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Abstract Most real-coded genetic algorithm research
has focused on developing effective crossover operators,
and as a result, many different types have been pro-
posed. Some forms of crossover operators are more
suitable to tackle certain problems than others, even at
the different stages of the genetic process in the same
problem. For this reason, techniques which combine
multiple crossovers have been suggested as alternative
schemes to the common practice of applying only one
crossover model to all the elements in the population.
Therefore, the study of the synergy produced by com-
bining the different styles of the traversal of solution
space associated with the different crossover operators is
an important one. The aim is to investigate whether or
not the combination of crossovers perform better than
the best single crossover amongst them.

In this paper we have undertaken an extensive study
in which we have examined the synergetic effects among
real-parameter crossover operators with different search
biases. This has been done by means of hybrid real-
parameter crossover operators, which generate two off-
spring for every pair of parents, each one with a different
crossover operator. Experimental results show that
synergy is possible among real-parameter crossover
operators, and in addition, that it is responsible for
improving performance with respect to the use of a
single crossover operator.
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1 Introduction

In the initial formulation of genetic algorithms (GAs),
the search space solutions are coded using the binary
alphabet ([Gol89]); however, other coding types, such as
real coding, have also been taken into account to deal
with the representation of the problem. The real coding
approach seems adequate when tackling optimisation
problems of parameters with variables in continuous
domains. The chromosome is a vector of floating point
numbers, representing a solution of the problem. Obvi-
ously, both have the same length. GAs based on real-
number representation are called real-coded GAs
(RCGA ) (|[Deb01a, Her98)).

The crossover operator is a method for sharing
information between chromosomes. It has always been
regarded as the main search operator in GAs ([Del92,
Kit01]) because it exploits the available information in
previous samples to influence future searches. This is
why most RCGA research has been focused on devel-
oping effective real-parameter crossover operators, and
as a result, many different possibilities have been pro-
posed ([DebOla, Her98]). In [Her03], a taxonomy is
introduced to classify the crossover operators for
RCGAs. It groups the models for this operator into
different categories according to the way in which they
generate the genes of the offspring from the genes of the
parents. The empirical study of representative examples
in all of the categories provides some clues as to the key
features that have a positive influence on crossover
behaviour.

Each crossover operator directs the search towards a
different zone in the neighbourhood of the parents. The
quality of the elements that belong to the visited region
depends on the particular problem to be solved. This
means that different crossover operators perform dif-
ferently with respect to different problems, even at the
different stages of the genetic process in the same
problem. In fact, no free lunch theorems confirm this fact
([Wol197]). Thus, the simultaneous application of diverse



crossover operators on the population could provide
effective models that may be suited to many practical
problems. In fact, some studies have been undertaken
which examine the synergy produced by combining the
different styles of the traversal of solution space associ-
ated with various crossover operators ([Dav89, Her00,
Hon95, Hon98, Hon02, Spe95, Yo0002]). Their objective
was to investigate whether or not a combination of
crossovers perform better than the best single crossover
amongst them.

It is to be expected that real-parameter crossover
operators representing different groups of taxonomy
suggested in [Her03] have dissimilar traversal styles of
solution space. Thus, the study of the synergy derived
from their combination becomes interesting, because it
may reveal complementary properties that are required
in order to build an effective coupling of real-parameter
crossover operators. The aim of this paper is, in fact, to
carry out an extensive study to examine the synergetic
effects among real-parameter crossover operators that
belong to different categories of this taxonomy. In order
to do this we will design hybrid real-parameter crossover
operators, which generate two offspring for every pair of
parents, each one with a crossover operator that belongs
to a different category. Hybrid operators represent a
simple way to combine crossover operators, and thus,
they constitute a manageable framework to analyse the
synergetic effects of different real-parameter crossover
operators.

The paper is set out as follows. In Sect. 2, we
introduce relevant issues related to real-parameter
crossover operators and outline the taxonomy for these
operators proposed in [Her03]. In Sect. 3, we design
hybrid real-parameter crossover operators, which
combine two crossover operators included in different
groups of the taxonomy. In Sect. 4, we describe the
experimental study aimed at determining the goodness
associated to the hybrid crossover operators (Sect. 4.2)
and analyse the synergetic effects produced among their
constituent crossover operators (Sect. 4.3). Finally, in
Sect. 5, we point out some concluding remarks and
summarise some possible future research areas related
to this topic.

2 Real-parameter crossover operators

In this section, we deal with the main aspects of the
crossover operators for RCGAs. In Sect. 2.1, we explain
the three mechanisms involved in the application of the
crossover operator. This is useful to understand the
particular features of the crossover operators analysed in
this paper. In Sect. 2.2, we examine the availability of
these operators to propitiate different exploration or
exploitation degrees. Finally, in Sect. 2.3, we introduce a
taxonomy that groups real-parameter crossover opera-
tors into different categories depending on the way in
which they generate the genes of the offspring from the
genes of the parents. In Appendixes A and B, we include
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the description of the crossover operators used in this
paper.

2.1 The crossover operator
The application of the crossover operator is carried out
by means of three different mechanisms:

e Mating selection mechanism (MSM). This deter-
mines the way in which the chromosomes are mated
for applying the crossover to them. The most com-
mon MSM pairs the parents randomly. However,
other approaches have been proposed ([Fer01]).

e Offspring generation mechanism (OGM). This pro-
duces new chromosomes from each set of parents
formed by the MSM. All the proposed OGMs for
binary coding may be adapted to work with real
coding. However, real coding offers the possibility of
defining a wide variety of special OGMs that take
advantage of its numerical nature. In general, the
value of the genes corresponding to each position in
the offspring are calculated by numerically combining
the values of the genes of the parents in this position.

o Offspring selection mechanism (OSM). This mecha-

nism chooses the offspring which will be population
members out of all the offspring generated for each
set of parents. One of the most widely used OSMs
selects the best offspring to form the next population
([Her97, Wri9l]).

Usually, the crossover operator is applied to pairs of
chromosomes, generating two offspring for each one of
them, which are introduced in the population ([Gol89]).
However, multi-parent crossover operators have been
proposed, which combine the features of more than two
parents for generating the offspring ([Deb02, Kit99a,
Ono97 Ort01, SomO01, Tsu99]). Furthermore, crossover
operators with multiple descendants have been presented
([Deb02, Esq97, Her97, Her02, Sat96, Wri91]), which
produce more than two offspring for each group of
parents. In this case, the OSM limits the number of
offspring that will be population members. We should
emphasise that in this paper we deal with crossover
operators for real coding that require only two parents
and generate only two offspring.

If we cross two parents, all the offspring may be
created using the same OGM ([Deb02, Sat96]) or by
means of different OGMs ([Her97]). In this paper, the
former will be referred to as homogeneous crossover
operators and the latter hybrid crossover operators.

2.2 Exploration and exploitation

Real-parameter crossover operators are able to produce
exploration or exploitation (to different degrees)
depending on the way in which they handle the current
diversity of the population. They may either generate
additional diversity starting from the current one
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(therefore exploration takes effect) or use this diversity
for creating better elements (therefore exploitation
comes into force). This is possible because of their self-
adaptive features ([BeyOl, Deb01b, Kit01]).

The performance of an RCGA on a particular
problem will be strongly determined by the degrees of
exploration and exploitation associated to the crossover
operator being applied. In the following, we will intro-
duce basic ideas about the availability of the crossover
for adapting different exploration or exploitation
degrees.

Let’s consider ¢!, ¢? € [a;,b;] two genes to be com-
bined with o = min{c!,c?} and B; = max{c},c?}, the
action interval, [a;, b;], of these genes can be divided into
three intervals: [a;, o], [0, f;], and [f;, b;]. These intervals
bind three regions to which the resultant genes of some
combination of the former may belong. In addition,
considering a region [of, f;] with of <o; and ;>
would seem reasonable. Fig. 1 shows this in graph form.

These intervals may be classified as exploration or
exploitation zones as shown in Fig. 1. The interval with
both genes being the extremes is an exploitation zone
because any gene, g;, generated by a crossover in this
interval fulfils

max{|g; — o, [g; — Bi|} < |oi — Byl

The two intervals that remain on both sides are explo-
ration zones because the above property is not fulfilled.
The region with extremes o} and f; could be considered
as a relaxed exploitation zone. Therefore, exploration
and/or exploitation degrees may be assigned to any
crossover operator for RCGAs depending on the way in
which these intervals are considered to generate genes.
The arithmetical crossover with 4 = 0.5 (Appendix
A) is a clear example of the exploitative crossover
operator. On the other hand, this operator will show
exploration for 4 > 1 or 4 < 0. An example of crossover
showing relaxed exploitation is BLX-« (Appendix A).
Nomura et al. ((Nom01]) provide a formalisation of this
operator to analyse the relationship between the chro-
mosome probability density functions before and after
its application, assuming an infinite population. They
state that BLX-a spreads the distribution of the chro-
mosomes when a > (v/3 — 1)/2 or otherwise reduces it.
This property was verified through simulations. In par-
ticular, the authors observed that BLX-0.0 makes the
variances of the distribution of the chromosomes
decrease, reducing the distribution, whereas BLX-0.5

makes the variances of the distribution increase,
spreading the distribution.
l Relaxed Exploitation
I Exploration I Exploitation iy Exploration I
f f i —t !
a; o o Bi Bi b;

Fig. 1 Action interval for ¢}and ¢?

2.3 Taxonomy

In [Her03], a taxonomy is presented which classifies the
crossover operators for RCGAs (those applied only on
two parents) into different groups, focusing on the fea-
tures associated with the OGMs that are applied to the
parents to obtain the offspring. This includes whether
they preserve the genes of the parents in the offspring,
whether the genes of the offspring are obtained from an
aggregation function in which its arguments are the
genes of the parents, or whether the genes in the off-
spring are generated from a probability distribution
defined in the neighbourhoods of the genes of the par-
ents. The taxonomy includes the following groups:

e Discrete Crossover Operators (DCOs). This category
groups all the crossover operators proposed for
binary coding, which are directly applicable to real
coding. It includes the two-point and uniform
crossover operators (Appendix A). With these
crossovers, the value of each gene in the offspring
coincides with the value of this gene in one of the
parents (h; € {c},c?}), i.e., the values of the genes in
the parents are not transformed numerically to
obtain the values of the genes in the offspring. Geo-
metrically, DCOs generate a corner of the hypercube
defined by the component of the two parents. The
effect of these operators, according to the intervals of
the generation of genes, is shown in Fig. 2.

o Aggregation Based Crossover Operators (ABCOs).
These include operators that use an aggregation
function that numerically combines the values of the
genes of the parents to generate the value of the
genes of the offspring. If [a;, b;] is the action interval
for the i-th gene, an aggregation function,
fi+lai, b)) — [a,b]] ([d},b]] C [a;,b;]) should be
provided. Then, the value for the i-th gene of the
offspring is calculated as f;(c!,c?). The arithmetical
and geometrical crossover operators (Appendix A)
are examples of ABCOs. In the case of the arith-
metical crossover, the aggregation function is a lin-
ear combination of ¢! and ¢?. Graphically, ABCOs
act as shown in Fig. 3.

