of the cis-acting regions and, thus, different regulatory environments. The
present implementation of GAP is available for academic use in the SOAR-
TOOLS web site (http://soar-tools.wustl.edu) and will be updated soon
with a new dataset from RegulonDB database®! (in process).

Appendix

Tables 4 through 7 illustrate the set of solutions found by GAP by consid-
ering the set of promoter examples published in ®. The last column of the
tables indicates whether the GAP recognized the promoter or not by the
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simbols v and 0O, respectively. The first column corresponds to the name
of the sequence, the second column shows the beginning character position
of the TTGACA-box, and the third column shows the character position
where the TATAAT-box begins. These positions are those ones recognized
by GAP. Only one result for each sequence is shown due to space limita-
tions. The fourth column corresponds to the sequence itself with each of
the boxes clearly depicted.
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sequence ttgaca tataat promoter found
aceEF 13 36 ACGTAGACCTGT CTTATT GAGCTTTC  CGGCGAGAG TTCAAT GGGACAGGTCCAG v
ada - - AGCGGCTAAAGGTG TTGACG TGCGAGAA  ATGTTTAGC TAAACT TCTCTCATGTG ]
alaS 15 39 AACGCATACGGTAT TTTACC TTCCCAGTC  AAGAAAACT TATCTT ATTCCCACTTTTCAGT v
ampC 15 37 TGCTATCCTGACAG TTGTCA CGCTGATT GGTGTCGT TACAAT CTAACGCATCGCCAATG v
ampC/C16 7 30 GCTATC TTGACA GTTGTCAC ~ GCTGATTGG TATCGT TACAATCTAACGTATCG v
araBAD 15 37 TTAGCGGATCCTAC CTGACG CTTTTTAT CGCAACTC TCTACT GTTTCTCCATACCCGTT v
araC 15 38 GCAAATAATCAATG TGGACT TTTCTGCC ~ GTGATTATA GACACT TTTGTTACGCGTTTTTG v
araB 12 37 CTGTTTCCGAC CTGACA CCTGCGTGA GTTGTTCACG TATTTT TTCACTATGTCTTACTC v
aral(c) 13 35 AGCGGATCCTAC CTGGCG CTTTTTAT CGCAACTC TCTACT GTTTCTCCATACCCGTT v
aral(c)X(c) 13 37 AGCGGATCCTAC CTGGCG CTTTTTATC ~ GCAACTCTC TACTAT TTCTCCATACCCGTTTT v
argCBH 15 39 TTTGTTTTTCATTG TTGACA CACCTCTGG ~ TCATGATAG TATCAA TATTCATGCAGTATT v
argCBH-P1/6- 15 36 TTTGTTTTTCATTG TTGACA CACCTCT GGTCATAA TATTAT CAATATTCATGCAGTAT v
argCBH-P1/LL 15 36 TTTGTTTTTCATTG TTGACA CACCTCT GGTCATGA TATTAT CAATATTCATGCAGTAT v
argBE-P1 15 38 TTACGGCTGGTGGG TTTTAT TACGCTCA  ACGTTAGTG TATTTT TATTCATAAATACTGCA v
argB-P2 15 38 CCGCATCATTGCTT TGCGCT GAAACAGT — CAAAGCGGT TATGTT CATATGCGGATGGCG v
argE/LL13 15 38 CCGCATCATTGCTT TGCGCT GAAACAGT — CAAAGCGGT TATATT CATATGCGGATGGCG v
argF 15 38 ATTGTGAAATGGGG TTGCAA ATGAATAA  TTACACATA TAAAGT GAATTTTAATTCAATAA v
