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Abstract

In this paper we extend the structure of
the Knowledge Base of Fuzzy Rule Base
Systems in a hierarchical way, in order
to make it more flexible. This flexibil-
ity will allow us to have linguistic rules
defined over linguistic partitions with
different granularity levels, and thus to
improve the modeling of those problem
subspaces where the former models have
bad performance.

To do so, we propose a local approach to
design linguistic models which are accu-
rate to a high degree and may be suit-
ably interpreted. This approach will be
based on the development of a Hierarchi-
cal System of Linguistic Rules learning
methodology, which has been thought as
a refinement of simple linguistic models
which, preserves their descriptive power
and introduces small changes to increase
their accuracy. We also introduce an
iterative extension to this method, and
compare both with a previous global hi-
erarchical method.
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1 Introduction

One of the most important applications of Fuzzy
Rule-Based Systems (FRBSs) is System Modeling
[1, 10]. Linguistic Modeling [12] is the usual type
of System Modeling where the main requirement
is the interpretability of the model. It also has a
problem associated which is its lack of accuracy in
some complex problems. This fact is due to some
problems related to the linguistic rule structure
considered, which are a consequence of the inflex-
ibility of the concept of linguistic variable [15]. To
deal with this problem, we extend the Knowledge
Base (KB) structure of linguistic FRBSs by intro-
ducing the concept of ”layers”. In this extension,
which is also a generalization, the KB is composed
of a set of layers where each one contains linguistic
partitions with different granularity levels and lin-
guistic rules whose linguistic variables take values
in these partitions. This KB is called Hierarchi-
cal Knowledge Base (HKB), and it is formed by a
Hierarchical Data Base (HDB) and a Hierarchical
Rule Base (HRB), containing linguistic partitions
of the said type and linguistic rules defined over
them, respectively.

In this paper, we will show results of three
Linguistic Modeling approaches -developed by
means of linguistic FRBSs- which allows us to
learn HRBs, i.e., Hierarchical Systems of Linguis-
tic Rules Learning Methodologies (HSLR-LMs).
First, we will introduce a Two-Level HSLR-LM
-whose linguistic variables are defined on a two-
level HDB- which is a local approach that, as a
simple models refinement, improves its accuracy
without losing its interpretability to a high de-
gree. Later, will also show results of an iterative



extension of this methodology (more than two-
level) and compare the results of both methods
with a previous global hierarchical approach.

To do so, this paper is set up as follows. In Sec-
tion 2, a description of the HKB and the relation
between its components is regarded. In Section 3,
two methodologies (local and global approaches)
to automatically design a HKB from a generic lin-
guistic rule generating method are introduced. In
Section 4, a Linguistic Modeling process obtained
from previous methodologies and a well-known in-
ductive linguistic rule generation process is ap-
plied to solve a real-world application. Finally in
Section 5, some concluding remarks are pointed
out.

2 Hierarchical Knowledge Base
Philosophy

The KB structure usually employed in the field of
Linguistic Modeling has the drawback of its lack
of accuracy when working with very complex sys-
tems. This fact is due to some problems related to
the linguistic rule structure considered, which are
a consequence of the inflexibility of the concept
of linguistic variable [15]. A summary of these
problems may be found in [2], and it is briefly
enumerated as follows:

e There is a lack of flexibility in the FRBSs
because of the rigid partitioning of the input
and output spaces.

e When the system input variables are depen-
dent themselves, it is very hard to fuzzy par-
tition the input spaces.

e The homogenous partitioning of the input
and output spaces when the input-output
mapping varies in complexity within the
space is inefficient and does not scale to high
dimensional spaces.

e The size of the Rule Base (RB) directly de-
pends on the number of variables and lin-
guistic terms in the system. Obtaining an
accurate FRBS requires a significant granu-
larity amount, i.e., it needs of the creation
of new linguistic terms. This granularity in-
crease causes the number of rules to rise sig-
nificantly, which may take the system to lose

the capability of being interpretable for hu-
man beings.

Due to the inflexibility of the KB structure used
in Linguistic Modeling, which as has been said is a
consequence of the concept of linguistic variable,
we present a more flexible KB structure that al-
lows us to improve the accuracy of linguistic mod-
els without losing their interpretability to a high
degree: the HKB. It is composed of a set of layers,
and each layer is defined by its components in the
following way:

layer(t,n(t)) = DB(t,n(t)) + RB(t,n(t))

with:

e n(t) being the number of linguistic terms that
compose the partitions of layer .

e DB(t,n(t)) being the Data Base (DB) which
contains the linguistic partitions with granu-
larity level n(t) of layer t¢.

e RB(t,n(t)) being the RB formed by those
linguistic rules whose linguistic variables take
values in the former partitions.