As seen in Figure 3, the ABCOs may generate genes in

the exploitation interval or in the exploration interval.

e Neighbourhood-Based Crossover Operators
(NBCOs). This group includes crossovers that
determine the genes of the offspring extracting val-
ues from intervals defined in neighbourhoods asso-
ciated with the genes of the parents throughout
probability distributions. Examples of NBCOs are

1 2
a; c; c b

Fig. 2 Effects of the DCOs
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Fig. 3 Possible gene values calculated by ABCOs from c}and ¢?

Fig. 4 Neighbourhoods taken into account by NBCOs

BLX-«, simulated binary crossover, and fuzzy
recombination (Appendix A), which are based on
uniform, polynomial, and triangular probability
distributions, respectively. Fig. 4 represents graphi-
cally the neighbourhoods considered by NBCOs

The main difference between ABCOs and NBCOs is that
ABCOs are deterministic crossovers, i.e., given two
parents, the resultant offspring shall always be the same,
whereas NBCOs include a random component, i.e., they
are non deterministic.

Table 1 contains the real-parameter crossover oper-
ators used in this paper, along with the category to
which they belong. As we have mentioned, their for-
mulation may be found in Appendix A. In addition,
Appendix B is devoted to the description of the dynamic
heuristic crossover operators. These operators have been
selected from the ones studied in [Her03] according to
their good performance.

In the following, we make some comments about the
exploration and exploitation features of the crossover
operators in Table 1:

e At gene level, two-point and uniform crossovers
(DCOs) do not offer diversity, because they maintain

Table 1 Real-parameter crossover operators

Crossover operator Taxonomy
group

Two-point (2P) DCO

Uniform(U)

Arithmetical (A) ABCO

Geometric (G)

Dynamic Heuristic (DH)

BLX-a (x = 0.3 and « = 0.5) NBCO

Simulated Binary (SBX-7)
(n=2andy =5)
Fuzzy Recombination (FR-d) (d = 0.5)
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the genes of the parents in the offspring. In this
sense, we can say that they show exploitative fea-
tures (Fig. 1). However, at chromosome level, they
offer diversity, because new chromosomes (the off-
spring) are created concatenating different segments
of genes of the parents. Thus, from this point of
view, they are explorative operators.

e For the experiments (Sect. 4), we have chosen values
for the parameters associated to the arithmetical and
geometrical crossovers that make these operators
show exploitation. In addition, the dynamic heuris-
tic operator used (Appendix B) has a strong ten-
dency towards exploitation ([Her96a)).

e All NBCOs included in Table 1 generate genes in
relaxed exploitation intervals. The diversity degrees
offered by them will depend on the value chosen for
their associated parameters (o, #, and d).

3 Hybrid real-parameter crossover operators

The idea behind crossover is that by combining features
from two good parents crossover will often produce even
better offspring ([Esh95]). However, the efficiency of
crossover for genetic search is governed by the rela-
tionship between the crossover biases (its traversal style
of solution space) and the search problem itself. A
particular crossover operator becomes more effective
when its search bias is adjusted to the structure of the
problem to be solved. Thus, some forms of crossover
operators are more suitable for solving certain problems
than others, even at the different stages of the genetic
process in the same problem. The no free lunch theorems
confirm this fact ((Wol97]).

An interesting idea to devise crossover-based tech-
niques, which may be suited to most practical problems,
would consist of the simultaneous application of diverse
crossover operators on the population. In fact, some
studies have been conducted in which the synergy pro-
duced by combining the different styles of the traversal of
solution space associated to various crossover operators
has been examined ([Dav89, Her00, Hon95, Hon9s,
Hon02, Spe95, Yo0002]). Their objective was to investi-
gate whether or not a combination of crossovers perform
better than the best single crossover amongst them.

3.1 Crossover Combination Techniques

There have been different attempts to find synergetic
crossover operators:

1. Hybrid crossover operators. These crossovers use dif-
ferent kinds of crossover operators to produce diverse
offspring from the same parents. For example, in
[Her97], an hybrid real-parameter crossover operator
is presented, which generates four offspring for each
pair of parents, applying two explorative crossovers
and two exploitative crossovers to them. The two
most promising offspring of the four substitute their
parents in the population.
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2. Heterogeneous distributed GAs. In [Her00], a distrib-
uted RCGA model maintains, in parallel, several sub-
populations that are processed by independent GAs
that apply different forms of crossover operators.
These operators are differentiated according to their
associated exploration and exploitation properties
and the degree thereof. Other distributed GA models
that make distinctions between the sub-populations
by applying GAs with different crossovers are found
in [Sch94] and [Eib98]. In this case, each sub-popu-
lation competes with other sub-populations, in such a
way that it gains or loses individuals depending on its
evolution quality in relation to the others.

3. Adaptive crossover operator probabilities. A set of
crossover operators is available, each with a proba-
bility of being used. For each reproduction event, a
single operator is selected probabilistically according
to the set of operator probabilities. In addition, an
adaptive process dynamically adjusts the operator
probabilities during the course of evolving a solution.
For example, in [Dav89] and [Jul95], those operators
that create and cause the generation of better chro-
mosomes are given higher probabilities, i.e., they
should be used more frequently. On the other hand,
operators producing offspring with a fitness that is
lower than that of the parents should be used less
frequently. Another approach for adaptation in-
volves self-adaptation ([Spe95, Tus98]); operator
probabilities are directly coded onto each member of
the population and this allows them to evolve, i.e.,
they undergo mutation and recombination.

Two models of adaptive real-parameter crossover
operator probabilities are found in [Ono99] and
[Her96b]. In [Ono99], two complementary crossover
operators are considered, UNDX ([Ono97]) and uni-
form crossover ([Sys§9]). UNDX may efficiently opti-
mise functions with strong epistasis among parameters.
However, it has difficulties in exploring the search space.
Uniform crossover has contrary properties (suitable
search space exploration and deficient exploitation on
functions with epistasis among parameters), and there-
fore, it complements the UNDX operation. A mecha-
nism was introduced for adapting the operator
probabilities according to the characteristics of a given
function. In [Her96b], an RCGA applies two different
crossover operators; one with exploitation properties
and another with exploration properties. An operator
probability parameter defines the frequency of the
application of the exploitative operator. Every five
generations, a fuzzy logic controller evaluates two pop-
ulation diversity measures to adjust this parameter.

3.2 Proposals of hybrid real-parameter crossover
operators

The examples of crossover operators which were
grouped into three taxonomy categories (Sect. 2.3) are
expected to provide different traversal styles of search

space. Thus, in order to carry out a study of the synergy
among operators of different categories, we present
several examples of hybrid real-parameter crossover
operators. They generate two offspring for every pair of
parents by applying two crossover operators, each one
selected from a different category. Hybrid crossovers are
a simple way of combining crossover operators and,
therefore, constitute a framework which facilitates the
study of the synergetic effects of different real-parameter
Crossover operators.

We have chosen a number of representative crossover
examples of the three taxonomy categories (those in
Table 1) and have built three kinds of hybrid crossover
operators, ABCO-NBCO, ABCO-DCO, and DCO-
NBCO, as shown in Tables 2, 3, and 4.

These three types of hybridisation allow us to analyse
the effects derived from the union between different
exploration and exploitation characteristics:

e The ABCO-NBCO hybridisation merges the relaxed
exploitation supplied by NBCOs with the strong
exploitative inclination of ABCOs. The relaxed
exploitation intervals considered by BLX-« with o=
0.5 and SBX-5 with #=2 include an important pro-
portion of exploration intervals, favouring the pro-
duction of high population diversity levels. In this
case, their union with ABCOs seems to be very
reasonable. In fact, crossover combination strategies
have been proposed that incorporate examples of

Table 2 ABCO-NBCO hybrid real-parameter crossover operators

NBCO ABCO

A G DH
BLX-0.3 A&BLX-0.3 G&BLX-0.3 DH&BLX-0.3
BLX-0.5 A&BLX-0.5 G&BLX-0.5 DH&BLX-0.5
SBX-2 A&SBX-2 G&SBX-2 DH&SBX-2
SBX-5 A&SBX-5 G&SBX-5 DH&SBX-5
FR-0.5 A&FR-0.5 G&FR-0.5 DH&FR-0.5

Table 3 ABCO-DCO hybrid real-parameter crossover operators

ABCO DCO

U 2P
A A&U A&2P
G G&U G&2P
DH DH&U

Table 4 DCO-NBCO hybrid real-parameter crossover operators

NBCO DCO
U 2P
BLX-0.3 U&BLX-0.3 2P&BLX-0.3
BLX-0.5 U&BLX-0.5 2P&BLX-0.5
SBX-2 U&SBX-2 2P&SBX-2
SBX-5 U&SBX-5 2P&SBX-5
R-0.5 U&FR-0.5 2P&FR-0.5




explorative and exploitative crossover operators
([Her96b, Her97, Ono99, Wriol]).

e The idea behind DCO-NBCO operators is that of
applying operators that propitiate diversity at gene
level (NBCOs) and operators that introduce diver-
sity at chromosome level (DCOs) at the same time.

e Finally, ABCO-DCO operators attempt to extract the
maximum effectiveness from the parents by using two
kinds of crossover operators with exploitation prop-
erties at gene level. In addition, the diversity induced
by DCOs at chromosome level may be useful to
complement the powerful exploitation of ABCOs.

4 Experiments

Minimisation experiments on the test suite described in
Appendix C were carried out in order to study the
behaviour of the hybrid crossover operators presented in
the previous section. In Sect. 4.1, we describe the algo-
rithms built in order to do this. In Sect. 4.2, we show the
results and draw some conclusions. In Sect. 4.3, we
examine the synergetic effects among the crossovers that
form the best hybrid crossovers. The basis for this
judgement is simple: does the hybridisation of crossovers
perform better than the best single crossover amongst
them? Finally, in Sect. 4.4, we deal with some aspects
related to the hybrid crossover as the best performing
operator obtained in these experiments.

