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Summary. In this contribution, a new Inductive Query by Example process is
proposed to automatically derive extended Boolean queries for fuzzy information
retrieval systems from a set of relevant documents provided by a user. The novelty
of our approach is that it is able to simultanously generate several queries with a
different precision-recall tradeoff in a single run. To do so, it is based on an advanced
evolutionary algorithm, GA-P, specially designed to tackle with multiobjective prob-
lems by means of a Pareto-based multiobjective technique. The performance of the
new proposal will be tested on the usual Cranfield collection and compared to the
well-known Kraft et al.’s process.
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1 Introduction

Information retrieval (IR) may be defined, in general, as the problem of the
selection of documentary information from storage in response to search ques-
tions provided by a user [28, 2]. Information retrieval systems (IRSs) are a
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Hibridacién y sus Aplicaciones”.
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kind of information system that deal with data bases composed of information
items — documents that may consist of textual, pictorial or vocal information
— and process user queries trying to allow the user to access to relevant infor-
mation in an appropriate time interval.

The underlying retrieval model of most of the commercial IRSs is the
Boolean one [34], which presents some limitations. Due to this fact, some
paradigms have been designed to extend this retrieval model and overcome
its problems, such as the vector space [28] or the fuzzy information retrieval
(FIR) models [3, 12].

However, the increase in the power of the retrieval model also comes with
a high complexity augment in the query language, what makes difficult for
the user to represent his information needs in the form of a valid query. This
is especially significant in the case of fuzzy IRSs, whose query language allows
us to formulate weighted Boolean (fuzzy) queries where the query terms are
joined by the logical operators AND and OR. If it is difficult for a human
user to formulate a classical Boolean query due to the need to know how to
properly connect the query terms together using the Boolean operators, it
will be even more difficult to both define the query structure and specify the
query term weights to retrieve the desired documents.

Hence, the paradigm of Inductive Query by Example (IQBE) [5], where
queries describing the information contents of a set of documents provided
by a user are automatically derived, can be useful to solve this problem
and assist the user in the query formulation process. Focusing on the FIR
model, the most known existing approach is that of Kraft et al. [24], which is
based on genetic programming [23]. Moreover, several other approaches have
been proposed based on the use of more advanced evolutionary algorithms [1],
such as genetic algorithm-programming (GA-P) [21] or simulated annealing-
programming (SA-P) [30], in order to improve the Kraft et al.’s one [8, 9, 10].

On the other hand, it is well known that the performance of an IRS is usu-
ally measured in terms of two different criteria, precision and recall [34]. This
way, the optimization of any of its components, and concretely the automatic
learning of fuzzy queries, is a clear example of a multiobjective problem. Usu-
ally, the application of evolutionary algorithms in the area has been based on
combining both criteria in a single scalar fitness function by means of a weight-
ing scheme [7]. However, there is a kind of evolutionary algorithms specially
designed for multiobjective problems, multiobjective evolutionary algorithms,
which are able to obtain different non-dominated solutions to the problem in
a single run [14, 6].

In [11], it was proposed an extension of Smith and Smith’s IQBE algorithm
to learn Boolean queries [33] transforming it into a Pareto-based multiobjec-
tive evolutionary algorithm. The proposed process obtained very good results
in one of the most known IR benchmarks, the Cranfield document collection.

In this chapter, the same idea will be applied to learn extended Boolean
queries for FIRSs. This way, an IQBE process similar to that proposed in
[8] — based on a GA-P algorithm — will be transformed in a Pareto-based
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multiobjective evolutionary algorithm to deal with this problem. The proposal
will be compared to the previous approach by Kraft et al. in the well-known
Cranfield documentary base.

To do so, this paper is structured as follows. In Section 2, some prelimi-
naries are introduced by reviewing the basis of IRSs and FIRSs, IQBE and
multiobjective evolutionary algorithms. Then, two single-objective IQBE pro-
cesses are discussed in Section 3, Kraft et al.’s genetic programming-based
algorithm and our previous proposal based on the use of the more advanced
GA-P technique. Section 4 is devoted to extend the latter process to deal with
the multiobjective problem of simultaneously optimizing both precision and
recall by means of the Pareto-based approach. The experiments developed
on the Cranfield collection are presented and analyzed in Section 5. Finally,
Section 6 summarizes several concluding remarks.

2 Preliminaries

2.1 Boolean Information Retrieval Systems

An IRS is basically constituted by three main components, as showed in Figure
1:

information Information
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Fig. 1. Generic structure of an information retrieval system

1. A documentary data base, which stores the documents and the representa-
tion of their information contents. It is associated with the indexer module,
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which automatically generates a representation for each document by ex-
tracting the document contents. Textual document representation is typ-
ically based on index terms (that can be either single terms or sequences)
which are the content identifiers of the documents.

2. A query subsystem, which allows the users to formulate their queries and
presents the relevant documents retrieved by the system to them. To do so,
it includes a query language, that collects the rules to generate legitimate
queries and procedures to select the relevant documents.

3. A matching or evaluation mechanism, which evaluates the degree to which
the document representations satisfy the requirements expressed in the
query, the so called retrieval status value (RSV), and retrieves those doc-
uments that are judged to be relevant to it.

