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tWithin the Linguisti
 Modeling �eld, one of the most important appli
ations of FuzzyRule-Based Systems, the automati
 learning from numeri
al data of the fuzzy linguisti
 rules
omposing these systems is an important task. In this paper we introdu
e a novel way ofaddressing the problem making use of Ant Colony Optimization (ACO) algorithms. To do so,the learning task will be formulated as an optimization problem and the features ne
essaryfor an ACO algorithm will be introdu
ed. The behavior of the proposed learning methodwill be analyzed, 
ompared with other ones, when solving of two appli
ations with di�erent
hara
teristi
s: a three-dimensional fun
tion and a real-world ele
tri
 engineering problem.1 Introdu
tionNowadays, one of the most important areas for the appli
ation of Fuzzy Set Theory are FuzzyRule-Based Systems (FRBSs). These kinds of systems 
onstitute an extension of 
lassi
al Rule-Based Systems, be
ause they deal with fuzzy rules instead of 
lassi
al logi
 rules [2℄. An impor-tant appli
ation of FRBSs is Linguisti
 Modeling, whi
h in this �eld may be 
onsidered as anapproa
h used to model a system making use of a des
riptive language based on Fuzzy Logi
 withfuzzy predi
ates [11℄, where the interpretability of the obtained model is the main requirement.Thus, the linguisti
 model 
onsists of a set of linguisti
 des
riptions regarding the behavior ofthe system being modeled.In this approa
h, fuzzy linguisti
 IF-THEN rules are formulated and a pro
ess of fuzzi�
ation,inferen
e, and defuzzi�
ation leads to the �nal de
ision of the system. Although sometimes thefuzzy rules 
an be dire
tly derived from expert knowledge, di�erent e�orts have been made toobtain an improvement on system performan
e by in
orporating learning me
hanisms guidedby numeri
al information to de�ne the fuzzy rules. This issue, known as fuzzy rule learning(FRL), is 
onsidered a hard problem and a large number of methods has been proposed toautomati
ally generate fuzzy rules from numeri
al data making use of di�erent te
hniques su
has ad ho
 data-driven methods, neural networks, geneti
 algorithms, fuzzy 
lustering, et
. Fora review on some of them, refer to [1℄.In this 
ontribution we propose a novel way of fa
ing the FRL problem making use of Ant ColonyOptimization (ACO) algorithms [3, 7℄. To do so, the FRL problem will be formulated as anoptimization problem and the features related to these kinds of algorithms|su
h as heuristi
information, pheromone initialization, �tness fun
tion, solution 
onstru
tion, and pheromoneupdate|will be introdu
ed.With this aim, the paper is set up as follows. In Se
tion 2, a brief introdu
tion to FRBSsand the FRL problem is presented. Se
tion 3 is devoted to introdu
e all the aspe
ts related to1This resear
h has been supported by CICYT under proje
t PB98-1319



ACO algorithms parti
ularized to the FRL problem. In Se
tion 4, the behavior of the proposedlearning approa
h to solve two di�erent appli
ations is analyzed. Finally, in Se
tion 5, some
on
luding remarks will be pointed out.2 Fuzzy Rule-Based Systems and Fuzzy Rule Learning Problem2.1 Introdu
tion to Fuzzy Rule-Based SystemsAn FRBS presents two main 
omponents: 1) the Knowledge Base (KB), representing the knowl-edge about the problem being solved in the form of fuzzy linguisti
 IF-THEN rules, and 2) theInferen
e Engine, whi
h puts into e�e
t the fuzzy inferen
e pro
ess needed to obtain an outputfrom the FRBS when an input is spe
i�ed. The stru
ture of a linguisti
 FRBS is shown inFigure 1.
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 stru
ture of a linguisti
 Fuzzy Rule-Based System� The KB is 
omposed of the Rule Base (RB), 
onstituted by the 
olle
tion of linguisti
 rulesthemselves joined by means of the 
onne
tive also, and of the Data Base (DB), 
ontainingthe term sets and the membership fun
tions de�ning their semanti
s. The fuzzy linguisti
rule stru
ture 
onsidered in linguisti
 FRBSs is the following:Ri : IF X1 is Ai1 and ... and Xn is Ain THEN Y is Bj ;with X1; : : : ;Xn and Y being the input and output linguisti
 variables, respe
tively, andAi1; : : : ; Ain and Bj being linguisti
 labels, ea
h one of them having asso
iated a fuzzyset de�ning its meaning.� The Inferen
e Engine is 
omprised by three 
omponents: a Fuzzi�
ation Interfa
e, whi
hhas the e�e
t of transforming 
risp input data into fuzzy sets, an Inferen
e System, thatuses these together with the KB to perform the fuzzy inferen
e pro
ess, and a Defuzzi-�
ation Interfa
e, that obtains the �nal 
risp output from the individual fuzzy outputsinferred.The Inferen
e System is based on the appli
ation of the Generalized Modus Ponens, ex-tension of the 
lassi
al logi
 Modus Ponens. It is done by means of the CompositionalRule of Inferen
e, whi
h in its simplest form is redu
ed to [5℄:Ri(x0; y) = �B0i(y) = I(�Ai(x0); �Bj (y)) ;with x0 = (x1; : : : ; xn) being the 
urrent system input, �Ai(x0) = T (�Ai1(x1); : : : ; �Ain(xn))being the mat
hing degree between the rule ante
edent and the input |with �Aik(�) beingthe membership fun
tion of the label Aik and T being a 
onjun
tive operator (a t-norm)|,and I being a fuzzy impli
ation operator.