4.1 Algorithms
In our experiments we have taken a generational RCGA
model that applies the non-uniform mutation operator
([Mic92]). This operator has been widely used with good
results ([Her98]). The selection probability calculation
follows linear ranking ([Bak85]) (§yni, = 0.75) and the
sampling algorithm is the stochastic universal sampling
([Bak87]). The elitist strategy ([DelJ75]) is also consid-
ered. This involves making sure that the best performing
chromosome always survives intact from one generation
to the next.

We have implemented two different types of RCGA
examples:

e The examples in the first group use homogeneous
crossover operators; two offspring are produced for
every pair of parents using the same crossover. The
operators in Table 1 have been used to implement
these RCGAs. We have taken 41=0.25 and v =0.25
for the arithmetical and geometrical crossover
operators, respectively. The homogeneous dynamic
heuristic crossover generates one offspring with the
dynamic-dominated crossover and the other with the
dynamic-biased crossover (Appendix B).

e The examples in the second group apply the hybrid
crossover operators in Table 2. All the crossover
operators in Table 1 produce two offspring
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(Appendix A). In order to design hybrid operators,
each crossover operator compounding the hybridi-
sation returns only one offspring, which is chosen
at random. In the case of using the arithmetical or
geometrical crossover operators, the offspring is
built with 4A=0.5 and ®w=0.5, respectively. The
version of dynamic heuristic crossover involved in
the hybrid crossovers is the DBD one (Sect. B.2 in
Appendix B).

The RCGAs will be denoted in the same way as their
corresponding crossover operator. The population size
is 61 individuals, the probability of updating a chro-
mosome by mutation is 0.125, and the crossover
probability is 0.6. We carried out all the algorithms
30 times, each one with a maximum of 100,000
evaluations.

4.2 Analysis of the results

The results obtained are shown in Tables D1-D7 in
Appendix D. The performance measures used are the
following:

e A performance: average of the best-fitness function
found at the end of each run.

e SD performance: standard deviation.
B performance: best of the fitness values averaged as
A performance.

Moreover, a t-test (at 0.05 level of significance) was
applied in order to ascertain if differences in the 4 per-
formance for the best crossover operator are significant
when compared with the one for the other crossovers in
the respective table. The T column in these tables shows
the result of the #-test. In this column, the crossover with
the best 4 performance value is marked with **  and the
direction of any significant differences is denoted either
by a plus sign (+) for an improvement in 4 performance
or an approximate sign (=) for non-significant differ-
ences.

Table 5 summarises the results of Tables D1-D7. It
shows the percentages in which each crossover operator
has obtained the best 4 performance on all test func-
tions. Its columns have the following information:

e Total best. Percentage of test functions in which the
crossover operator achieves the best A4 performance,
without considering the #-test.

e Total best/Similar t-test. Percentage of test functions
in which the crossover operator obtains either the
best A behaviour or one similar to the best, according
to the t-test. The two groups of RCGA examples are
ordered based on this performance measure.

Taking into consideration these results, we would make
the following comments:

e According to the “Total best/Similar t-test” perfor-
mance measure, the two best algorithms are
2P&SBX-2 and DH&BLX-0.5, which are based on
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Table 5 Results for the real-parameter crossover operators

Table 6 Study of synergy in DH&BLX-0.5

Homogeneous Total best Total best/ Total best Total best/
Crossovers similar ¢-test similar ¢-test
DH 30.76% 46.14% * DH 76.9% 84.59%
FR-0.5 15.38% 38.45% BLX-0.5 23.07% 38.45%
SBX-2 0% 38.45%
SBX-5 0% 30.76% * DH&BLX-0.5 61.52% 76.9%
BLX-0.3 0% 30.76% DH 38.45% 61.52%
BLX-0.5 0% 23.07%
A 0% 23.07%
U 0% 15.38% Table 7 Study of synergy in 2P&SBX-2
2P 0% 7.69%
G 0% 7.69% Total best Tot_al best/
Hybrid crossovers similar 7-test
IP&SBX-2 7.69% 53.83% - -
DH&BLX-0.5 7.69% 53.83% 2P 30.76% 69.21%
DH&SBX-2 7.69% 46.14% SBX-2 69.21% 69.21%
DHATR0.3 0 S0 * JP&SBX-2 76.9% 92.28%
phe&l 0o e SBX-2 23.07% 46.14%
DH&BLX-0.3 0% 38.45% e e
2P&BLX-0.5 0% 38.45%
2P&BLX-0.3 0% 38.45% .
DH&SBX-5 0% 30.76% Table 8 Study of synergy in DH&SBX-2
U&BLX-0.5 0% 30.76%
DH&2P 7.69% 30.76% Total best Total best/
U&SBX-2 7.69% 30.76% similar -test
DH&A 7.69% 23.07% . 5 S
A&BLX-0.5 7.69% 23.07% DH 69.21% 69.21%
U&BLX-0.3 0% 23.07% SBX-2 30.76% 53.83%
X 0o S DH&SBX-2 46.14% 53.83%
2P&FR-0.5 0% 23.07% . ooy ol
A&SBX-2 0% 23.07% DH 53.83% 61.52%
U&FR-0.5 0% 23.07%
U&SBX-5 0% 15.38% : _
A&BLX.0.3 0% 15.38% Table 9 Study of synergy in DH&FR-0.5
U&A 0% 7.69% Total best Total best/
U&G 0% 7.69% similar z-test
2P&G 0% 7.69%
A&SBX-5 0% 7.69% DH 46.14% 69.21%
* FR-0.5 53.83% 69.21%
* _ 0 0
hybrid crossover operators. This means that the hy- Flli)- g%FR 05 géféég 2‘1‘12302

bridisation of different real-parameter crossover
operators is a recommended strategy to improve the
effectiveness of this operator.

e The hybrid operators which combine the dynamic
heuristic crossover and crossovers that belong to the
NBCO group (DH&BLX-0.5, DH&SBX-2, and
DH&FR-0.5) have provided promising results. In
fact, DH&BLX-0.5 achieves one of the best results in
Table 5. Furthermore, the homogenous dynamic
heuristic crossover (DH) and homogenous NBCO
crossovers (FR-0.5, SBX-2, SBX-5, and BLX-0.3)
show satisfactory behaviour (which agrees with the
results obtained in [Her03]). We may conclude that,
in general, the combination of promising real-
parameter crossover operators allows effective hybrid
operators to be obtained.

e Although DCO crossover operators perform inade-
quately working alone, their behaviour is enhanced
when combined with NBCOs. This can be seen most
clearly in the case of the two-point crossover, which
when combined with SBLX-2 (2P&SBX-2) becomes
one of the best hybrid crossover operators in Table 5.

4.3 Study of the synergy

This section provides an extensive empirical study of the
synergy amongst the constituent operators of the best
five hybrid crossover operators in Table 5 (2P&SBX-2,
DH&BLX-0.5, DH&SBX-2, DH&FR-0.5, and DH&U).
For these hybrid operators, Tables 6-10 include two
types of comparisons; firstly, between the two constitu-
ent crossovers, and secondly, among the best one and
the hybrid operator (the **’ symbol identifies the best
algorithm). In this way, we tackle synergy as suggested
in [Y0002]:

“Consider two crossovers CX1 and CX2 and assume
without loss of generality that crossover CXI1 performs
better than CX2 when used alone. If the mixing of CX1
and CX2 performs better than the sole usage of CX1, we
say that crossovers CX1 and CX2 have synergy.”

The percentages in these tables are obtained taking into
account only the results in Tables 14-20 of the two
algorithms that have been compared. In addition, we



Table 10 Study of synergy in DH&U

Total best Total best/
similar z-test
* DH 84.59% 100%
U 15.38% 30.76%
DH&U 38.45% 76.9%
* DH 61.52% 76.9%

have assumed that algorithm A is better than B when 4
achieves better “Total best/similar t-test” performance
measure than B. In the case of a tie, 4 becomes the best
when it obtains better “Total best” performance mea-
sure than B.

This study reveals that synergy is produced amongst
the operators that compound DH&BLX-0.5, 2P&SBX-2,
and DH&FR-0.5. This is a crucial result in the case of
DH&BLX-0.5 and 2P&SBX-2 (which were the best
crossover operators in Table 5), because it suggests that
the synergy caused by combining different real-parameter
crossover operators allows hybrid crossovers to have a
positive influence on RCGA performance. Thus, hybrid
crossovers become attractive, because they may bring
together properties that are needed in an effective cross-
over operator, which is difficult to achieve from the use of
a single crossover operator.

Another important point is that synergy has been
possible amongst operators from different categories of
the taxonomy. In particular, DH&BLX-0.5 and
DH&FR-0.5 are representative of the combination
ABCO-NBCO, whereas 2P&SBX-2 is an example of the
combination of DCO and NBCO. It is interesting to
note that although a poor performance is achieved from
the use of the single two-point crossover (see Table 5),
its synergy with SBX-2 allows the hybrid 2P&SBX-2 to
be one of the most competitive crossover operators
which has been studied in this paper.

4.4 DH&BLX-0.5 vs. 2P&SBX-2

Table 11 has been introduced in order to compare the
two hybrid crossover operators that have given the best
results in the experiments, DH&BLX-0.5 and 2P&SBX-
2 (see Table 5).

We clearly observe that DH&BLX-0.5 outperforms
2P&SBX-2. DH&BLX-0.5 combines two crossover
operators with complementary properties:

e BLX-a with o = 0.5 is an operator which favours
high exploration as explained in Section 2.2.

Table 11 2P&SBX-2 vs. DH&BLX-0.5

Total best Total best/similar
t-test
2P&SBX-2 23.07% 53.83%
DH&BLX-0.5 76.9% 84.59%
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e DH provides diversity levels that decrease with the
passage of time, introducing a heuristic local tuning
(exploitation) that becomes effective for RCGA
performance ([Her96a]).

The suitable relationship between the exploration asso-
ciated to BLX-a and the exploitation caused by DH
induces synergetic effects that allow DH&BLX-0.5 to
consistently outperform all the crossover operators
studied in this paper.

Table 12 compares DH&BLX-0.5 and DH&BLX-0.3

(which combines DH with BLX-o with a lower value for
o, =0.3), which aims to analyse the importance of the
exploration provided by BLX-0.5 on the behaviour of
DH&BLX-0.5.
This table shows that DH&BLX-0.3 loses performance
with regard to DH&BLX-0.5. This means that the high
diversity provided by BLX-0.5 is essential to achieve the
robust behaviour exhibited by DH&BLX-0.5.

As 0.5 > (v/3—1)/2, BLX-0.5 is able to spread the
distribution of the chromosomes, which is not possible
with «=0.3, because 0.3 < (v/3 — 1)/2 (see Sect. 2.2). In
this way, BLX-0.5 supplies the adequate exploration
capabilities to complement the exploitation features
associated with DH, making adequate synergy among
them possible.