In the Boolean retrieval model, the indexer module performs a binary
indexing in the sense that a term in a document representation is either sig-
nificant (appears at least once in it) or not (it does not appear in it at all).
Let D be a set of documents and T be a set of unique and significant terms
existing in them. The indexer module of the Boolean IRS defines an indexing
function:

F:DxT—{0,1}

where F'(d,t) takes value 1 if term ¢ appears in document d and 0 otherwise.

On the other hand, user queries in this model are expressed using a query
language that is based on these terms and considers combinations of simple
user requirements with logical operators AND, OR and NOT [28, 34]. The
result obtained from the processing of a query is a set of documents that
totally match with the query, i.e., only two possibilities are considered for
each document: to be (RSV=1) or not to be (RSV=0) relevant for the user’s
needs, represented by the user query.

Thus, the Boolean model presents several problems that correspond to the
different Boolean IRS components such as:

e It does not provide the user with tools to express the degree of relevance
of the index terms to the documents (indexer module).

e It has no method to express a user’s judgement of the importance of the
terms in the query (query language).

e There are no partial degrees of relevance of documents to queries possibly
useful in ranking (matching mechanism).

2.2 Fuzzy Information Retrieval Systems

FIRSs make use of the fuzzy set theory [35] to deal with the imprecision and
vagueness that characterizes the IR process. As stated in [3], the use of fuzzy
sets in IR is suitable due to two main reasons:

1. It is a formal tool designed to deal with imprecision and vagueness.
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2. It facilitates the definition of a superstructure of the Boolean model, so
that existing Boolean IRSs can be modified without redesigning them
completely.

Hence, trying to solve the previously introduced problems of the Boolean
IR model, FIR mainly extends it in three aspects:

1. Document representations become fuzzy sets defined in the universe of
terms, and terms become fuzzy sets defined in the universe of discourse of
documents, thus introducing a degree of relevance (aboutness) between a
document and a term.

2. Numeric weights (and in recent proposals, linguistic terms [3, 20]) are
considered in the query with different semantics (a review of them is
to be found in [3]), thus allowing the user to quantify the “subjective
importance” of the selection requirements.

3. Since the evaluation of the relevance of a document to a query is also an
imprecise process, a degree of document relevance is introduced, i.e., the
RSV is defined as a real value in [0,1]. To do so, the classical complete
matching approach and Boolean set operators are modeled by means of
fuzzy operators appropriately performing the matching of queries to doc-
uments in a way that preserves the semantics of the former.

Thus, the operation mode of the three components of an FIRS is showed
as follows.

Indexer Module

The indexer module of the FIRS defines an indexing function which maps the
document-term pair into the real interval [0,1]:

F:DxT —[0,1]

It can be seen that F is the membership function of a two-dimensional
fuzzy set (a fuzzy relation) mapping the degree to which document d belongs
to the set of documents “about” the concept(s) represented by term t. By
projecting it, a fuzzy set can be associated to each document and term:

di ={<t,pg;(t) > [t €T} 5 pg;(t) = F(ds,1)
tj={<d,u;(d) >|deD} ; p,;(d)=F(dt;)
There are different ways to define the indexing function F. In this paper,
we will work with the normalized inverse document frequency [28]:

Wq,t

wae = fao-log(N/N) 5 Fldt) = o8 —

where fq: is the frequency of term ¢ in document d, N is the number of
documents in the collection and N; is the number of documents where term ¢
appears at least once.
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Matching mechanism

It operates in a different way depending on the interpretation associated to
the numeric weights included in the query (the interested reader can refer to
[3, 12] to get knowledge about the three existing approaches). In this paper,
we consider the importance interpretation, where the weights represent the
relative importance of each term in the query.

In this case, the RSV of each document to a fuzzy query ¢ is computed
as follows [29]. When a single term query is logically connected to another by
means of the AND or OR operators, the relative importance of the single term
in the compound query is taken into account by associating a weight to it. To
maintain the semantics of the query, this weighting has to take a different form
according as the single term queries are ANDed or ORed. Therefore, assuming
that A is a fuzzy term with assigned weight w, the following expressions are
applied to obtain the fuzzy set associated to the weighted single term queries
A, (in the case of disjunctive queries) and A (for conjunctive ones):

Ay ={<d,pa,(d) >|de D} ;  pa,(d) = Min (w, pa(d))

AV ={<d,pax(d) >|d € D} ; paw(d) = Max (1 —w, pa(d))

On the other hand, if the term is negated in the query, a negation function
is applied to obtain the corresponding fuzzy set:

A={<d,px(d) >|de D} ; pz(d)=1—pa(d)

Once all the single weighted terms involved in the query have been evalu-
ated, the fuzzy set representing the RSV of the compound query is obtained
by combining the partial evaluations into a single fuzzy set by means of the
following operators:

AANDB:{<d,,uAAND B(d) >|d€D}
pa anp B(d) = Min(pa(d), pp(d))

AORB:{<d,/J,AORB(d) > |dED}
pa or B(d) = Maz(pa(d), pp(d))

We should note that all the previous expressions can be generalized to
work with any other t-norm, t-conorm and negation function different from
the usual minimum, maximum and one-minus function. In this contribution,
we will consider the former ones.