At this point, we should note that, in this work,
we are using linguistic partitions with the same
number of linguistic terms for all input-output
variables, composed of triangular-shaped, sym-
metrical and uniformly distributed membership
functions.

From now on and for the sake of simplicity, we are
going to refer to the components of a DB(t,n(t))
and RB(t,n(t)) as t-linguistic partitions and t-
linguistic rules, respectively.

This set of layers is organized as a hierarchy,
where the order is given by the granularity level
of the linguistic partition defined in each layer.
That is, given two successive layers ¢t and ¢ + 1,
then the granularity level of the linguistic parti-
tions of layer ¢+ 1 is greater than the ones of layer
t. This causes a refinement of the previous layer
linguistic partitions. As a consequence of the pre-
vious definitions, we could now define the HKB
as the union of every layer ¢:

HKB = Uglayer(t,n(t))



In the remainder of this Section, we are going
to study the linguistic partitions and their exten-
sion to consider them as component parts of the
DB(t,n(t)) of the layer(t,n(t)). Then, we are
going to describe the relation between DBs from
different layers (e.g. t and t+1), and to develop a
methodology to build them under certain require-
ments. Finally, we will explain how to relate these
DBs with linguistic rules, i.e., to create RBs from
them.

2.1 Hierarchical Data Base

In this Subsection, we are going to show how to
build the HDB, bearing in mind that it is orga-
nized in a hierarchy, where the order is given by an
increasing granularity level of the linguistic parti-
tions.

To extend the classical linguistic partition, let us
consider a partition P of the domain U of a lin-
guistic variable A in the layer % :

Py = {51,...,Sn(t)}

with Sp (k = 1,..,n(t)) being linguistic terms
which describe the linguistic variable A. These lin-
guistic terms are mapped into fuzzy sets by the
semantic function M, which gives them a mean-
ing: My : S — ps, (u) [15].

We extend this definition of P allowing the exis-
tence of several partitions, each one with a dif-
ferent number of linguistic terms, i.e., with a dif-
ferent granularity level. To do so, we add the
parameter n(t) to the definition of the linguistic
partition P, which represents the granularity level
of the partitions contained in the layer ¢ where it
is defined:

PLO = {510, 5n0)

where P1) € DB(t,n(t)).

In order to build the HDB, we develop an strategy
which satisfies two main requirements:

e To preserve all possible fuzzy set structures
from one layer to the next in the hierarchy.

e To make smooth transitions between succes-
sive layers.

On the one hand, we decided to preserve all the
membership function modal points, correspond-
ing to each linguistic term, through the higher lay-
ers of the hierarchy in order to fulfill the first re-
quirement. On the other hand, and with the aim
of building a new t+1-linguistic partition, we just
add a new linguistic term between each two con-
secutive terms of the t-linguistic partition. To do
so, we reduce the support of these linguistic terms
in order to keep place for the new one, which is
located in the middle of them. An example of the
correspondence among a 1-linguistic partition, a
2-linguistic partition, and a 3-linguistic partition,
with n(1)=3, n(2)=5 and n(3)=9 respectively, is
shown in Figure 1.

Table 1: Hierarchy of DBs starting from 2 or 4
initial terms.

DB(t,n(t)) DB(t,n(t))
DB(1,2) DB(1,4)
DB(2,3) DB(2,7)
DB(3,5) DB(3,13)
DB(4,9) " DB(4,25)
DB(6,33) DB(6,97)
DB(1,3)
s’ S; s}

DB(2,5)

DB(39)

§888 888 §S

Figure 1: Three layers of linguistic partitions



which compose the HDB

Table 2: Mapping between terms from successive
DBs

DB(t,n(t)) DB(t+1,2-n(t)-1)
grtt) — Sglgl—(?_l
S
SO o s
S
Sa T s

As a result of the above considerations, Table
1 shows the number of linguistic terms which is
needed in each t-linguistic partition in DB(t, n(t))
to satisfy the previous requirements. The values
of parameter n(t) represent the t-linguistic parti-
tion granularity levels and depend on the initial
value of n(t) defined in the first layer (e.g. 2 or 4
in Table 1).