2.2 The Fuzzy Rule Learning ProblemSeveral tasks have to be performed in order to design an FRBS for a 
on
rete appli
ation. One ofthe most important and diÆ
ult ones is to obtain an appropriate KB about the problem beingsolved, in the following referred to as FRL problem. The diÆ
ulty presented by the humanexperts to express their knowledge in the form of fuzzy rules has made resear
hers developautomati
 te
hniques for performing this task. For a review on some of them, refer to [1℄.All these methods are based on working with an input-output data set E = fe1; : : : ; eNg,el = (xl1; : : : ; xln; yl), representing the behavior of the problem being solved, and with a previousde�nition of the DB 
omposed of the input and output primary fuzzy partitions. In our 
ase,we will 
onsider symmetri
al fuzzy partitions with a number of triangular membership fun
tions
rossing at height 0.5 (as shown Figure 2 for the 
ase of seven fuzzy sets). Therefore, ourFRL problem will be restri
ted to obtain the rules 
ombining the labels of the ante
edents andassigning a spe
i�
 
onsequent to ea
h ante
edent 
ombination.
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Figure 2: Graphi
al representation of a uniform fuzzy partition with seven labels3 Ant Colony Optimization Algorithms for Learning Fuzzy RulesTo apply ACO algorithms to a spe
i�
 problem, the following steps have to be performed:1. Obtain a problem representation as a graph or a similar stru
ture easily 
overed by ants.2. De�ne the way of assigning a heuristi
 preferen
e to ea
h 
hoi
e that the ant has to takein ea
h step to generate the solution.3. Establish an appropriate way of initializing the pheromone.4. De�ne a �tness fun
tion to be optimized.5. Sele
t an ACO algorithm and apply it to the problem.In the following subse
tions, these steps will be introdu
ed to solve the FRL problem.3.1 Problem RepresentationTo apply ACO algorithms to the FRL problem, it is 
onvenient to see it as a 
ombinatorialoptimization problem with the 
apability of being represented on a graph. In this way, we
an fa
e the problem 
onsidering a �xed number of rules and interpreting the FRL problem asthe way of assigning 
onsequents (i.e., labels of the output fuzzy partition) to these rules withrespe
t to an optimality 
riterion.