Query Subsystem

It affords a fuzzy set ¢ defined on the document domain specifying the degree
of relevance of each document in the data base with respect to the processed

query:
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q=A{<d,py(d) >[de D} ; py(d)=RSV,(d)

Thus, one of the advantages of FIRSs is that documents can be ranked in
order to the membership degrees of relevance — as in IRSs based on the vector
space model [28] — before being presented to the user as query response. The
final relevant document set can be specified by him in two different ways:
providing an upper bound for the number of retrieved documents or defining
a threshold o for the relevance degree (as can be seen, the latter involves
obtaining the o-cut of the query response fuzzy set gq).

Focusing on the latter approach, which will be the one considered in this
paper, the final set of documents retrieved would be:

R ={de D|RSV,(d) > o}

2.3 Inductive Query by Example

IQBE was proposed in [5] as “a process in which searchers provide sample
documents (examples) and the algorithms induce (or learn) the key concepts
in order to find other relevant documents”. This way, IQBE is a process for
assisting the users in the query formulation process performed by machine
learning methods [26]. It works by taking a set of relevant (and optionally,
non relevant documents) provided by a user — that can be obtained from
a preliminary query or from a browsing process in the documentary base —
and applying an off-line learning process to automatically generate a query
describing the user’s needs (as represented by the document set provided by
him). The obtained query can then be run in other IRSs to obtain more
relevant documents. This way, there is no need that the user interacts with
the process as in other query refinement techniques such as relevance feedback
[28, 2].

Several IQBE algorithms have been proposed for the different existing IR,
models. On the one hand, Smith and Smith [33] introduced a Boolean query
learning process based on genetic programming. Besides, a similar idea to that
proposed in this paper was applied in [11] in order to allow the Smith and
Smith’s algorithm to simultaneously derive multiple Boolean queries from the
same document set. On the other hand, all of the machine learning methods
considered in Chen et al.’s paper [5] (regression trees, genetic algorithms and
simulated annealing) dealt with the vector space model. Moreover, there are
several approaches for the derivation of weighted Boolean queries for FIRSs,
such as the genetic programming algorithm of Kraft et al. [24], that will be
reviewed in the next section, our niching GA-P method [9] and our SA-P
method [10], based on a simulated annealing-genetic programming hybrid.

For descriptions of some of the previous techniques based on EAs refer to
[8, 10].
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2.4 Multiobjective Evolutionary Algorithms

Evolutionary computation uses computational models of evolutionary pro-
cesses as key elements in the design and implementation of computer-based
problem solving systems. There are a variety of evolutionary computational
models that have been proposed and studied which are referred as evolution-
ary algorithms (EAs) [1]. Concretely, four well-defined EAs have served as
the basis for much of the activity in the field: genetic algorithms (GAs) [25],
evolution strategies [32], genetic programming (GP) [23] and evolutionary pro-
gramming [16].

An EA maintains a population of trial solutions, imposes random changes
to these solutions, and incorporates selection to determine which ones are
going to be maintained in future generations and which will be removed from
the pool of the trials. But there are also important differences between them.
Focusing on the two kinds of EAs considered on this paper, GAs and GP,
the former emphasize models of genetic operators as observed in nature, such
as crossover (recombination) and mutation, and apply these to abstracted
chromosomes with different representation schemes according to the problem
being solved. As regards GP, it constitutes a variant of GAs, based on evolving
structures encoding programs such as expression trees. Apart from adapting
the crossover and mutation operators to deal with the specific coding scheme
considered, the rest of the algorithm components remain the same.

EAs are very appropriate to solve multiobjective problems. These kinds
of problems are characterized by the fact that several objectives have to be
simultaneously optimized. Hence, there is not usually a single best solution
solving the problem, i.e. being better than the remainder with respect to every
objective, as in single-objective optimization. Instead, in a typical multiob-
jective optimization problem, there is a set of solutions that are superior to
the remainder when all the objectives are considered, the Pareto set. These
solutions are known as non-dominated solutions [4], while the remainder are
known as dominated solutions. Since none of the Pareto set solutions is abso-
lutely better than the other non-dominated solutions, all of them are equally
acceptable as regards the satisfaction of all the objectives.

This way, thanks to the use of a population of solutions, EAs can search
many Pareto-optimal solutions in the same run. Generally, multiobjective EAs
only differ from the rest of EAs in the fitness function and/or in the selection
mechanism. The evolutionary approaches in multiobjective optimization can
be classified in three groups: plain aggregating approaches, population-based
non-Pareto approaches, and Pareto-based approaches [14, 6].

The first group constitutes the extension of classical methods to EAs.
The objectives are artificially combined, or aggregated, into a scalar function
according to some understanding of the problem, and then the EA is applied in
the usual way*. Optimizing a combination of the objectives has the advantage

4 As said, this has been the approach usually followed in the application of EAs to
IR.
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of producing a single compromise solution but there are two problems: i) it
can be difficult to define the combination weights in order to obtain acceptable
solutions, and ii) if the optimal solution generated can not be finally accepted,
new runs of the EA may be required until a suitable solution is found.