We have introduced Table 13 with the aim of con-
firming this property. For every test problem, it outlines
the percentage of success of DH (defined as the per-
centage of times the offspring produced by DH is better
than the one generated by BLX-0.5, from the total of
crossover events produced throughout the run).

A visual inspection of this table allows one to remark
the following conclusions:

o The effectiveness of DH (see Table 5) may explain
the generalized high values for the percentage of
success of this operator. Its exploitative capability

Table 12 DH&BLX-0.5 vs. DH&BLX-0.3

Total best Total best/
similar #-test

DH&BLX-0.5 53.83% 92.28%
DH&BLX-0.3 46.14% 61.52%
Table 13 Percentage of success of DH

Test Problem % DH
Sphere 82.41%
Schwefel 1.2 73.32%
Rastrigin 76.89%
Griewangk 77.98%
Expansion of F10 77.95%
Polynomial fitting problem 74.89%
Frequency modulation sound 75.88%
Systems of linear equations 75.13%
Rosenbrock 74.49%
Ackley 81.90%
Bohachevsky 81.08%
Watson 3.47%
Coville 76.49%




288

favours the creation of good offspring, as compared
with the offspring returned by BLX-0.5, which are
properly destined to the promotion of diversity in
the population.

e There are differences between the percentages of
success of DH for the different problems. Easy
problems, such as the Sphere function, present the
highest values, whereas the complex problems, such
as the Schwefel’s function, the Polynomial fitting
problem, and the Watson’s function, have associated
the lowest values. In this case, the exploration of
BLX-0.5 allows the localization of promising solu-
tions for problems with search spaces that exhibit
many difficulties.

e The percentage of success of DH for the Watson’s
function is very low (3.47%). This problem is highly
complex, and uniquely the action of BLX-0.5 allows
the RCGA to advance towards better regions of the
search space.

These results show how hybrid crossovers may adapt to
problems with different challenges, thanks to the incor-
poration of two crossover operators with different styles
of the traversal of solution space.

5 Conclusions

This paper presented a model of hybrid crossover
operators as a suitable tool to facilitate the study of the
synergy amongst real-parameter crossover operators
with different search biases. They generate two offspring
using two crossovers chosen from different groups of the
taxonomy proposed in [Her03]. The main conclusions
derived from the results of the experiments carried out
are as follows:

e Hybrid crossover operators achieve a finer perfor-
mance than homogeneous crossover operators. Thus,
the hybridisation of real-parameter crossover opera-
tors shows promise as a strategy to improve the
effectiveness of this genetic operator.

e Synergy is possible amongst operators from different
categories of taxonomy. In particular, some combi-
nations of neighbourhood-based crossover operators
and crossovers that belong to the other categories
(ABCOs and DCOs) have exhibited this feature.

e The joint application of BLX-a (2=0.5) and dynamic
heuristic crossovers induces an appropriate relation-
ship between exploration and exploitation to produce
profitable synergetic effects, allowing a robust oper-
ation to be achieved for test functions with different
characteristics.

Moreover, we may point out that the application hybrid
crossover operators does not represent an significant
increase on computational complexity, with regards to
the common practice of applying only one crossover.
In conclusion, we can say that hybrid crossovers are
very promising and indeed worth further study. We are

currently continuing our research of hybrid crossover
operators based on multi-parent crossover operators and
crossover operators with multiple descendants (Sect. 2).
In addition, we intend to examine the synergy involved in
other forms of crossover combinations, such as hetero-
geneous distributed GAs and mechanisms for the adap-
tive crossover operator probabilities (Sect. 4). Finally,
another future research area concerns the study of the
influence of the selective pressure of the selection mech-
anism on the performance of hybrid crossover operators.
This is an important aspect because the amount of
exploration performed by crossover is severely affected
by the degree of selective pressure of the selection
mechanism ([Esh89, Her00]). Recent studies on the
selective pressure provided by different selection mecha-
nisms will be useful to carry out such research. ([Mot02]).
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Appendix A.
Crossover operator for real coding

Let us assume that Cy = (c},...,c}) and C, = (3, ...,c2)
are two chromosomes that have been selected to apply
the crossover operator to them. Below, we describe the
operation of the crossover operators for RCGAs con-
sidered in this paper, and show their effects in graph

form.

o Two-point crossover ([Esh89]). Two points of cross-
over are randomly selected (i, € {1,2,...,n — 1} with
i < j, and the segments of the parent, defined by
them, are exchanged for generating two offspring:

1 2 2 201 1
H1—(cl,cz,...,ci,ciﬂ,...,cj,chrl,...,cn)7

2 2 1ol
Hy = (¢],C5, -1 Ci s Cipys o

1 2 2
; ,cj,cﬁh...,cn).

e Uniform crossover ([Sys89]). Two offspring are cre-
ated, Hy = (ht, ..., h ... h¥), k=1,2. The value of
each gene in the offspring is determined by the ran-
dom uniform choice of the values of this gene in the

parents:
ifu=20,

1
k __ ¢
h"{c? ifu=1,

u being a random number which can have a value of
Zero or one.

o Arithmetical crossover ([Mic92]). Two offspring are

produced, Hy = (A, .. k% . KH) k=1,2, where
R CTRETISYIN

1 1 ! 1

Fig. 5 Arithmetical crossover with different values fori

e t——]

1 w=2/3 =12 =113 2
a; C ¢ b,

i 1

Fig. 6 Geometrical crossover with different values for @

ol / a-l
| | | l
| [
a; ¢ c b,
Fig. 7 BLX-x
l | | |
| | l |

i i i i
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hl=J-cl+(1=2)-Zand =73+ (1—-4)-c,
here € [0, 1].
e Geometrical crossover ([Mic96]). Two offspring are
built, Hk:(h’f,...7hff,...,h’,;),k: 1,2,  where
B o=l and B = ¢ " with o € [0, 1].
e BLX-u ([Bre66, Esh93]). Two offspring are generated,
Hy = (Kh,... W5 5,05, k =1,2, where A is a ran-
domly (uniformly) chosen number from the interval
[Cmin — {0, Cinax + Iat], where
Cmax = max{c}, c?},

Cmin = min{c!, ¢?}, and

I = Ciax — Chin-

e Simulated binary crossover ([Deb95, Deb0Ola]): Two
offspring are generated, Hy = (h%,... W ... W), k=
1,2, where:

3 [(1= B0l + (14 ) - Jand

=g [0+ e+ (- ) el

P (> 0) is a sample from a random number generator
having the density:
S+, if0<p<l
{%- n+Dg=. if B> 1.
This distribution can easily be obtained from a uni-

form u(0, 1) random number source by the transfor-
mation:

- |

hi =

p(p) =

(2u)™Tif u(0,1) <4

21 —w)] 7 if u(0,1) > 1.

o Fuzzy recombination ([Voi95]). Two offspring are
produced, Hy = (h%,... K% ... h*), k=1,2. The
probability that the i-th gene in an offspring has the

value wv; is given by the  distribution
p(v) € {9(c)), $(c2)} where $(c!) and $(c?) are tri-
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angular probability distributions having the follow-
ing features (c! < c? is assumed and I = |c! — ¢2)):

Appendix B.
Dynamic heuristic crossover operators

The dynamic heuristic crossovers ([Her96a]) merge the
features of two types of crossover operators:

e Heuristic crossovers ([Her96a, Wri91, Sch94]. They
generate offspring close to the best parent, with the
objective of leading the search process towards the
most promising zones.

e Dynamic crossovers ([Her96a]). They keep a suitable
sequence between the exploration and the exploita-
tion along the GA run: “to protect the exploration in
the initial stages and the exploitation later”.

Dynamic heuristic crossover operators allow the level of
heuristic effect to be dependent on the current generation
in which they are applied. At the beginning, this level is
low and diversity is high (offspring are distant from par-
ents), later on, the heuristic effects gradually increase.

In order to describe these operators, two steps are
followed: in Sect. B.1, we define function families for the
combination of genes and in Sect. B.2, we use these
families to design dynamic heuristic crossover operators.

B.1 Function families for the combination of genes

With regards to the exploration and exploitation intervals
shown in Fig. 1, in [Her97], three monotone and non-
decreasing functions are proposed: F, S, and M, defined
from [a, b] X [a,b] into [a, b], a,b € R, which fulfil:

Ve,c' € [a,b], F(c,c) < min{c,c'},

S(c,c") > max{c,c'}, and

min{c, '} < M(c, ) < max{c,c'}.

Each one of these functions allows us to combine two

genes giving results belonging to each one of the afore-
mentioned intervals. Therefore, each function will have
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different exploration or exploitation properties depend-
ing on the range being covered by it.

For a RCGA with a maximum number of genera-
tions gmax, in [Her96a], three families of functions were
proposed: a family of F functions, F=(F!,... Fom),
a family of S functions, S=(S',s,59), and a family
of M functions, M=(M!' ... M%) which for
1 <t < gmax — 1 fulfil:

Ve, € [a,b] F'(c,c) < F'l(c,¢’)and

F9m (¢, ') =~ min{c, '},

Ve,d € [a,b] S'(c,d) ™ (c,¢')and

§Ymax (C, C/) ~ maX{Q cl}’

Ve,d € [a,b] M'(c,c’) > M™(c,c')or
M'(c,) < M™(c,c')Vtand
MO e, ') % Mign (e ),

where M, 1s an M function called M limit function. We
shall denote M or M an M function family fulfilling
the first and the second part of the last property,
respectively.

F and S function families may be built using a pa-
rameterised -norm 77 converging to the minimum and a
parameterised 7-conorm GY converging to the maximum,
respectively. In this study, we use the Dubois parame-
terised #-norm and 7-conorm:

x-y
0,11,0<g <1 171 =—
x,ye[, ]a ~q9=>1, (xvy) XVyVyg
and
(1-x)-(1-y)
quay =1- .
=TV ve

To do this, a transformation of the genes to be combined
is needed, from the interval [a, b] into [0, 1], and then, the
result into [a, b]. Furthermore, we need a function 9(-) to
transform the values of {1,. .., gmax } into the range of g.
All this may be summed up in the following equations.
Given the Dubois parameterised -norm 79 and ¢-co-
norm GY, ~we build two function families
F=(F',...,F%) and S=(S',..., 8% )as:

Ve,d' €la,b] 1 <t < gmax F'(c,c)
=a+(b—a)- 7o (1) (s,5),
Ve,c' €la,b] 1 <t < gmax S'(c, )
=a+(b—a) - G5(s,s),
where s = =2, s = 2':5, and
1

are the transformation functions.