Hen
e, we are in fa
t dealing with an assignment problem and the problem representation 
an besimilar to the one used to solve the quadrati
 assignment problem (QAP) [3, 7℄, but with somepe
uliarities. We may draw an analogy between rules and fa
ilities and between 
onsequentsand lo
ations. However, unlike the QAP, the set of possible 
onsequents for ea
h rule may bedi�erent and it is possible to assign a 
onsequent to more than one rule (two rules may havethe same 
onsequent). We 
an dedu
e from these 
hara
teristi
s that the order of sele
ting ea
hrule to be assigned a 
onsequent is not determinant, i.e., the assignment order is irrelevant.To 
onstru
t the graph, the following steps are taken:1. Determine the rules: A rule Ri |i = 1; : : : ; Nr| de�ned by an ante
edent 
ombination,Ri = IF X1 is Ai1 and : : : and Xn is Ain ;will take part in the graph if and only if:9el = (xl1; : : : ; xln; yl) 2 E su
h that �Ai1(xl1) � : : : � �Ain(xln) 6= 0 :That is, there is at least one example lo
ated in the fuzzy input subspa
e de�ned by theante
edents 
onsidered in the rule.2. Link the rules to 
onsequents: The rule Ri will be linked to the 
onsequent Bj |j =1; : : : ; N
| (taken from the set of labels of the output fuzzy partition) if and only if itmeets the following 
ondition:9el = (xl1; : : : ; xln; yl) 2 E su
h that �Ai1(xl1) � : : : � �Ain(xln) � �Bj (yl) 6= 0 :That is, there is at least one example lo
ated in the fuzzy input subspa
e that is 
overedby su
h a 
onsequent.Figure 3 shows an example of a system with four rules and one output variable with three
onsequents. In Figure 3(a), the possible 
onsequents for ea
h ante
edent 
ombination areshown. To 
onstru
t a 
omplete solution, an ant iteratively goes over ea
h rule and 
hoosesa 
onsequent with a probability that depends on the pheromone trail �ij and the heuristi
information �ij, as usual (see Figure 3(b)). As said, the order of sele
ting the rules is irrelevant.In Figure 3(
) we may see the possible paths that an ant 
an take in a spe
i�
 example.3.2 Heuristi
 InformationThe heuristi
 information on the potential preferen
e of sele
ting a spe
i�
 
onsequent, Bj, inea
h ante
edent 
ombination (rule) is determined by 
onsidering 
overing 
riteria as follows (seeFigure 4 for a graphi
al interpretation of the heuristi
 assignment):For ea
h rule de�ned by an ante
edent 
ombination, Ri = IF X1 is Ai1 and : : : and Xn is Ain|i = 1; : : : ; Nr| do:1. Build the set E0i 
omposed of the input-output data pairs that are lo
ated in the inputsubspa
e de�ned by Ri, i.e., E0i = fel = (xl1; : : : ; xln; yl) 2 E su
h that �Ai1(xl1) � : : : ��Ain(xln) 6= 0g.
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(e)Figure 3: Learning pro
ess for a simple problem with two input variables (n = 2), four rules(Nr = 4), and three labels in the output fuzzy partition (N
=3): (a) Set of possible 
onsequentfor ea
h rule (only the rules where at least one example is lo
ated in the 
orresponding subspa
eare 
onsidered); (b) Graph of paths where �ij 6= 0 ex
ept �13, �31, �41, and �42, whi
h are zero;(
) It is possible to take twelve di�erent paths (
ombinations of 
onsequents); (d) Rule de
isiontable for the third 
ombination; (e) RB generated from the third 
ombination2. Make use of an initialization fun
tion based on 
overing 
riteria to give a heuristi
 prefer-en
e degree to ea
h ele
tion. Many di�erent 
hoi
es may be 
onsidered [4℄. In this paperwe will work with the 
overing of the example best 
overed 
riterion shown in Figure 4.Sin
e the heuristi
 information is based on 
overing 
riteria, it will be zero for a spe
i�
 
onse-quent when no examples lo
ated in the fuzzy input subspa
e are 
overed by it. This means thatfor a rule, only those links to 
onsequents whose heuristi
 information is greater than zero willbe 
onsidered. In Figure 3(b) we 
an observe the 
onsequent B3 
an not be assigned to the ruleR1, the 
onsequent B1 
an not be assigned to the rule R3, and the 
onsequents B1 and B2 
annot be assigned to the rule R4 be
ause their heuristi
 informations (
overing degrees) are zero.3.3 Pheromone InitializationThe initial pheromone value of ea
h assignment is obtained as follows: �0 = PNri=1maxN
j=1 �ijNr : Inthis way, the initial pheromone will be the mean value of the path 
onstru
ted taking the best
onsequent in ea
h rule a