Population-based non-Pareto approaches allow to exploit the special char-
acteristics of EAs. A non-dominated individual set is obtained instead of
generating only one solution. In order to do so, the selection mechanism is
changed. Generally, the best individuals according to each of the objectives
are selected, and then these partial results are combined to obtain the new
population. An example of a multiobjective GA of this group is Vector Eval-
uated Genetic Algorithm (VEGA) [31].

Finally, Pareto-based approaches seem to be the most active research area
on multiobjective EAs nowadays. In fact, algorithms included within this fam-
ily are divided in two different groups: first and second generation [6]. They
all attempt to promote the generation of multiple non-dominated solutions,
as the former group, but directly making use of the Pareto-optimality defini-
tion. To introduce this concept, let us consider, without loss of generality, a
multiobjective minimization problem with m parameters (decision variables)
and n objectives:

Min f(z) = (fi(z), f2(z),..., fo(z)), withz = (z1,22,...,2m) € X

A decision vector a € X dominates another b € X if, and only if:
Viel,2,...,n| fila) < fi(d) AN 3Fjel,2,,....,n] fila) < f;(b)

As said, any vector that is not dominated by any other is said to be Pareto-
optimal or non-dominated.

This way, to calculate the probability of reproduction of each individual in
this approach, the solutions are compared by means of the dominance relation.
Different equivalence groups are defined depending on the dominance of their
constituent individuals among the remainder and those individuals belonging
to the “good” classes (those groups including individuals dominating a large
number of the remainder) are assigned a higher selection probability than
“bad” classes.

The difference between the first and the second generation of Pareto-based
approaches arise on the use of elitism. Algorithms included within the first
generation group, such as Niched Pareto Genetic Algorithm (NPGA), Non-
dominated Sorting Genetic Algorithm (NSGA) and Multiple-Objective Ge-
netic Algorithm (MOGA) (the one considered in this contribution), do not
consider this characteristic. On the other hand, second generation Pareto-
based multiobjective EAs are based on the consideration of an auxiliary pop-
ulation where the non-dominated solutions generated among the different it-
erations are stored. Examples of the latter family are Strenght Pareto EA
(SPEA) and SPEA2, NSGA2 and NPGA2, among others. As can be seen,
several of the latter algorithms are elitist versions of the corresponding first



10 O. Cordén, F. Moya, C. Zarco

generation ones. For the description of all of these algorithms, the interested
reader can refer to [14, 6].

Finally, it is important to notice that, although the Pareto-based ranking
correctly assigns all non-dominated individuals the same fitness, it does not
guarantee that the Pareto set is uniformly sampled. When multiple equiva-
lent optima exist, finite populations tend to converge to only one of them,
due to stochastic errors in the selection process. This phenomenom is known
as genetic drift [13]. Since preservation of diversity is crucial in the field of
multiobjective optimization, several multiobjective EAs have incorporated the
niche and species concepts [18] for the purpose of favouring such behaviour.
We will also consider this aspect in our proposal.

3 Single-objective IQBE Processes for Extended Boolean
Queries

In this section, two different IQBE algorithms to learn extended Boolean
queries are reviewed. First, the well known Kraft et al.’s GP-based process,
which will be used for comparison purposes in this contribution, is presented in
the next subsection. Then, a variant involving the use of the GA-P algorithm
is analyzed in Section 3.2. This latter algorithm will the one extended in
Section 4 to build the multiobjective proposal introduced in this paper.

3.1 The Kraft et al.’s Genetic Programming-based IQBE
Algorithm for Fuzzy Information Retrieval Systems

In [24], Kraft et al. proposed an IQBE process to deal with extended Boolean
queries in FIRSs. The algorithm is based on GP and its components are
described next®.

Coding Scheme

The fuzzy queries are encoded in expression trees, whose terminal nodes are
query terms with their respective weights and whose inner nodes are the
Boolean operators AND, OR or NOT.

Selection Scheme

It is based on the classical generational scheme, together with the elitist selec-
tion. The intermediate population is created from the current one by means of
Tournament selection [25], which involves the random selection of a number ¢
of individuals from the current population and the choice of the best adapted
of them to take one place in the new population.

® Notice that the composition of several components is not the original one proposed
by Kraft et al. but they have been changed in order to improve the algorithm
performance. Of course, the basis of the process have been maintained.
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Genetic Operators

The usual GP crossover is considered [23], which is based on randomly select-
ing one edge in each parent and exchanging both subtrees from these edges
between the both parents.

On the other hand, the following three possibilities are randomly selected
— with the showed probability — for the GP mutation:

a) Random selection of an edge and random generation of a new subtree that
substitutes the old one located in that edge (p=0.4).

b) Random change of a query term for another one, not present in the encoded
query, but belonging to any relevant document (p=0.1).

¢) Random change of the weight of a query term (p=0.5).

For the latter case, Michalewicz’s non-uniform mutation operator [25] is
considered. It is based on making a uniform search in the initial space in the
early generations, and a very local one in later stages. Let w be the query
weight selected for mutation (the domain of w is [0,1]), the new value for it
is:

v Jw+ A, 1—-w),ifa=0

w— A(t,w), ifa=1
where a € {0,1} is a random number and the function A(t, y) returns a value
in the range [0, y] such that the probability of A(¢,y) being close to 0 increases
as the number of generations increases.