Generically, we could say that a DB from a layer
t + 1 is obtained from its predecessor as:

DB(t,n(t)) - DB(t+1,2-n(t) — 1)

which means that a t-linguistic partition in
DB(t,n(t)) with n(t) linguistic terms becomes a
(t+1)-linguistic partition in DB(t+1,2-n(t) —1).
In order to satisfy the previous requirements, each
linguistic term SZ(t) -term of order k£ from the
t-linguistic partition in DB(t,n(t)) - is mapped
into S;,E?il, preserving the former modal points,
and a set of n(t)-1 new terms is created, each
one between SZ(t) and SZE{ (k=1,...,n(t) — 1).
This mapping is clearly shown in Table 2 and a
graphical example is to be found in Figure 1.

In this view, we can generalize this two-level suc-
cessive layer definition for n(t), for all layers ¢ in
the following way:

n(t)=(N—-1)-2"1 +1

with n(l) = N, i.e., the number of linguistic
terms in the initial layer partitions.

2.2 Hierarchical Rule Base

In this Subsection we explain how to develop
an RB from layer ¢ + 1 based on RB(t,n(t)),
DB(t,n(t)) and DB(t + 1,2 -n(t) — 1), in order
to create an HRB. Later, in the following Section,
we are going to give a concrete method to perform
this task for an Iterative Process.

The t-linguistic RB structure is formed by a col-
lection of well known Mamdani-type linguistic
rules:

R?(t) :IF 1 is Sﬁ(t) and ...
. and zn, is S THEN y is B

m

with z1,...,z, and y being the input linguis-
tic variables and the output one, respectively;
and with Sﬁ(t), .. .,S?ngt), Bf(t) being linguis-
tic terms from different t-linguistic partitions of
DB(t,n(t)), with fuzzy sets associated defining
their meaning. In this contribution, we will use
the Minimum t-norm in the role of conjunctive
and implication operator and the Center of Grav-
ity weighted by the matching degree [3] as defuzzi-
fication strategy.

The main purpose of developing an HRB is to
model the problem space in a more accurate way.
To do so, those t-linguistic rules that model a
subspace with bad performance are expanded into
a set of (t+1)-linguistic rules, which become their
image in RB(t + 1,2 - n(t) — 1). This set of rules
model the same subspace that the former one and
replaces it.

We should note that not all ¢t-linguistic rules are
to be expanded. Only those t-linguistic rules
which model a subspace of the problem with a
significant error become the ones that are in-
volved in this rule expansion process to build the
RB(t+1,2-n(t)—1). The remaining rules preserve
their location in RB(t,n(t)). An explanation for
this behavior could be found in the fact that it is
not always true that a set of rules with a higher
granularity level, performs a better modeling of a
problem than another one, with a lower granular-
ity level. Moreover, this is not true for all kinds
of problems, and what is more, it is also not true
for all linguistic rules that model a problem [6].



3 System Modeling with an HKB

In this part of the paper we will introduce two
methodologies which develop a HKB. On the one
hand in the following Subsection a local Two-
Level HSLR Learning Methodology (HSLR-LM)
and its iterative extension (I-HSLR-LM) are in-
troduced. Later, HSLR is compared with a
global approach (G-(I-)HSLR-LM) previously in-
troduced by Ishibuchi et al. in [9].

3.1 A Local Approach: A Two-Level
HSLR Learning Methodology
(HSLR-LM)

This methodology was proposed in [7] as a strat-
egy to improve simple linguistic models preserving
their structure and descriptive power, by reinforc-
ing only the modeling of those problem subspaces
with more difficulties by a hierarchical treatment
of the rules generated in these zones. Due to this
reason, HSLRs are based on two hierarchical lev-
els, i.e., a HKB of two layers.

In the following, the structure of the learning
methodology and its most important components
are briefly described:

1. Hierarchical Knowledge Base Generation

Process

(a) Generate the initial RB(1,n(1)) from
the present DB(1,n(1)) using any induc-
tive Linguistic Rule Generating method
(LRG-method), the initial I-linguistic
partitions given by an expert, and a
training data set.

(b) Select those bad performance 1-
linguistic rules RBpaq(1,n(1)), which
are going to be expanded, making
the difference from the good ones
RBgpoa(1,n(1)), by comparing their
error with the one performed by the
whole rule set.

(c) Obtain  the  next
DB(2,2-n(1) —1).

(d) Now, for each R?(l) € RBpuq(1,n(1)):

i. Select the 2-linguistic partition
terms which have a ”significant

(1)

. . . . n
intersection” with the ones in R;".

layer DB,

ii. Combine the previously selected sets.

iii. Extract 2-linguistic rules from the
combined selected 2-linguistic parti-
tion terms and the use of an LRG-
method.  These 2-linguistic rules
are the image of the expanded lin-
guistic rule R?(l), i.e., the candi-
dates to be in the HRB from rule
i, (CLR(R"YY).