We may obtain M function families using a param-
eterised averaging function. An example of these func-
tions is:
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. qx9—|—yq

vxyy € [07 1]7Pq(x7y) - P , T > ¢q

This may be achieved as follows:
Ve,d € la,b], 1 <t < gmax M'(c,c)
=a+ (b—a) PO(s,s).
In particular, we could obtain an M and an M~ func-

tion family using

Sy =0y =1+1n (g“;“x) and

5M:5M:1—|—11’1( !

gmax

> , respectively.

B.2 Dynamic heuristic crossovers

Let’s suppose C! = (cl’,...,cll) and C, = (c¥,...,c2),
two chromosomes which were selected to apply the
crossover to them in a generation z. Let’s also suppose
that Cj is the one with the best fitness. Then, we may
generate H' = (h{,...,h!) using one of the following
dynamic heuristic crossovers ([Her96al):

e Dynamic-dominated crossover

W Ft( lt7 CIZt)

i S[( l[ 12[)
where F’ and S’ belong to an F and an S function family,
respectively. We may use the Dubois F and S families
(Sect. A.2) to obtain the Dubois dynamic dominated
Crossover operators.

if cl-“ < cf’

; i=1
otherwise

Sl

Dynamic dominated crossovers have heuristic
exploration properties, which allow useful diversity to
be introduced into the RCGA population.

e Dynamic- biased crossover

B =M!(c),c), i=1,..n, where M! belongs to a
function family M " if c” < Cz, or to a function family
M, otherwise. Both have the same M limit function,

Which fulfils:

|C Mlm( | < |02t A/[hm( lt C'2t)|~

l’l l’l

The following parameterised averaging operator was
used to build such an operator:
Vx,y €[0,1],0 < ¢ < 1,
Plx,y)=q-x+(1—q)-y
Also, we consider the following initial conditions:
1 2
[1]. M'(cf,}) =57,

l’l

[2]. Miim(c},c}) = (1= A)- ¢/ + A-ct.
where 4 is calculated as follows:
PR A(S)

f(C) +f(C)

f(-) being the fitness function. Dynamic-biased
crossover shows heuristic exploitation properties,

which induces a biased convergence towards the
best elements.

e In this paper, we have defined a third version of a

dynamic heuristic operator. It produces an offspring,

= (hy,...,H,), applying, randomly, the dynamic-

biased or dynamic-dominated crossover operator to

generate each gene of H'. This operator is denoted

as DHBD. Fig. 10 shows the operation of this

operator.

Appendix C.
Test suite

Sphere model ([Del75]).

Zx

—5.12 <x; < 5.12, n =25, fou(x*) =0.

fSph

Schwefel’s function 1.2 ([Sch81]).

fSch ZZX
i=1 j=

—65.536 < x; < 65.536, n =25, fen(x") =0.

Generalised Rastrigin’s function ([T6r89]).

fRas(x) =a-n+ lez —a- cos(a) - X;)

i=1
a=10, o =2 -1, =512 <x; <5.12,
n =25 fras(x*)=0.

Griewangk’s function ([Gri81]).

de 1cos(\/>—|—1

d = 4000, —600 < x; < 600, n = 25, fg,(x*) = 0.

f Grl

N

Fig. 10 Dynamic heuristic crossover



Expansion of F10 ([Whi95]).

er10(x) = fio(x1,x2) + - fro(xio1,%:) - - + f (xp,x1)
fio(x,y) = (x? 4—)/2)0'25 . [sinz(SO - (o +y2)0'1) + 1}
x,y € (=100, 100], epjo(x*) = 0.

Generalised Rosenbrock’s function ([Del75]).

n—1

Sros(x) = Z (100(x; 1 —xf)z + (i —1)%

i=1

512 <x; < 5.12, n =25, fros(x*) = 0.

Systems of linear equations ([Esh97]).

The problem to be solved is to obtain the elements of a
vector X, given the matrix 4 and vector B in the
expression: 4-X = B. The evaluation function used for
these experiments is:

Ps/e(xl, ...,x,,) = ZZ (a,-j 'Xj) — bj.

i=1 j=1

Clearly, the best value for this objective function is
Py (x*) = 0. Inter-parameter linkage (i.e., non-linearity)
is controlled easily in systems of linear equations; their
non-linearity does not deteriorate as increasing numbers
of parameters are used, and they have proven to be quite
difficult.

We have studied an example of a ten-parameter
problem. Its matrices are as follows:

545295423 1)1 40
9 71 1 7 2 2 6 6 9|1 50
3186 9 7 421 6|1 47
8 3.7 3 75 3 9 9 5|1 59
9 51 6 3 4 2 3 3 9| (1| |45
1 2317 6 6 3 3 3|1 |35
1 578 1 4 7 8 4 8] |1 53
9 38 6 3 4 7 18 1|1 50
&8 28 5 3 8 7 2 7 5|1 55
21 22 9 8 7 4 4 1111 40

Frequency modulation sound parameter identification
([Tsu93)).

The problem is to specify six parameters
ay, wi, az, wa,asz, wy of the frequency modulation
sound model represented by

y(t) =ay-sin(wy - t-0+ay -sin(wy - t- 0+
a3 - sin(ws - 1-0)),
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with 0 = (2 -/100). The fitness function is defined as
the sum of square errors between the evolved data and
the model data as follows:

100

Ppns(ar, wi, az, wa, az, w3) = Z () — (1),
t=0

where the model data are given by the following equa-
tion:

y()=1.0-sin(5.0-¢-0+1.5-sin(4.8-¢-6
+2.0-sin(4.9 - ¢- 0))).

Each parameter is in the range —6.4—6.35. This is a highly
complex multi-modal problem, having strong epistasis,
with minimum value Pj,s(x*) = 0.

Polynomial fitting problem ([Sto95]).

This problem consists of finding the coefficients of the
following polynomial in z:

2k
P(2) :ch xz, k>0
=0

is an integer such that P(z) € [-1,1] for z € [-1, 1], and
P(12) Z TZk(1.2)and P(—12) Z Tzk(—1.2), where TZk(Z)
is a Chebychev polynomial of degree 2 k.

The solution to the polynomial fitting problem consists
of the coefficients of Ty (z). This polynomial oscillates
between —1 and 1 when its argument z is between —1 and
1. Outside this range the polynomial rises steeply in
direction of high positive ordinate values. This problem
has its roots in electronic filter design and challenges an
optimisation procedure by forcing it to find parameter
values with grossly different magnitudes, something very
common in technical systems. The Chebychev polyno-
mial employed here is:

Tg(z) =1—-32-22 +160-2* —256-2° +128 - 2%

It is a nine-parameter problem. The pseudo-code algo-
rithm shown below was used in order to transform the
constraints of this problem into an objective function to
be minimised, called Pcy.,. We consider that C =

(coy--- ,Cg)8 is the solution to be evaluated and
Pc(z) = ijo ¢ X 2.

Choose py, . .., pioo from [—1, 1];

R =0;

Fori=20,...,100 do
If (=1 > Pc(pi) or Pc(pi) > 1) then
R—R+(1—Pe(p))
If (Pc(1.2) — Tz(1.2) < 0) then
R — R+ (Pc(1.2) — Ty(1.2))%
If (Pe(—=1.2) — Ty(—1.2) < 0) then
R — R+ (Po(—=1.2) — Ty(—1.2))%
Return R;
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Each parameter (coefficient) is in the range —512-512. Watson’s function ([Rey97]).
The objective function value of the optimum is

PChev(C*) =0. 2

6 2
aflxj] —1| +x]

30 5
S =3 (3 G ) - [

Ackley’s function ([Ack87]). =1\ j=1 j=1
i—1
I 4= 22 <% <2, fyu(x) = 2.288000¢ — 3.
alx)=—a- S 2 29
fuek() =~ a exp< >3 )
1< . .
— exp (Z Z cos -x,») +a+e Colville’s function ([Rey97]).
=1
=20, b=02, w=2-71 —32.768 < x; < 32.768, Jeor(x) =100(x — x2)* + (1 = x1)°
n =125 faalx’) =0. +90(22 —x4) + (1 x3)?
Bohachevsky’s function ([Rey97]). +0.1((1 —x2)* + (1 = x4))

Foon () =32 + 22 — 0.3 cos(3mx1) cos(dmxz) + 0.3 +19.8(x = 1)(xs — 1)

—6<x; <6, fon(x*) =0. —10 <x; <10, feu(x*) = 0.