Generation of the Initial Population

A first individual is obtained by generating a random tree representing a query
with a maximum predefined length and composed of randomly selected terms
existing in the initial relevant documents provided by the user, and with all
the term weights set to 1. The remaining individuals are generated in the
same way but with a random size and random weights in [0,1].

Fitness function

Two different possibilities are considered based on the classical precision and
recall measures (to get more information about them, see [34]):

_ ara-fa o 2arafa 2ard fa
B T YWY TR SF

with rq € {0,1} being the relevance of document d for the user and fq € {0,1}
being the retrieval of document d in the processing of the current query. Hence,
F only considers the recall value obtained by the query, while F5 also takes
its precision into account.
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Moreover, as simple queries are always prefered by the user, a selection
criterion has been incorporated to the algorithm in order to consider more
fitted those queries with a lesser complexity among a group of chromosomes
with the same fitness value.

3.2 A GA-P-based Extension of Kraft et al.’s Method

Although the algorithm proposed by Kraft et al. analyzed in the previous
section obtains good results, it suffers from one of the main limitations of
the GP paradigm: while this EA performs really well in the generation of
structures, adapting them both by crossover and mutation, the learning of
the numeric values of the constants considered in the encoded structure —
which are generated by the implementation program when the GP starts —
can only be altered by mutation. This way, good trees solving the problem can
be discarded by the selection procedure as the parameters involved in them
are not well adjusted.

Hence, in the problem of extended Boolean query learning, the GP al-
gorithm is able to find the positive, or negative, terms expressing the user’s
needs and to appropriately combine them by means of the logical operators
AND and OR. However, it is very difficult for the algorithm to obtain the term
weights, which constitutes a significant drawback due to their importance in
the query.

Several solutions have been proposed for this GP problem. On the one
hand, one can use a local search algorithm to learn the coefficients associated
to each tree in the population [23]. On the other hand, the GA-P paradigm
[21], an hybrid algorithm combining traditional GAs with the GP technique,
can be considered to concurrently evolve the tree and the coefficients used
in them, both of them encoded in the individual being adapted. Thus, each
population member will involve both a value string and an expression. While
the GP part of the GA-P evolves the expressions, the GA part concurrently
evolves the coefficients used in them.

Most of the GA-P elements are the same as in either of the traditional ge-
netic techniques. The GA-P and GP make selection and child generation sim-
ilarly, except that the GA-P structure requires separate crossover and muta-
tion operators for the expression and coefficient string components. Mutation
and crossover rates for the coefficient string (using traditional GA methods)
are independent from the rates for the expression part (using standard GP
methods).

Taking the previous aspect into account, in [8, 9] we introduced a new
IQBE technique for learning extended Boolean queries based on the GA-P
technique. The different components of this algorithm are reviewed as follows.

Coding Scheme

When considering a GA-P to learn fuzzy queries, the expressional part (GP
part) encodes the query composition — terms and logical operators — and the
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coefficient string (GA part) represents the term weights, as shown in Figure
2. In our case, a real coding scheme is considered for the GA part.

Expressional part Value string

@ L= 05 | wl
° @ | = 0.7 | w2

G ty 0.25 | w3

Fig. 2. GA-P individual representing the fuzzy query 0.5 t1 AND (0.7 t3 OR 0.25 t4)

Selection Scheme

As in Kraft et al.’s algorithm, it is based on the classical generational scheme,
together with the elitist selection. The intermediate population is created from
the current one by means of Tournament selection.

Genetic Operators

A real-coded crossover operator — the BLX-a [15] — is considered for the
GA parts. This operator generates an offspring, C' = (cy,...,¢y), from two
parents, X = (z1,...,2,) and Y = (y1,...,¥n), with ¢; being a randomly
(uniformly) chosen number from the interval [min; — I - a,maz; + I - a],
where maz; = maz{z;,y;}, min; = min{z;,y;}, and with I = maz; — min;
([min;, maz;] is the interval where the i — th gene is defined). In our case,
[min;, maxz;] = [0,1] and the operator is always applied twice to obtain two
offsprings.

On the other hand, Michalewicz’s non-uniform mutation operator, intro-
duced in the previous section, is considered to perform mutation in the GA
part.

As regards the operators for the GP part, the usual GP crossover described
in the previous section is used, while the two first GP mutation operators
(a) and b)) considered by the Kraft et al.’s algorithm are employed with
probability 0.5 each.

Generation of the Initial Population and Fitness Function

Both have the same definition as those in Kraft et al.’s proposal, introduced
in the previous section.
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4 A Pareto-based Multiobjective GA-P Algorithm to
Derive Extended Boolean Queries

The Pareto-based multiobjective EA considered to be incorporated to the GA-
P algorithm introduced in the previous section has been Fonseca and Flem-
ing’s MOGA [17], one of the classical, first generation multiobjective EAs. Up
to our knowledge, the only previous contributions incorporating Pareto-based
multiobjective techniques into a GP-based algorithm are those by Rodriguez-
Vazquez et al. [27] and by Cordén et al. [10].