ording to the heuristi
 information (a greedy assignment).
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Figure 4: Heuristi
 assignment from the rule Ri to ea
h 
onsequent in a system with two inputvariables, �ve labels for ea
h of them, and N
 labels (
onsequents) in the output fuzzy partition.The 
overing of the example best 
overed is 
onsidered to be the heuristi
 information3.4 Fitness Fun
tionThe �tness fun
tion establishes the quality of a solution. The measure 
onsidered will be thefun
tion 
alled mean square error (MSE), whi
h de�ned as MSE(RBk) = 12�jEj Pel2E(yl �Fk(xl0))2, with Fk(xl0) being the output obtained from the FRBS (built using the RB generatedby the ant k, RBk) when re
eives the input xl0 (input 
omponent of the example el), and ylbeing the known desired output. The 
loser to zero the measure is, the better the solution is.3.5 Ant Colony Optimization AlgorithmOn
e the previous 
omponents have been de�ned, an ACO algorithm has to be given to solvethe problem. In this 
ontribution, two well-known ACO algorithms will be 
onsidered: theAnt System (AS) [9℄ and the Ant Colony System (ACS) [8℄. Depending on the ACO algorithmfollowed, two methods arise: the AS-FRL and the ACS-FRL ones. The so-known solution
onstru
tion and pheromone trail update rule 
onsidered by these ACO algorithms will be used.Only some adaptations will be needed to apply them to the FRL problem:� The set of nodes attainable from Ri (set of feasible neighborhood of node Ri) will beJk(i) = fj su
h that �ij 6= 0g in the transition rules 
onsidered by both ACO algorithmswhen 
onstru
ting the solution.� The amount of pheromone ant k puts on the 
ouplings belonging to the solution 
on-stru
ted by it will be 1=MSE(RBk), with RBk being the RB generated by ant k.� In the lo
al pheromone trail update rule of the ACS algorithm, the most usual way of
al
ulating ��ij, ��ij = �0, we will be used, thus 
onsidering the simple-ACS algorithm.4 Examples of Appli
ationWith the aim of analyzing the behavior of the proposed ACO pro
esses, we have 
hosen twodi�erent appli
ations: the fuzzy modeling of a three-dimensional fun
tion and a real-world



ele
tri
 engineering problem [6℄. We will 
ompare them with two well-known ad ho
 rule learningmethods whose high performan
e has been 
learly demonstrated: the method proposed by Wangand Mendel (WM-method) [12℄ and the one proposed by Nozaki, Ishibu
hi, and Tanaka (NIT-method) [10℄. Two new methods have also been developed with the aim of 
omparing the ACOapproa
h with other optimization ones. These two methods are based on the same problemrepresentation presented in this paper (
ombinatorial sear
h of 
onsequents among a set of
andidates for ea
h rule) but using a Simulated Annealing algorithm (SA-FRL) and a Geneti
Algorithm (GA-FRL) to a

omplish the sear
h. Finally, a greedy algorithm dire
tly based onthe heuristi
 information (HI-FRL) by taking the 
onsequent with the highest value for ea
hrule, whi
h was proposed in [4℄, will be also 
onsidered. The results presented for ea
h algorithmhave been taken after a hard experimentation with the parameters in order to look for the bestbehavior.An initial DB 
onstituted by a primary fuzzy partition for ea
h variable will be 
onsidered inea
h 
ase. Every partition is formed by seven labels with triangular-shaped equally distributedfuzzy sets giving meaning to them (as shown in Figure 2), and the appropriate s
aling fa
tors totranslate the generi
 universe of dis
ourse into the one asso
iated with ea
h problem variable.With respe
t to the FRBS reasoning method used, we have sele
ted theminimum t-norm playingthe role of the impli
ation and 
onjun
tive operators, and the 
enter of gravity weighted by themat
hing strategy a
ting as the defuzzi�
ation operator [5℄.Con
erning the parameters used in the ACO algorithms, the number of ants will be the numberof rules in ea
h 
ase, the number of iterations will be 50, and for the rest of parameters (�, �,and �, for both AS-FRL and ACS-FRL, and q0 for ACS-FRL) an experimental study has beenperformed, showing in the tables the best results.4.1 Linguisti
 Modeling of a Simple Three-Dimensional Fun
tionFor this �rst experiment, a simple unimodal three-dimensional mathemati
al fun
tion is 
on-sidered to be modeled, F (x1; x2) = x21 + x22, with x1; x2 2 [�5; 5℄ and hen
e F (x1; x2) 2 [0; 50℄.A set with 1; 681 values has been generated for the training data set. Another set with 168values (the ten per
ent of the training set) has been generated for its use as test set to evaluatethe performan
e of the learning methods, avoiding any possible bias related to the data in thetraining set.The results obtained by the seven methods analyzed are 
olle
ted in Table 1, where #R standsfor the number of rules, MSEtra and MSEtst for the values obtained over the training and testdata sets respe
tively, and EBS for the number of evaluations needed to obtain the best solution.The best results are shown in boldfa
e.Analyzing these results, we may note the high performan
e of the ACO methods. Oppositeto the three ad ho
 learning methods, the models generated by AS-FRL and ACS-FRL are
learly better in both approximation (MSEtra) and generalization (MSEtst). Fo
using on themethods based on 
ombinatorial sear
h, the ACS-FRL is the algorithm that performs the bestsear
h pro
ess obtaining the most a