Appendix D. Results of the Experiments

Table 14 Results for the sphere model and Schwefel’s function 1.2

Sphere B A T SD Schwefel B A T SD

A 1.74E-09 1.09E-08 + 6.53E-09 A I.L1SE+01 4.03E+01 + 2.68E+01
G 2.09E-09 1.35E-08 + 1.21E-08 G 1.30E+02 5.94E+02 + 5.10E+02
BLX-0.3 1.27E-11 7.51E-11 + 5.35E-11 BLX-0.3 8.04E+00 3.37E+01 + 1.56E+01
BLX-0.5 6.12E-07 6.31E-06 + 8.11E-06 BLX-0.5 576E+02 1.36E+03 + 2.60E+02
SBX-2 4.38E-10 1.97E-09 + 1.17E-09 SBX-2 7.09E-01 7.56E +00 4.28E+ 00
SBX-5 6.00E-11 2.76E-10 + 2.08E-10 SBX-5 1.L14E+01 9.54E+01 + 7.97E+01
FR-0.5 4.62E-12 1.30E-11 + 6.52E-12 FR-0.5 1.10E+00 8.97E+00 7.08E+ 00
2P 8.82E-10 3.77E-09 + 3.61E-09 2P 1.24E+02 4.78E+02 + 2.56E+02
U 1.73E-09 1.06E-08 + 8.13E-09 U 264E+02 721E+02 + 3.44E+02
DH 1.35E-15 1.37E-1f4  ** 9.63E-15 DH 1.91E+01 6.04E+01 + 2.99E+01
A&U 8.87E-10 3.04E-09 + 1.38E-09 A&U 1.07E+01 4.28E+01 + 2.36E+01
G&U 8.36E-10 4.50E-09 + 4.30E-09 G&U 6.66E+01 1.74E+02 + 7.51E+01
U&BLX-0.5 3.30E-12 1.54E-11 + 1.14E-11 U&BLX-0.5 1.30E+00 8.41E+00 5.99E +00
U&BLX-0.3 6.76E-12 4.38E-11 + 3.07E-11 U&BLX-0.3 2.89E+01 8.03E+01 + 4.46E+01
U&SBX-5 7.14E-12 4.67E-11 + 5.09E-11 U&SBX-5 328E+01 1.51E+02 + 7.33E+01
U&SBX-2 9.84E-12 1.15E-10 2.41E-10 U&SBX-2 3.35E+00 1.28E+01 + 8.87E+ 00
U&FR-0.5 6.91E-13 4.51E-12 + 5.09E-12 U&FR-0.5 7.66E+00 3.04E+01 + 2.09E+01
A&2P 7.40E-10 3.61E-09 + 2.87E-09 A&2P 1.27E+01 3.54E+01 + 1.76E+01
G&2P 9.78E-10 4.13E-09 + 3.65E-09 G&2P 6.72E+01 228E+02 + 1.13E+02
2P&BLX-0.5 3.39E-12 2.07E-11 + 1.93E-11 2P&BLX-0.5 5.63E-01 4.90E+00 3.55E+00
2P&BLX-0.3 3.31E-12 3.65E-11 + 2.32E-11 2P&BLX-0.3 1.56E+01 549E+01 + 2.40E+01
2P&SBX-5 2.47E-11 1.02E-10 + 9.69E-11 2P&SBX-5 1.82E+01 194E+02 + 1.47E+02
2P&SBX-2 2.71E-11 2.00E-10 + 1.88E-10 2P&SBX-2 6.06E-02 4.55E+00 ** 4.45E+00
2P&FR-0.5 1.12E-12 1.01E-11 + 1.35E-11 2P&FR-0.5 445E+00 2.69E+01 + 2.03E+01
A&BLX-0.5 2.66E-10 1.00E-09 + 8.88E-10 A&BLX-0.5 4.86E+00 146E+01 + 6.02E + 00
A&BLX-0.3 1.01E-09 3.56E-09 + 2.08E-09 A&BLX-0.3 8.03E+00 2.32E+01 + 1.17E+01
A&SBX-5 3.03E-10 1.56E-09 + 1.07E-09 A&SBX-5 7.52E+00 3.19E+01 + 1.81E+01
A&SBX-2 3.04E-10 1.10E-09 + 7.03E-10 A&SBX-2 3.00E+00 I1.16E+01 + 7.59E + 00
DH&BLX-0.5 6.44E-14 3.34E-13 + 2.29E-13 DH&BLX-0.5 2.12E+00 1.34E+01 + 7.53E+00
DH&BLX-0.3 1.05E-07 2.53E-07 + 9.27E-08 DH&BLX-0.3 1.95E+00 1.18E+01 + 5.88E+00
DH&SBX-5  3.64E-09 1.41E-08 + 7.21E-09 DH&SBX-5 6.31E+00 230E+01 + 1.25E+01
DH&SBX-2  2.07E-08 7.87E-08 + 4.67E-08 DH&SBX-2  8.66E-01 7.91E+00 1.03E+01
DH&FR-0.5 6.32E-14 3.29E-13 + 1.89E-13 DH&FR-0.5 4.72E+00 2.50E+01 + 1.59E+01
DH&2P 5.10E-14 1.49E-12 + 1.33E-12 DH&2P 229E+01 9.46E+01 + 5.07E+01
DH&U 1.68E-13 1.40E-12 + 1.45E-12 DH&U 2.75E+01 7.86E+01 + 3.62E+01




Table 15 Results for Rastrigin’s and Griewank’s functions
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Rastrigin B A T SD Griewangk B A T SD

A 9.94E-01  397E+00 + 2.59E+00 A 3.59E-06  1.78E-02 1.87E-02
G 1.39E+01 1.94E+01 + 3.80E+00 G 7.42E-06  1.38E-02 1.15E-02
BLX-0.3 497E+00 7.86E+00 + 1.80E+00 BLX-0.3 1.10E-08  1.54E-02 1.56E-02
BLX-0.5 6.08E+01 8. 72E+01 + 1.25E+01 BLX-0.5 5.06E-03  5.29E-01 + 2.16E-01
SBX-2 6.96E+00 1.36E+01 + 4.56E+00 SBX-2 3.22E-07  1.91E-02 2.28E-02
SBX-5 298E+00 7.13E+00 + 2.15E4+00 SBX-5 8.69E-08  2.32E-02  + 2.51E-02
FR-0.5 1.LI9E+01 196E+01 + 484E+00 FR-0.5 3.21E-09  7.71E-03  ** 9.60E-03
2P 1.52E-07  6.96E-01 + 7.77E-01 2P 7.07E-07  2.65E-02  + 2.45E-02
U 6.03E-07  6.96E-01 + 7.33E-01 U 2.15E-06  2.22E-02  + 1.93E-02
DH 8.52E-13  L.I3E-11  ** 1.09E-11 DH 1.76E-12  9.67E-03 1.32E-02
A&U 1.09E-06  444E+00 + 2.33E+00 A&U 7.18E-07  2.09E-02  + 1.65E-02
G&U 6.96E+00 1.42E+01 + 3.23E+00 G&U 1.16E-06  1.39E-02 1.46E-02
U&BLX-0.5 35.96E+00 1.66E+01 + 507E+00 U&BLX-0.5 1.89E-09  1.31E-02 1.16E-02
U&BLX-0.3 298E+00 6.46E+00 + 1.67TE+00 U&BLX-0.3 7.20E-09  2.50E-02  + 2.07E-02
U&SBX-5 9.94E-01 421E+00 + 1.57TE+00 U&SBX-5 1.17E-08 2.31E-02 + 2.46E-02
U&SBX-2 497E+00 1.01E+01 + 2.70E+00 U&SBX-2 1.24E-08  1.85E-02  + 1.53E-02
U&FR-0.5 497E+00 1.01E+01 + 2.93E4+00 U&FR-0.5 1.05E-09  1.18E-02 1.10E-02
A&2P 9.94E-01 391E+00 + 200E+00 A&2P 6.47E-07 2.08E-02 + 1.72E-02
G&2P 497E+00 137E+01 + 391E+00 G&2P 1.14E-06  1.83E-02 1.89E-02
2P&BLX-0.5 7.95E+00 1.73E+01 + 4.12E+00 2P&BLX-0.5 1.74E-09 1.72E-02 2.01E-02
2P&BLX-0.3 1.98E+00 6.83E+00 + 2.14E+00 2P&BLX-0.3 1.09E-08  1.92E-02 2.01E-02
2P&SBX-5 9.94E-01  431E+00 + 1.71IE+00 2P&SBX-5 1.75E-08  1.41E-02 1.32E-02
2P&SBX-2 3.53E-08 7.72E+00 + 2.73E+00 2P&SBX-2 4.66E-08 2.17E-02 2.51E-02
2P&FR-0.5  5.96E+00 1.02E+01 + 2.70E+00 2P&FR-0.5  7.88E-10  2.44E-02  + 1.94E-02
A&BLX-0.5 2.12E+00 S596E+00 + 1.70E+00 A&BLX-0.5 2.34E-07  1.47E-02 1.62E-02
A&BLX-0.3  1.46E-01 4.62E+00 + 224E+00 A&BLX-0.3 1.40E-06 2.19E-02 + 1.99E-02
A&SBX-5 9.94E-01  6.40E+00 + 2.48E4+00 A&SBX-5 494E-07  2.19E-02  + 1.71E-02
A&SBX-2 5.48E-07  6.57E+00 + 240E+00 A&SBX-2 3.90E-07  2.75E-02  + 2.58E-02
DH&BLX-0.5 3.47E-11  3.0lE+00 + 1.71E+00 DH&BLX-0.5 4.80E-11 1.78E-02 1.74E-02
DH&BLX-0.3 1.02E-05  5.98E-05 + 3.80E-05 DH&BLX-0.3 7.69E-05  1.39E-02 1.43E-02
DH&SBX-5 1.01E-06  3.49E-06 + 1.67E-06 ~ DH&SBX-5 8.76E-06  1.16E-02 1.29E-02
DH&SBX-2  5.30E-05  2.26E-05 + 1.03E-05 DH&SBX-2  3.45E-05  1.40E-02 1.68E-02
DH&FR-0.5 1.99E-11 1.69E+00 + 1.36E+00 DH&FR-0.5 9.21E-11 1.16E-02 1.99E-02
DH&2P 8.49E-11 1.32E-01 4.24E-01 DH&2P 6.28E-10 1.97E-02 + 1.55E-02
DH&U 7.32E-11  4.65E-10 + 3.45E-10 DH&U 2.53E-10  1.19E-02 1.47E-02
Table 16 Results for the expansion of F10 and the system of linear equations

EF10 B A T SD SLE B A T SD

A 1.66E+00 337E+00 + 1.79E+00 A 2.84E+00 2.50E+01 1.89E+01
G 1.36E+01 583E+01 + 264E+01 G 5.55E+00 S31E+01 + 5.27E+01
BLX-0.3 1.58E-01  3.18E-01 + 1.21E-01  BLX-0.3 1.44E+00 2.03E+01 2.16E+01
BLX-0.5 6.74E+00 147E+01 + 4.54E+00 BLX-0.5 1.42E+00 2.62E+01 2.69E +01
SBX-2 321E+00 1.35E+01 + 8.26E+00 SBX-2 5.40E-01  3.54E+01 3.82E+01
SBX-5 2.54E+00 1.99E+01 + 1.46E+01 SBX-5 8.03E+00 1.14E+02 + 8.52E+01
FR-0.5 1.54E-01  2.45E-01 + 7.29E-02  FR-0.5 3.53E+00 2.66E+01 1.72E+01
2P 5.45E-01 1.L60E+00 + 8.98E-01 2P 8.36E+01 282E+02 + 1.55E+02
U 1.14E4+00 2.70E+00 + 1.1I6E+00 U 6.76E+01 3.68E+02 + 2.00E+02
DH 1.74E-01 1.3IE+00 + 8.92E-01 DH 5.62E+01 1.27E+02 + 5.19E+01
A&U 7.13E-01 1.34E+00 + 4.44E-01  A&U 2.08E+00 3.40E+01 + 2.32E+01
G&U 6.85E-01 1.35E+01 + 229E+01 G&U 298E+00 6.67E+01 + 5.35E+01
U&BLX-0.5 1.34E-01  2.37E-01 + 8.69E-02  U&BLX-0.5 4.97E+00 5.17E+01 + 5.40E+01
U&BLX-0.3 9.56E-02  2.22E-01 + 9.02E-02  U&BLX-0.3 2.77E+00 634E+01 + 4.88E+01
U&SBX-5 1.23E-01 5.95E-01 + 4.93E-01 U&SBX-5 470E+01 220E+02 + 1.29E+02
U&SBX-2 1.54E-01  6.25E-01 + 4.53E-01  U&SBX-2 425E+00 1.03E+02 + 7.67E+01
U&FR-0.5 5.31E-02  1.74E-01 + 9.47E-02  U&FR-0.5 1.79E+00 8.07E+01 + 8.41E+01
A&2P 9.13E-01 1.45E+00 + 4.87E-01 A&2P 8.27E-01 3.89E+01 + 2.72E+01
G&2P 7.09E-01 1.88E+01 + 1.L6OE+01 G&2P 542E+00 7.70E+01 + 5.84E+01
2P&BLX-0.5 1.07E-01  2.63E-01 + 1.21E-01  2P&BLX-0.5 4.59E+00 3.30E+01 3.41E+01
2P&BLX-0.3 1.41E-01  3.01E-0l + 1.21E-01  2P&BLX-0.3 538E+00 4.81E+01 + 4.82E+01
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Table 16 (Contd.)