(e) Obtain a joined set of candidate linguis-
tic rules, JCLR, performing the union
of the group of the new generated 2-
linguistic rules (CLR(R?(I))) and the
former good performance I-linguistic
rules (RBgoeq(1,m(1))):

JOLR = RByooa(1,n(1))U(U;CLR(R}"))

with B'Y € RByaq(1,n(1)).

2. Hierarchical Rule Base Selection Process.
Simplify the set JCLR by using a genetic
linguistic rule selection process, in order to
remove the unnecessary rules from it, and
to generate an HKB with good cooperation
[4, 9]:

HRB = Select(JCLR)

3. User FEvaluation Process. Evaluate the ob-
tained model. If it is not appropriate, adapt
the granularity of the initial linguistic par-
titions n(1) and/or the threshold which de-
termine if an n(t)-linguistic rule will be ex-
panded in a set of (2-n(t) —1)-linguistic rules
a, and apply again the methodology in order
to obtain a better model.

We should note that this methodology was
thought as an strategy to improve simple linguis-
tic models. Therefore, we could select any in-
ductive LGR-method to build the HRB, based on
the existence of a set of input-output data E;pg
and a previously defined DB(1,7(1)). In order to
illustrate this situation, two LRG-methods have
been used in [7]: the one proposed by Wang and
Mendel in [14] and the one proposed by Thrift in
[13].

This Two-level HSLR-LM was extended in [8] by
considering it as an iterative process. While the



former methodology was thought as a simple de-
scriptive refinement of linguistic models, the It-
erative HSLR-LM (I-HSLR-LM) is viewed as an
accurate refinement of those models, which pre-
serves HSLR-LM features but loses description,
having linguistic rules defined over more than two
layers in the HRB, in order to improve the mod-
eling accuracy performed by the learned HSLR.

3.2 A Global HSLR Learning
Methodology (G-HSLR-LM)

As said, another approach generated in the same
line have been performed by Ishibuchi et al. [9]
This method obtains an HSLR creating several hi-
erarchical linguistic partitions with different gran-
ularity levels, generating the complete set of lin-
guistic rules in each of these partitions, taking the
union of all of these sets, and finally performing
a genetic rule selection process on the whole rule
set. For the sake of simplicity, in this Subsection
we will refer to this method as a global HSLR
learning methodology (G-HSLR-LM), in order to
distinguish it from our local approach (HSLR-
LM). Although G-HSLR-LM was designed to con-
struct a fuzzy classification system, and the main
purpose of the HSLR-LM proposed in this paper
is to perform Linguistic Modeling, some interest-
ing coincidences and differences have been found
between them:

Although G-HSLR-LM was designed to construct
a fuzzy classification system, and the main pur-
pose of the HSLR-LM proposed in this paper is
to perform Linguistic Modeling, some interesting
coincidences and differences have been found be-
tween them:

e While HSLR-LM locally expands those rules
which perform a bad modeling in some sub-
spaces of the problem, G-HSLR-LM performs
the same task in a global way, i.e., it expands
all rules in all granularity levels.

e Due to the global expansion it performs, G-
HSLR-LM allows the HSLR. derived from it,
to present both the expanded rule and some
of the rules composing its image in the next
layer RB, thus resulting in a reinforcement
of the expanded rule. As said, since HSLR-
LM directly substitutes the expanded rule by

its image, there is no possibility for this rein-
forcement.

e Both methods perform a genetic rule selec-
tion to extract the set of rules which best co-
operates between them, i.e. the HRB, but on
a different rule set. We should note that, in
order to allow the comparison between both
hierarchical methods, the same fitness was
used in the GA for both approaches.

Table 3 shows a common notation for both hierar-
chical methodologies in order to clarify their simi-
larities and differences. We should remember that
CLR(R?(D) stands for the image of the expanded
bad linguistic rule R?(l), which joined with the
former good performance 1-linguistic rules con-
stitute the set of candidate linguistic rules to be
in the final HRB.

Table 3: Local and Global Selection Processes

HSLR-LM HRB = Selection
(RByooa(t,n(t)) U (U;CLR(R'")))

G-HSLR-LM | HRB = Selection
(RB(t,n(t)) URB(t+ 1,n(t + 1))))

4 Examples of Application:
Experiments and Analysis of
Results

With the aim of analyzing the behavior of the pro-
posed methodology, a real-world electrical engi-
neering distribution problems in Spain have been
selected [5, 11]. The concern of this problem is to
relate some characteristics of certain village with
the actual length of low voltage line contained in
it. It would be preferable that the solutions ob-
tained verify another requirement: they have not
only to be numerically accurate in the problem
solving, but must be able to explain how a specific
value is computed for a certain village or town.
That is, it is interesting that these solutions are
interpretable by human beings to some degree.