The selection scheme of MOGA is based on dividing the population in sev-
eral ranked blocks and assigning a higher probability of selection to the blocks
with a lower rank, taking into account that individuals in the same block will
be equally preferable and thus will receive the same selection probability. The
rank of an individual in the population (and consequently of his belonging
block) will depend on the number of individuals dominating it.

Therefore, the selection scheme of our multiobjective GA-P (MOGA-P)
algorithm involves the following four steps:

1. Each individual is assigned a rank equal to the number of individuals
dominating it plus one (chromosomes encoding non-dominated solutions
receive rank 1).

2. The population is increasingly sorted according to that rank.

3. Each individual is assigned a fitness value which depends on its ranking in
the population. In this contribution, we consider the following assignment:
F(Ci) = samioy-

4. The fitness assignment of each block (group of individuals with the same
rank, i.e., which are non dominated among them) is averaged among them,
so that all of them finally receive the same fitness value.

Once the final fitness values have been computed, a usual selection mech-
anism is applied. In this contribution we consider the tournament selection
introduced in Section 3.1 with an appropriate choice of the tournament size t
to induce diversity.

A said in Section 2.4, it is well known that the MOGA selection scheme can
cause a large selection pressure that might produce premature convergence.
Fonseca and Fleming considered this issue and suggested to use a niching
method to appropriately distribute the population in the Pareto [17].

This way, in this paper we apply niching in the objective space, in order to
allow the algorithm to obtain a well-distributed set of queries with a different
tradeoff between precision and recall, i.e., our initial aim. To do so, we make
use of the usual Euclidean metric in order to measure the closeness between
two different queries on the objective space.

Once a valid metric has been selected, it is easy to apply sharing by using
the classical Goldberg and Richardson’s sharing function [18]:
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f(Cz) {1_(ﬁi@mg)’y’ifd<0-3hare
> Sh(d(Ci, Cy))

F(Cy) = . Sh(d) =

0, otherwise

with ogpere being the niche radius.

5 Experiments Developed and Analysis of Results

This section is devoted to test the performance of the MOGA-P IQBE algo-
rithm for FIRSs introduced in this paper. To do so, both the Kraft et al.’s
algorithm and our MOGA-P proposal have been run to generate extended
Boolean queries for the well known Cranfield collection, composed of 1400
documents about Aeronautics.

These 1400 documents have been automatically indexed by first extracting
the non-stop words, and then applying a stemming algorithm, thus obtaining
a total number of 3857 different indexing terms, and then using the normalized
IDF scheme (see Section 2.2) to generate the term weights in the document
representations.

Among the 225 queries associated to the Cranfield collection, we have
selected those presenting 20 or more relevant documents in order to have
enough chances to show the performance advantage of one algorithm over
the other. The resulting seven queries and the number of relevant documents
associated to them are showed in Table 1.

Table 1. Cranfield queries with 20 or more relevant documents

#query #relevant documents

1 29
2 25
23 33
73 21
157 40
220 20
225 25

As said, apart from our MOGA-P, Kraft et al.’s IQBE process has been
run on the seven selected queries for comparison purposes. In order to make
this comparison fair, both algorithms have been provided with the same pa-
rameter values (see Table 2) and have been run a different number of times
with different initializations till the same fixed number of fitness function
evaluations have been performed.

As seen, the expressional part has been limited to 20 nodes in every case
and populations are composed of 1600 individuals (the high value for this
parameter is because it is well known that GP requires large population sizes
to achieve good performance). For the sake of simplicity, only experiments
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Table 2. Common parameter values considered

Parameter Decision
Fitness function Fy
Population size 1600
Number of evaluations 100000
Tournament size 16
Kraft et al.’s Crossover and Mutation probability 0.8,0.2
Kraft et al.’s a, 8 weighting coefficientes in F> (0.8,1.2), (1,1), (1.2,0.8)
MOGA-P GA and GP Crossover probability 0.8, 0.8
MOGA-P GA and GP Mutation probability 0.2, 0.2
Expression part limited to 20 nodes
Retrieval threshold o 0.1

not considering the use of the NOT operator are reported (as done in [24]).
MOGA-P has been run ten different times for each query in order to check
the robustness of the algorithm. The sharing function parameter v takes value
2 and the niche radius ogpq-e has been experimentally set to 0.1.

On the other hand, Kraft et al.’s technique has been run considering three
different values for the parameters o and [ weighting, respectively, the pre-
cision and recall measures in the Fj fitness function, in order to check the
performance of the single-objective algorithm when being guided to different
zones of the Pareto front. Three different runs have been done for each com-
bination of values, thus making a total of nine runs for each query. All the
runs have been performed in a 350 MHz Pentium II computer with 64 MB of
RAMS.

The results obtained by Kraft et al.’s algorithm are showed in Tables
3 and 4 respectively, with the average results being showed on the former
table and the best ones on the latter. In the first table, #¢ stands for the
corresponding query number, («, ) for the values associated to the fitness
function weigthing parameters, Sz for the average of the generated queries size
and og, forits standard deviation, and P and R for the average of the precision
and recall values (respectively, op and og for their standard deviations). The
columns of the other table stand for the same items as well as Run for the
number of the run where the reported result was derived, #rt for the number
of documents retrieved by the query, and #rr for the number of relevant
documents retrieved.