EF10 B A T SD SLE B A T SD
2P&SBX-5 2.92E-01 2.74E+00 + 395E+00 2P&SBX-5 441E+01 2.07E+02 + 1.39E+02
2P&SBX-2 5.26E-01 1.26E+00 + 7.33E-01  2P&SBX-2 1.42E+01 1.00E+02 + 9.56E+01
2P&FR-0.5  7.93E-02  2.17E-0l + 9.50E-02  2P&FR-0.5 3.27E+00 6.92E+01 + 6.02E+01
A&BLX-0.5 3.79E-01 8.29E-01 + 2.72E-01 A&BLX-0.5 2.04E+00 180E+01 ** 1.38E+01
A&BLX-0.3  4.70E-01 1.30E+00 + 431E-01 A&BLX-0.3 1.75E+00 247E+0l 1.88E+01
A&SBX-5 1.LI2E+00 497E+00 + 3.86E+00 A&SBX-5 1.43E+00 2.15E+01 1.84E+01
A&SBX-2 1.OGE+00 2.59E+00 + 1.07TE+00 A&SBX-2 2.65E+00 2.83E+01 2.15E+01
DH&BLX-0.5 5.98E-02  1.08E-01  ** 437E-02  DH&BLX-0.5 5.69E+00 4.25E+01 + 3.45E+01
DH&BLX-0.3 1.52ZE+00 2.06E+00 + 3.29E-01 DH&BLX-0.3 1.24E+00 3.36E+01 2.81E+01
DH&SBX-5 1.ISE+00 2.04E+00 + 9.49E-01 DH&SBX-5 7.06E+00 1.03E+02 + 7.74E+01
DH&SBX-2 1.49E+00 2.55E+00 + 7.02E-01  DH&SBX-2 3.73E4+00 7.22E+01 + 6.47E+01
DH&FR-0.5 3.88E-02 1.11E-01 6.48E-02 DH&FR-0.5 6.58E+00 591E+01 + 4.17E+01
DH&2P 1.22E-01  8.53E-01 + 7.87E-01  DH&2P 476E+01 128E+02 + 7.17E+01
DH&U 8.28E-02 6.41E-01 + 8.05E-01 DH&U 1.76E+01 1.15SE+02 + 6.31E+01
Table 17 Results for Rosenbrock’s function and the polynomial fitting problem

Rosenbrock B A T SD PFP B A T SD

A 2.13E+01 225E+01 + 3.98E-01 A 2.01E+01 197E+02 1.24E+02
G 221E+01 227E+01 + 1.80E-01 G 2.65E+01 345E+02 + 2.84E+02
BLX-0.3 1.92E+01 2.18E+01 7.35E-01  BLX-0.3 3.53E+01 2.19E+02 1.55E+02
BLX-0.5 2.09E+01 2.61E+01 1.42E+01 BLX-0.5 1.95E+01 3.16E+02 2.58E+02
SBX-2 1.74E+01 2.99E+01 1.98E+01 SBX-2 3.99E+01 4.18E+02 + 2.85E+02
SBX-5 1.64E+00 3.90E+01 + 2.71E+01 SBX-5 458E+01 8.03E+02 + 8.99E+02
FR-0.5 1.56E+01 2.54E+01 1.53E+01 FR-0.5 6.06E+00 4.51E+02 + 3.38E+02
2P 1.31E-01  470E+01 + 3.18E+01 2P 6.21E+02 4.77E+03 + 3.22E+03
U 1.60E+00 5.10E+01 + 296E+01 U 3.600E+02 4.56E+03 + 5.50E+03
DH 1.99E+01 2.17E+01 5.70E-01 = DH 1.LI4E+02 7.40E+02 + 4.65E+02
A&U 2.12E+01 223E+01 + 3.79E-01  A&U 2.42E+01 2.35E+02 1.82E+02
G&U 223E+01 226E+01 + 1.21E-01  G&U 8.71IE+01 S5.05E+02 + 4.01E+02
U&BLX-0.5 1.92E+01 297E+01 1.90E+01 U&BLX-0.5 1.00E+01 4.80E+02 -+ 4.23E+02
U&BLX-0.3 1.72E+01 2.30E+01 9.72E+00 U&BLX-0.3 7.70E+00 427E+02 + 3.28E+02
U&SBX-5 4.20E-02 2.97E+01 247E+01 U&SBX-5 485E+01 143E+03 + 8.44E+02
U&SBX-2 1.00E+01 3.38E+01 2.36E+01 U&SBX-2 483E+01 846E+02 + 1.01E+03
U&FR-0.5 6.07E+00 4.06E+01 + 2.60E+01 U&FR-0.5 722E+01 987E+02 + 6.95E+02
A&2P 2.13E+01 224E+01 + 5.09E-01 A&2P 480E+01 3.20E+02 + 2.01E+02
G&2P 222E+01 226E+01 + 1.33E-01  G&2P 7.66E+01 597E+02 + 4.07E+02
2P&BLX-0.5 1.65E+01 3.23E+01 229E+01 2P&BLX-0.5 2.82E+01 522E+02 + 4.26E+02
2P&BLX-0.3 1.70E+01 2.45E+01 1.LIGE+01 2P&BLX-0.3 239E+01 529E+02 + 4.62E+02
2P&SBX-5 2.50E+00 3.89E+01 + 2.59E+01 2P&SBX-5 581E+01 1.87E+03 + 1.79E+03
2P&SBX-2 1.47E+01 2.89E+01 1.99E+01 2P&SBX-2 3.26E+01 1.19E+03 1.93E+03
2P&FR-0.5  4.02E+00 3.44E+01 249E+01 2P&FR-0.5 1.31E+01 8.08E+02 + 6.28E+02
A&BLX-0.5 2.17E+01 223E+01 + 2.23E-01 A&BLX-0.5 270E+01 191E+02 1.66E+02
A&BLX-0.3 196E+01 224E+01 + 5.79E-01 A&BLX-0.3 234E+01 1.74E+02 1.22E+02
A&SBX-5 2.08E+01 222E+01 + 447E-01  A&SBX-5 8.10E+01 2.74E+02 + 1.52E+02
A&SBX-2 206E+01 221E+01 + 4.68E-01 A&SBX-2 6.09E+01 2.52E+02 1.75E+02
DH&BLX-0.5 1.68E+01 2.14E+01 9.33E-01 DH&BLX-0.5 595E+00 2.65E+02 2.33E+02
DH&BLX-0.3 1.91E+01 2.14E+01 8.65E-01  DH&BLX-0.3 7.51E+00 2.16E+02 1.39E+02
DH&SBX-5 1.11E+01 2.58E+01 1.46E+01 DH&SBX-5 245E+01 4.20E+02 + 431E+02
DH&SBX-2  1.65E+01 2.12E+01 ** 1.26E+00 DH&SBX-2 3.22E+01 3.79E+02 3.93E+02
DH&FR-0.5 1.70E+01 2.64E+01 1.56E+01 DH&FR-0.5 1.80E+01 4.08E+02 + 3.10E+02
DH&2P 1.45E4+01 2.64E+01 1.59E+01 DH&2P 341E+02 121E+03 + 1.39E+03
DH&U 1.57TE+01 2.69E+01 1.68E+01 DH&U 1.L6OE+02 7.41E+02 + 4.00E+02
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FMSPI B A T SD Ackley B A T SD

A 1.17E+01 2.14E+01 + 328E+00 A 2.43E-04 5.13E-04 + 1.93E-04
G 3.66E-07 1.85SE+01 + 646E+00 G 2.77E-04 5.55E-04 + 1.69E-04
BLX-0.3 9.65E-13 1.39E+01 + 6.75SE+00 BLX-0.3 1.45E-05 3.92E-05 + 1.52E-05
BLX-0.5 3.40E-12 1.50E+01 + 4.56E+00 BLX-0.5 2.42E-03 1.02E-02 + 6.38E-03
SBX-2 I.LISE+01 1.79E+01 + 4.05E+00 SBX-2 1.17E-04 2.27E-04 + 8.51E-05
SBX-5 4.36E-15 1.LOSE+01 + 498E+00 SBX-5 2.95E-05 9.26E-05 + 4.54E-05
FR-0.5 2.84E-15 730E+00 ** 6.67TE+00 FR-0.5 7.18E-06 1.81E-05 + 6.44E-06
2P 8.71E-09 1.0OIE+01 7.79E+00 2P 1.14E-04 2.54E-04 + 8.31E-05
U 1.15E-07 1.14E+01 6.63E+00 U 1.88E-04 4.19E-04 + 1.52E-04
DH 1.03E-11 1.64E+01 791E+00 DH 1.52E-07 3.81E-07 o 1.67E-07
A&U 1.17E-09 1.S3E+01 + 8.52E+00 A&U 1.37E-04 3.10E-04 + 1.11E-04
G&U 4.16E-13 135 E+01 + 7.89E+00 G&U 1.68E-04 3.27E-04 + 1.15E-04
U&BLX-0.5 2.33E-14 1.06E+01 5.77TE+00 U&BLX-0.5 1.08E-05 1.91E-05 + 5.56E-06
U&BLX-0.3  5.55E-15 8.79E+ 00 7.64E+00 U&BLX-0.3 1.47E-05 3.49E-05 + 1.29E-05
U&SBX-5 5.83E-15 9.02E+00 6.20E+00 U&SBX-5 1.45E-05 2.86E-05 + 1.21E-05
U&SBX-2 1.01E-12 1.26E+01 + 5.59E+00 U&SBX-2 1.15E-05 4.11E-05 + 1.93E-05
U&FR-0.5 9.13E-16 7.48E+00 6.27TE+00 U&FR-0.5 3.14E-06 1.09E-05 + 5.54E-06
A&2P 5.70E-10 1.70E+01 + 6.04E+00 A&2P 1.46E-04 2.95E-04 + 9.73E-05
G&2P 1.05E-11 1.S3E+01 + 6.68E+00 G&2P 1.45E-04 3.06E-04 + 1.17E-04
2P&BLX-0.5 4.52E-15 9.71E+00 6.30E+00 2P&BLX-0.5 6.22E-06 1.80E-05 + 5.32E-06
2P&BLX-0.3 1.86E-16 9.95E+00 6.33E+00 2P&BLX-0.3 1.24E-05 3.32E-05 + 1.14E-05
2P&SBX-5 1.89E-14 1.10E+01 5.12E+00 2P&SBX-5 2.09E-05 5.51E-05 + 2.90E-05
2P&SBX-2 2.67TE+00 1.04E+01 5.26E+00 2P&SBX-2 2.49E-05 7.62E-05 + 3.63E-05
2P&FR-0.5 9.38E-16 7.36E+00 735E+00 2P&FR-0.5 1.99E-06 1.13E-05 + 6.08E-06
A&BLX-0.5 9.48E-11 1.78E+01 + 5.36E+00 A&BLX-0.5 5.35E-05 1.39E-04 + 4.82E-05
A&BLX-0.3 1.13E+01 1.88E+01 + 442E+00 A&BLX-0.3 1.61E-04 2.82E-04 + 9.70E-05
A&SBX-5 2.63E-12 L.5S7TE+01 + 7.03E+00 A&SBX-5 1.03E-04 1.69E-04 + 5.44E-05
A&SBX-2 1.0IE+01 1.79E+01 + 431E+00 A&SBX-2 9.55E-05 1.72E-04 + 5.33E-05
DH&BLX-0.5 8.07E-16 1.27E+01 7.67TE+00 DH&BLX-0.5 1.01E-06 2.33E-06 + 6.54E-07
DH&BLX-0.3 6.12E-08 1.17E+01 7.59E+00 DH&BLX-0.3 1.25E-03 2.37E-03 + 5.77E-04
DH&SBX-5  2.86E-09 1.10E+01 7.59E+00 DH&SBX-5 2.74E-04 5.61E-04 + 1.61E-04
DH&SBX-2  5.99E-02 9.10E+00 7.61E+00 DH&SBX-2 7.20E-04 1.35E-03 + 3.10E-04
DH&FR-0.5 2.83E-17 1.08E+01 6.96E+00 DH&FR-0.5 9.84E-07 3.07E-06 + 1.29E-06
DH&2P 4.31E-10 1.36E+01 + 7.55E+00 DH&2P 2.42E-06 6.09E-06 + 2.72E-06
DH&U 9.16E-09 1.04E+01 7.33E+00 DH&U 2.17E-06 5.17E-06 + 2.15E-06
Table 19 Results for Watson’s and Bohachevsky’s functions