Therefore, a relationship must be found between
some characteristics of the population and the
length of line installed on it, making use of some
known data, that may be employed to predict the
real length of line in any other village. We will
try to solve this problem by generating different



models which can determine the unknown rela-
tionship, provided with the measured line length
(y), the number of inhabitants (z;) and the mean
distance from the center of the town to the three
furthest clients (x2), considered as the radius of
population ¢ in the sample, in a sample of 495
rural nuclei [11].

The results obtained with the said methods
are shown in Table 4, where WM(r) stands
for the LRG-method considered with r gran-
ularity level linguistic partitions, HSLR(LRG-
method,n(1),n(2)) for the Two-level method with
initial and final granularity levels partitions [6]
and I-HSLR(LRG-method,n(1),n(p), k) as the It-
erative method with initial, final granularity lev-
els partitions, and number of iterations [7]. The
global methods are described with the same pa-
rameters as the former methods but with a prefix
(G) indicating their global condition. Addition-
ally, #R stands for the number of rules of the
corresponding HRB, M SE,,, and M S Eyg for the
values obtained in the M SE measure computed
over the training and test data sets, respectively.
The other parameters used in these experiments
are listed in the appendix.

Table 4: Results obtained in the low voltage elec-
trical application considering o = 1.1.

Method MSE., | MSE;q #R
WM(3) 594276 626566 7
WM(5) 298446 282058 13
WM(9) 197613 283645 29
HSLR(WM,3,5) 178950 167318 12
[-HSLR(WM,,3,9,2) 153976 165458 35
G-HSLR(WM,3,5) 177735 180721 15
G-I-HSLR(WM,3,9,2) | 159851 189119 31

In view of the results obtained in the experiments,
we should remark some important conclusions:

e From the accuracy point of view:

The different models which make use of the
HKB clearly outperform the WM-method
ones in all granularity level linguistic parti-
tions and in both data sets, training and test.
Now comparing the hierarchical approaches,
it can be seen that the linguistic model gen-
erated from Two-level HSLR-LM is a little

bit less accurate than the G-HSLR(WM,3,5)
one in the approximation of the training set,
but it has significantly better values for the
resulting test errors. Otherwise, the local It-
erative methodology outperforms the global
and the Two-level ones in both kinds of er-
rors.

e From the complexity point of view:

The hierarchical methods have obtained rel-
atively simple models if we consider the ac-
curacy improvements achieved over the ini-
tial models generated by the WM-method.
The most clear examples are performed by
the comparison of WM(5) or WM(9) with
HSLR(WM,3,5). This simpler model be-
come more accurate than the other results in
MSE., and MSE,;s, with a lesser number
of rules than the most accurate WM-method
experiment.

In view of these results, we should note that
it is not always true that a linguistic model
whose linguistic variables have terms defined
over partitions with higher granularity lev-
els, and consequently with more rules, mod-
els better a problem than a simpler one [6].
This is also corroborated in Table 4, where
WM(9) does not improve WM(5) in M S E};.
All of this, remarks the importance of the use
of local based methods which only improve
those difficult subspaces of a problem as a
gradual model refinement.

5 Concluding Remarks

In this paper, a HKB has been proposed which is a
new approach to design linguistic models accurate
to a high degree and suitably interpretable by hu-
man beings. Some HKB learning processes capa-
ble of automatically generating linguistic models
following the said approach have been introduced
as well, and their behavior has been compared in
solving a real-world problem. The proposed pro-
cess has obtained very good results.

6 Appendix: Parameters used in the
Experiments

The initial DB used for the HSLR-LM is con-
stituted by three primary linguistic partitions



formed by three, four, and five linguistic terms
with triangular-shaped fuzzy sets giving meaning
to them:

DB(1,3) = {S3, M3 L3}
DB(1,4) = {VS§%, 84 LY VL)
DB(1,5) = {V§°,85 M> L5 VL}

where S, M, L, VS and VL stand for Small,
Medium, Large, Very Small, and Very Large, re-
spectively. The parameters used in all of the ex-
periments are listed in Table 5:

Table 5: Parameters

Generation Parameters

0 -(2-n-1)-linguistic partition terms selector- | 0.1

7 -used to calculate F;- 0.5
« -used to decide the expansion of rule- 1.1
GA Selection Parameters

Number of generations 500
Population size 61
Mutation probability 0.1
Crossover probability 0.6
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