Tables 5 and 6 show several statistics corresponding to our multiobjective
proposal. The former table collects several data about the composition of the
ten Pareto sets generated for each query, always showing the averaged value
and its standard deviation. From left to right, the columns contain the number
of non-dominated solutions obtained (#p), the number of different objective
vectors (i.e., precision-recall pairs) existing among them (#dp), and the values

6 Kraft et al.’s algorithm spends more or less 13 minutes whilst MOGA-P approx-
imately takes 15 minutes.
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Table 3. Average results obtained by the single-objective Kraft et al.’s IQBE algo-
rithm

#q|(a,B8)| Sz | os- P op R OR
1.2,0.8| 19 0.0 1.0 0.0 [0.3103]0.0912
1 (1.0,1.0{ 19 0.0 1.0 0.0 [0.2873(0.0796
0.8,1.2| 15 2.0 [0.0207| 0.0 1.0 0.0
1.2,0.8] 19 0.0 1.0 0.0 [0.3866(0.0230
2 |1.0,1.0{ 19 0.0 1.0 0.0 10.3333|0.0461
0.8,1.2|18.33(1.1547|0.01785| 0.0 1.0 0.0
1.2,0.8] 19 0.0 1.0 0.0 ]0.3232|0.1224
23 (1.0,1.0] 19 0.0 1.0 0.0 [0.2121(0.0909
0.8,1.2| 15 4.0 |0.0235| 0.0 1.0 0.0
1.2,0.8| 19 0.0 1.0 0.0 [0.5079|0.0727
73 (1.0,1.0{ 19 0.0 1.0 0.0 |0.5714|0.0824
0.8,1.2|18.33(1.1547| 0.015 0.0 1.0 0.0
1.2,0.8] 19 0.0 1.0 0.0 ]0.2583|0.0144
157(1.0,1.0| 19 0.0 1.0 0.0 [0.175] 0.05
0.8,1.2|116.33(2.3094| 0.0285 | 0.0 1.0 0.0
1.2,0.8] 19 0.0 1.0 0.0 [0.5166|0.0763
220|1.0,1.0f 19 0.0 1.0 0.0 0.5 0.05
0.8,1.2|18.33(1.1547| 0.0446 {0.0525| 1.0 0
1.2,0.8| 19 0.0 1.0 0.0 0.44 | 0.04
225(1.0,1.0{ 19 0.0 1.0 0.0 ]0.4266|0.0923
0.8,1.2|116.33(3.0550| 0.0178 | 0.0 1.0 0.0

of two of the usual multiobjective EA metrics M3 and M3 [36]7, all of them
followed by their respective standard deviation values.

As regards the later metrics, M3 € [0, #p] measures the distribution of
the objective vectors of the #p non-dominated solutions in the derived Pareto
set V' (i.e., the diversity of the solutions found) by means of the following
expression:

* 1 * *
M2(Y'):m > Hd eYsIp —dlI" > 0"}
p'EY’

with o* > 0 being a neighborhood parameter, and ||-|| being a distance metric.
In this contribution, o* is set to ospare, the niche radius considered, and || - ||
is the Euclidean distance. Of course, the higher the value of the measure, the
better the distribution of the solutions within the Pareto front in the objective
space.

On the other hand, M} estimates the range to which the Pareto front
spreads out in the objective values as follows:

" We should note that a third metric is proposed in that paper, M}, that can not
be used in this contribution as it needs from the real Pareto front in order to be
computed, which is not known in this case.
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Table 4. Best results obtained by the single-objective Kraft et al.’s IQBE algorithm

#q| (a,8) |Run|Sz| P R |#rr/#rt
( )Y 2 [19] 1.0 |0.4137| 12/12
( )| 3 |19] 1.0 |0.3793 11/11
( )1,2,3/13]0.0207| 1.0 |29/1400
( ) 1,2 {19] 1.0 0.4 10/10
( ) 1,3 (19 1.0 | 036 | 9/9
( )1,2,3/17]0.0178| 1.0 |25/1400
( )1 [19] 1.0 [0.4545| 15/15
( )| 3 |19/ 1.0 |0.3030| 10/10
( )1,2,3/11]0.0235| 1.0 |33/1400
( ) 3 [19] 1.0 |0.5714] 12/12

73 (1.0,1.0) 1,2 |19] 1.0 |0.6190| 13/13
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

23

1,2,3|17] 0.015 | 1.0 |21/1400
1 [19] 1.0 [0.275 | 11/11
2 |19] 1.0 |0.225| 9/9
1,2,3/15(0.0285| 1.0 |40/1400
1 [19] 1.0 | 0.6 | 12/12
2 19| 1.0 | 055 | 11/11
3 119/0.1052| 1.0 | 20/190
1 [19] 1.0 | 0.48 | 12/12
1,2 [19] 1.0 | 0.48 | 12/12
1,2,3[13(0.0178| 1.0 |25/1400

157

220

225

M5V = | max{|lp’ — ¢'||*; p',q’ €Y'}
i=1

Since our problem is composed of just two objectives, it is equal to the
distance among the objective vectors of the two outer solutions (hence, the
maximum possible value is v/2 = 1.4142). Again, the higher the value, the
larger the extent of the Pareto being covered.