Watson B A T SD Bohachevsky B A T SD

A I.L1IE+00 1.12E+00 + 8.41E-03 A 1.96E-12 2.29E-11 + 1.67E-11
G LIIE+00 1.12E+00 + 1.55E-02 G L17E-12 2.19E-11  + 3.26E-11
BLX-0.3 ILIIE+00 1.IIE+00 + 279E-03  BLX-0.3 220E-16  7.52E-14  + 1.23E-13
BLX-0.5 ILIIE+00 1.I6GE+00 + 3.50E-02  BLX-0.5 7.09E-13  7.84E-12  + 7.70E-12
SBX-2 LIIE+00 1.37E+00 + 2.74E-01  SBX-2 4.48E-14  174E-12 + 2.08E-12
SBX-5 LLIIE+00 1.13E+00 473E-02  SBX-5 1.99E-15  1.91E-13 4.30E-13
FR-0.5 LLIIE+00 LIIE+00 + 1.09E-02  FR-0.5 1.07E-14  7.33E-14  + 6.92E-14
2P LIIE+00 LIIE+00 + 1.22E-02 2P 7A5E-13  444E-12 + 4.71E-12
U ILIIE+00 1.11E+00 3.11E-03 U 444E-13  222E-11  + 2.44E-11
DH LIIE+00 LIIE+00 + 3.69E-03 DH 0.00E+00 0.00E+00 ** 0.00E+00
A&U I.1IE+00 1.I1IE+00 + 7.11E-03 A&U 4.00E-13 431E-12 + 4.36E-12
G&U I.11IE+00 1.11IE+00 + 6.36E-03 G&U 1.34E-13 5.96E-12 + 6.98E-12
U&BLX-0.5 1.11E+00 I1.11E+00 + 5.24E-03 U&BLX-0.5 9.10E-15 4.91E-14 + 3.69E-14
U&BLX-0.3 1.11E+00 I1.11E+00 3.29E-03 U&BLX-0.3 0.00E+00 2.09E-14 + 3.61E-14
U&SBX-5 1.ICE+00 1.11IE+00 + 2.85E-03 U&SBX-5 3.33E-16 3.96E-14 + 6.78E-14
U&SBX-2 I.1IE+00 1.35E+00 5.05E-01 U&SBX-2 1.55E-15 6.71E-14 + 9.89E-14
U&FR-0.5 I.11IE+00 1.11E+00 4.40E-03 U&FR-0.5 2.99E-15 1.56E-14 + 1.51E-14
A&2P I.1IE+00 1.11IE+00 + 5.67E-03 A&2P 2.58E-13 4.16E-12 + 4.96E-12
G&2P I.11IE+00 I1.I1IE+00 + 4.20E-03 G&2P 7.15E-13 5.07E-12 + 5.65E-12
2P&BLX-0.5 1.11E+00 I1.11IE+00 + 8.38E-03 2P&BLX-0.5 9.32E-15 5.66E-14 + 4.37E-14
2P&BLX-0.3 1.11E+00 I1.11E+00 2.21E-03 2P&BLX-0.3 0.00E+00 2.66E-14 5.84E-14
2P&SBX-5 I.11IE+00 1.11E+00 1.57E-03 2P&SBX-5 1.77E-15 4.69E-14 + 5.70E-14
2P&SBX-2 I.11IE+00 1.11E+00 6.92E-03 2P&SBX-2 3.66E-15 7.07E-14 + 5.47E-14
2P&FR-0.5 1.LI0E+00 1.11E+00 3.77E-03 2P&FR-0.5 2.77E-15 1.78E-14 + 2.06E-14
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Table 19 (Contd.)

Watson B A T SD Bohachevsky B A T SD
A&BLX-0.5 I.11IE+00 1.11E+00 + 6.24E-03 A&BLX-0.5 3.14E-14 9.42E-13 + 9.52E-13
A&BLX-0.3 1.11E+00 1.12E+00 + 9.06E-03 A&BLX-0.3 1.79E-13 5.57E-12 + 7.06E-12
A&SBX-5 1.11IE+00 1.11E+00 + 6.18E-03 A&SBX-5 3.44E-14 1.32E-12 + 1.32E-12
A&SBX-2 1.11E+00 1.11E+00 + 7.26E-03 A&SBX-2 9.17E-14 1.81E-12 + 2.37E-12
DH&BLX-0.5 1.11E+00 1.11E+00 2.92E-03 DH&BLX-0.5 0.00E+00 2.22E-17 1.19E-16
DH&BLX-0.3 1.11E+00 1.11E+00 + 6.47E-03 DH&BLX-0.3 4.57E-08 2.90E-07 + 3.66E-07
DH&SBX-5 1.1IE+00 L.I2E+00 + 1.23E-02 DH&SBX-5 7.57E-10  6.66E-09  + 5.00E-09
DH&SBX-2 1.IIE+00 1.I2E+00 + 783E-03 DH&SBX-2 4.84E-09  5.52E-08  + 4.51E-08
DH&FR-0.5 1.1IE+00 1.11E+00 2.71E-03 DH&FR-0.5 0.00E+00 6.66E-17 3.00E-16
DH&2P LIIE+00 LIIE+00 ** 1.ISE-03  DH&2P 0.00E+00 2.96E-17 1.40E-16
DH&U LLIIE+00 L.I1E+00 1.87E-03  DH&U 0.00E+00 7.40E-18 3.98E-17
Table 20 Results for Colville’s function

Coville B A T SD

A -1.63E+02 -1.50E+02 + 1.39E+01

G -1.61E+02 -144E+02 + 1.39E+01

BLX-0.3 -1.64E+02 -1.62E+02 + 4.29E +00

BLX-0.5 -1.64E+02 -1.62E+02 + 4.71E+00

SBX-2 -9.00E+02 -8.81E+02 1.94E+01

SBX-5 -9.00E+02 -8.86E+02 1.82E+01

FR-0.5 -1.64E+02 -1.63E+02 + 3.15E+00

2P -1.64E+02 -1.63E+02 + 2.00E+00

U -1.64E+02 -1.61E+02 + 5.13E+00

DH -1.64E+02 -1.62E+02 + 2.46E+00

A&U -1.64E+02 -1.58E+02 + 6.20E + 00

G&U -1.64E+02 -1.52E+02 + 1.32E+01

U&BLX-0.5 -1.64E+02 -1.63E+02 + 3.15E+00

U&BLX-0.3 -1.64E+02 -1.64E+02 + 2.62E-12

U&SBX-5 -8.93E+02 -643E+02 + 1.39E+02

U&SBX-2 -9.00E+02 -8.87E+02 ** 1.83E+01

U&FR-0.5 -1.64E+02 -1.64E+02 + 8.56E-13

A&2P -1.64E+02 -1.60E+02 + 4.50E + 00

G&2P -1.64E+02 -1.53E+02 + 1.33E+01

2P&BLX-0.5 -1.64E+02 -1.64E+02 + 1.85E-11

2P&BLX-0.3 -1.64E+02 -1.64E+02 + 9.68E-12

2P&SBX-5 -8.83E+02 -6.35E+02 + 1.34E+02

2P&SBX-2 -9.00E+02 -8.84E+02 1.90E+01

2P&FR-0.5 -1.64E+02 -1.64E+02 + 4.13E-13

A&BLX-0.5 -1.64E+02 -1.61E+02 + 5.03E+00

A&BLX-0.3 -1.64E+02 -1.62E+02 + 4.29E + 00

A&SBX-5 -8.59E+02 -5.04E+02 + 1.53E+02

A&SBX-2 -9.00E+02 -8.81E+02 4.94E+01

DH&BLX-0.5 -1.64E+02 -1.64E+02 + 5.68E-14

DH&BLX-0.3 -1.64E+02 -1.64E+02 + 7.03E-09

DH&SBX-5 -9.00E+02 -8.41E+02 1.51E+02

DH&SBX-2 -9.00E+02 -8.82E+02 2.09E+01

DH&FR-0.5 -1.64E+02 -1.64E+02 + 5.68E-14

DH&2P -1.64E+02 -1.63E+02 + 1.54E+00

DH&U -1.64E+00 -1.63E+02 + 1.48E+ 00