urate model regarding approximation, and with a goodgeneralization. However, the four methods obtain similar results (being slightly worse the ap-proximation degree of the model generated by AS-FRL) and is in the 
onvergen
e speed wherethe ACO approa
hes stand out. As noti
e, ACS-FRL found the best solution three times qui
kerthan the SA approa
h and seventeen times qui
ker than the GA. In AS-FRL, the di�eren
es arestill more signi�
ant. This fa
t is due to the use of heuristi
 information that guides the ACOalgorithms in the sear
h pro
ess.



Table 1: Results obtained in the modeling of FMethod #R MSEtra MSEtst EBS ParametersWM-method 49 2.048137 2.255928 0 |NIT-method 98 2.465487 1.768125 0 |HI-FRL 49 2.048137 2.255928 0 |SA-FRL 49 1.609891 1.213388 3,528 Init. temp. = 40, No. of neighbors = 98GA-FRL 49 1.606097 1.514651 20,555 500 gen., 61 indiv., P
 = 0:6, Pm = 0:2AS-FRL 49 1.660622 1.419587 686 � = 1, � = 2, � = 0:2ACS-FRL 49 1.601071 1.350340 1,225 � = 1, � = 1, � = 0:2, q0 = 0:44.2 The Ele
tri
al Distribution Network ProblemSometimes, there is a need to measure the amount of ele
tri
ity lines that an ele
tri
 
ompanyowns. This measurement may be useful for several aspe
ts su
h as the estimation of the main-tenan
e 
osts of the network, whi
h was the main goal in this appli
ation [6℄. The probleminvolves �nding a model that relates the total length of low voltage line installed in a rural townwith the number of inhabitants in the town and the mean of the distan
es from the 
enter ofthe town to the three furthest 
lients in it. This model will be used to estimate the total lengthof line being maintained.To 
ompare the methods, we have randomly divided the sample, 
omposed of 495 pie
es of realdata obtained from dire
t measures in this number of villages, into two sets 
omprising 396 and99 samples, labeled training and test. The results obtained with the 
onsidered methods are
olle
ted in Table 2. Table 2: Results obtained in the ele
tri
al appli
ationMethod #R MSEtra MSEtst EBS ParametersWM-method 24 222,654 239,962 0 |NIT-method 64 185,395 170,489 0 |HI-FRL 32 239,393 275,953 0 |SA-FRL 32 174,295 161,261 1,248 Init. temp. = 500, No. of neighbors = 32GA-FRL 32 175,122 187,605 20,512 500 gen., 61 indiv., P
 = 0:6, Pm = 0:2AS-FRL 32 178,119 158,662 384 � = 1, � = 2, � = 0:6ACS-FRL 32 175,096 165,561 576 � = 1, � = 2, � = 0:2, q0 = 0:2From the obtained results, we may again note the good performan
e of the ACO approa
hesthat outperform the three ad ho
 learning methods. Among the four 
ombinatorial sear
halgorithms, the AS-FRL performs a sear
h a little worse than the rest but obtains the bestmodel with respe
t to generalization. ACS-FRL obtains a very good model only over
ame to alesser extent by the SA-FRL method. Again, the main advantage of the ACO algorithms lies inthe 
onvergen
e speed, whi
h in the 
ase of the ACS-FRL method is twi
e qui
ker than the SAapproa
h and thirty �ve times qui
ker than the GA-FRL method, moreover obtaining a mosta

urate model in this latter 
ase.



5 Con
luding RemarksIn this paper, a novel and interesting appli
ation, the FRL problem (whi
h involves automati
allylearning from numeri
al data the RB 
omposing an FRBSs), has been proposed to be solvedby the ACO meta-heuristi
. In this way, two spe
i�
 ACO-based learning methods have beenpresented. Their high performan
e has been shown in the solving of two problems. Comparingwith other ad ho
 learning algorithms, the models obtained by the ACO methods are 
learlybetter. Moreover, opposite to other kinds of optimization te
hniques as SA and GAs, the ACOapproa
h performs a qui
k 
onvergen
e and sometimes obtains better results. The former is dueto the use of heuristi
 information to guide the global sear
h. As further work, we propose toapply new ACO approa
hes to the FRL problem using new features su
h as the lo
al sear
h toimprove the performan
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