argl 7 30 TTAGAC TTGCAA ATGAATAA  TCATCCATA TAAATT GAATTTTAATTCATTGA v
argR 12 35 TCGTCGCCGCG TTGCAG GAGCAAGG ~ CTTTGACAA TATTAA TCAGTCTAAAGTCTCGG v
aroF 15 37 TACGAAAATATGGA TTGAAA ACTTTACT TTATGTGT TATCGT TACGTCATCCTCGCTG v
aroG 15 38 AGTGTAAAACCCCG TTTACA CATTCTGA  CGGAAGATA TAGATT GGAAGTATTGCATTCA v
aroH 15 37 GTACTAGAGAACTA GTGCAT TAGCTTAT TTTTTTGT TATCAT GCTAACCACCCGGCGAG v
bioA 15 39 GCCTTCTCCAAAAC GTGTTT TTTGTTGTT  AATTCGGTG TAGACT TGTAAACCTAAATCT v
bioB 15 38 TTGTCATAATCGAC TTGTAA ACCAAATT ~ GAAAAGATT TAGGTT TACAAGTCTACACCGAA v
bioP98 15 38 TTGTTAATTCGGTG TAGACT TGTAAACC ~ TAAATCTTT TAAATT TGGTTTACAAGTCGAT v
C62.5-P1 - - CACCTGCTCTCGC TTGAAA TTATTCTC  CCTTGTCCC CATCTC TCCCACATCCTGTTTT ]
carAB-P1 15 38 ATCCCGCCATTAAG TTGACT TTTAGCGC ~ CCATATCTC CAGAAT GCCGCCGTTTGCCAGA v
carAB-P2 15 39 TAAGCAGATTTGCA TTGATT TACGTCATC ~ ATTGTGAAT TAATAT GCAAATAAAGTGAG v
cat 13 36 ACGTTGATCGGC ACGTAA GAGGTTCC ~ AACTTTCAC CATAAT GAAATAAGATCACTACC v
cit.util-379 AAACAGGCGGGG GTCTCA GGCGACTAA  CCCGCAAAC TCTTAC CTCTATACATAATTCTG O
cit.util-431 14 38 GACAGGCACAGCA TTGTAC GATCAACTG ~ ATTTGTGCC AATAAT TAAATGAAATCAC v
CloDFcloacin 15 37 TCATATATTGACAC CTGAAA ACTGGAGG AGTAAGGT AATAAT CATACTGTGTATATAT v
CloDFnal 15 39 ACACGCGGTTGCTC TTGAAG TGTGCGCCA  AAGTCCGGC TACACT GGAAGGACAGATTTGG v
colE1-B 15 36 TTATAAAATCCTCT TTGACT TTTAAAA CAATAAGT TAAAAA TAAATACTGTAA v
colE1-C 15 37 TTATAAAATCCTCT TTGACT TTTAAAAC AATAAGTT AAAAAT AAATACTGTACATATAA v
colE1-P1 15 38 GGAAGTCCACAGTC TTGACA GGGAAAAT — GCAGCGGCG TAGCTT TTATGCTGTATATAAAA v
colE1-P2 15 37 TTTTTAACTTATTG TTTTAA AAGTCAAA GAGGATTT TATAAT GGAAACCGCGGTAGCGT v
colE110.13 13 37 GCTACAGAGTTC TTGAAG TAGTGGCCC — GACTACGGC TACACT AGAAGGACAGTATTTGG v
colicinEl P3 15 37 TTTTTAACTTATTG TTTTAA AAGTCAAA GAGGATTT TATAAT GGAAACCGCGGTAGCGT v
crp 15 38 AAGCGAGACACCAG GAGACA CAAAGCGA  AAGCTATGC TAAAAC AGTCAGGATGCTACAG v
cya 15 38 GTAGCGCATCTTTC TTTACG GTCAATCA  GCAAGGTGT TAAATT GATCACGTTTTAGACC v
dapD - - AAGTGCATCAGCGG TTGACA GAGGCCCTC ~ AATCCAAAC GATAAA GGGTGATGTGTTTACTG O
deo-P1 14 39 CAGAAACGTTTTA TTCGAA CATCGATCT CGTCTTGTGT TAGAAT TCTAACATACGGTTGC v
deo-P2 10 35 TGATGTGTA TCGAAG TGTGTTGCG GAGTAGATGT TAGAAT ACTAACAAACTCGCAA v
deo-P3 15 37 ACACCAACTGTCTA TCGCCG TATCAGCG AATAACGG TATACT GATCTGATCATTTAAA v
divE 15 38 AAACAAATTAGGGG TTTACA CGCCGCAT — CGGGATGTT TATAGT GCGCGTCATTCCGGAAG v

Table 4. Results for the training sequences
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sequence ttgaca tataat promoter found
dnaA-1p 15 39 TGCGGCGTAAATC