Besides, two queries are selected from each Pareto set, the ones with max-
imum precision and maximum recall, respectively, and their averaged results
are collected in Table 6.

In view of these results, the performance of our proposal is very significant.
On the one hand, it overcomes the single-objective Kraft et al.’s algorithm
in all cases but one (the best precision value obtained for query 23) as the
results obtained by the latter when considering typical values for the weighted
combination are dominated by the solutions in the Pareto front of the former,
both in precision and recall. It seems that the diversity induced by the Pareto-
based selection and the niching scheme make MOGA-P converge to better
space zones. Notice the bad results obtained by the single-objective Kraft et
al.’s process when giving more importance to the recall objective ((«,3) =
(0.8,1.2) combination), as in every case but one (query 220), a query retrieving
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Table 5. Statistics of the Pareto sets obtained by the proposed MOGA-P IQBE
algorithm

#q| #p | oup |#dp|ogap| Mz | onmy | M3 jowng
1 [350.2]27.155]15.5]1.125[136.125]10.178]1.035|0.022
2 (333.2(20.039|11.2{0.881|129.594 7.913 |0.964/0.026
23 |406.4/20.794/20.6 [1.151{149.522| 4.956 |1.067|0.026
73 [277.0(17.474| 8.5 |0.652|104.339| 8.843 |0.901|0.025
157(421.1/19.433(22.0|1.086|161.545| 5.145 |1.137(0.018
220(269.7|15.190| 7.1 {0.263|103.616 6.930 |0.729/0.026
225(312.8/18.280|12.8{0.903(123.589| 6.887 |1.030/0.013

Table 6. Extreme solutions in the Pareto sets obtained by the proposed MOGA-P
IQBE algorithm

Best Precision Best Recall
#ql|| Sz | 0s: | P lop| R or || Sz | o0s. | P op | R|or
1 ({19.0] 0.0 {1.0{0.0{0.452{0.017|{18.8]{0.190]|0.123(0.018|1.0{0.0
2 {/19.0{ 0.0 |{1.0{0.0]{0.464|0.014|/18.2|0.580{0.200{0.025|1.0]0.0
23 {|19.0f 0.0 |{1.0{0.0{0.415|0.017}{17.0|0.800{0.110{0.028|1.0]0.0
73 {|18.8/0.190{1.0{0.0{0.676|0.018]{18.8|0.190{0.161{0.023|1.0|0.0
157(|18.6{0.379(1.0|0.0|0.333|0.022(|18.0{0.949|0.083|0.022(1.0{0.0
220((19.0{ 0.0 {1.0{0.0{0.680(0.016{{19.0{ 0.0 [0.346(0.025|1.0|0.0
225|(19.0{ 0.0 {1.0{0.0{0.484(0.012{{19.0{ 0.0 {0.109(0.010{1.0|0.0

the whole documentary base is obtained, thus showing the bad convergence
of the algorithm when considering these weighting factor values.

On the other hand, the main aim of this paper has been clearly fulfilled
since the Pareto fronts obtained are very well distributed, as demonstrated
by the high number of solutions included in them and the high values in the
M, and M3 metrics. Maybe the only problem found is that the number of
solutions presenting different precision-recall values (different objective value
arrays) can be a little bit low with respect to the large number of solutions
in the Pareto set. We think that this can be solved by considering a second
generation Pareto-based approach, making use of a elitist population of non-
dominated solutions.

As an example, Figures 3 and 4 show the Pareto fronts obtained for queries
1 and 157, representing the precision values in the X axis and the recall ones on
the Y axis. As done in [36], the Pareto sets obtained in the ten runs performed
for each query were put together, and the dominated solutions where removed
from the unified set before plotting the curves.
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Fig. 3. Pareto front obtained for query 1
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Fig. 4. Pareto front obtained for query 157

6 Concluding Remarks

The automatic derivation of extended Boolean queries has been considered by
incorporating the MOGA Pareto-based multiobjective evolutionary approach
to an existing GA-P-based IQBE proposal. The proposed approach has per-
formed appropriately in seven queries of the well known Cranfield collection
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in terms of absolute retrieval performance and of the quality of the obtained
Pareto sets.

In our opinion, many different future works arise from this preliminary
study. On the one hand, as it has been mentioned before, more advanced
Pareto-based multiobjective EA schemes, such as those second generation
elitist ones considering an auxiliary population to better cover the Pareto
front (see in Section 2.4), can be incorporated to the basic GA-P algorithm
in order to improve the performance of the multiobjective EA proposed. On
the other hand, preference information of the user on the kind of queries to
be derived can be included in the Pareto-based selection scheme in the form
of a goal vector whose values are adapted during the evolutionary process
[17]. Moreover, a training-test validation procedure can be considered to test
the real-world applicability of the proposed IQBE algorithm. Finally, and
more generically, Pareto-based multiobjective evolutionary optimization can
be applied either to the automatic derivation of queries for other kinds of IR
models or to other IR problems being solved by EAs [7], thus benefiting from
the potential of these techniques in the problem solving.
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