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tIn this 
ontribution, a new ACO model, the Best-Worst Ant System, will be proposedwhi
h is based on Evolutionary Computation 
on
epts. Its performan
e will be analyzedwhen solving of di�erent instan
es of the traveling salesman problem and will be 
omparedto two existing previous models, the Ant System and the Ant Colony System.1 Introdu
tionIn the last few years, Ant Colony Optimization (ACO) [6℄ has appeared as a new bio-inspiredmeta-heuristi
 to solve many 
omplex optimization problems. ACO algorithms mimi
 the be-havior of natural ant 
olonies. They are thus based on the 
ooperation among multiple agents,ants, every one generating a possible solution to the problem in ea
h algorithm iteration. To doso, ea
h ant travels a graph whi
h represents a spe
i�
 problem instan
e and makes use of twoinfomation types that are 
ommon to the whole 
olony and spe
ify the preferen
e of the graphedges at every moment:� Heuristi
 information, whi
h depends on the spe
i�
 problem instan
e, is 
omputed beforerunning the algorithm and remains �xed during it. The value asso
iated to ea
h edge (i; j)is noted by �ij .� Pheromone trail information, whi
h is modi�ed during the algorithm run and depends onthe number of ants that travelled ea
h edge in the past and on the quality of the solutionsthey generated. It is usually represented in the form of a pheromone matrix, � = [�ij ℄,whi
h mimi
s the real pheromona that natural ants deposit in their movements.In view of the previous behavior, and as already noted in [6℄, it 
an be seen that there aresome similarities between the operation mode of ACO algorithms and the Population-BasedIn
remental Learning (PBIL) [1℄ evolutionary algorithm (EA) due to the following reasons [3℄:� They both make use of a memoristi
 stru
ture that undergoes adaption.� This stru
ture allows possible solutions to the problem to be generated in ea
h iterationand its adaption is guided by the quality of these solutions.1This resear
h has been supported by proje
t CICYT PB98-1319



These similarities were also analyzed in deep by Monmar
h�e et al. in [8℄, who 
hara
terized a
ommon framework, whi
h they 
alled Probabilisti
 Sear
h Meta-heuristi
, where a third model,Bit-Simulated Crossover, is in
luded as well.The said 
ommon 
hara
teristi
s were the ones that motivated our idea that the integration ofsome spe
i�
 aspe
ts of PBIL, in parti
ular, and of other EAs, in general, 
ould improve theperforman
e of ACO [3℄ (in fa
t, two ACO models, ASelite and ASrank, based on this idea areto be found in [2℄). The new ACO model so developed will be 
alled Best-Worst Ant System(BWAS) and will be introdu
ed in this work.To do so, on
e analyzed the basi
 operation mode of ACO algorithms and des
ribed some spe
i�
models in Se
tion 2, Se
tion 3 will be devoted to brie
y introdu
e the PBIL algorithm. Later,our new ACO model will be des
ribed in Se
tion 4 and its performan
e when solving of someTSP instan
es will be analyzed and 
ompared with other two ACO algorithms. Finally, some
on
luding remarks and future works will be mentioned in Se
tion 6.2 Ant Colony OptimizationThe basi
 operation mode of an ACO algorithm is the following: in ea
h iteration, a populationof m ants gradually and 
on
urrently build solutions to the problem a

ording to a transitionrule whi
h depends on the heuristi
 and pheromone trail information available. Ants 
an releasepheromone while building the solutions (online step-by-step pheromone trail updating), on
ethey have been generated and evaluated (online delayed pheromone trail updating) |positivelyreinfor
ing the edges travelled with an amount of pheromone dire
tly dependent on the solutionquality| or both. Then, all the pheromone trails su�er from evaporation.Moreover, some daemon a
tions 
an be performed from a global perspe
tive, su
h as observingthe quality of all the solutions generated and updating an additional pheromone trail only insome of them, or applying a lo
al sear
h pro
edure to the solutions generated by the antsand depositing additional pheromone. In both 
ases, the daemon repla
es the online delayedpheromone updating and the pro
ess is 
alled o�ine pheromone trail updating.A simpli�ed stru
ture of a generi
 ACO algorithm for stati
 
ombinatorial optimization problemsis shown as follows:1. Give an initial pheromone value, �0, to ea
h edge.2. For k=1 to m do (in parallel)� Pla
e ant k in an initial node r.� In
lude r in Lk (tabu list of ant k keeping a re
ord of the visited nodes).� While (ant k not in a target node) do{ Sele
t the next node to visit, s =2 Lk, a

ording to the transition rule.{ In
lude s in Lk.{ Optional: Online step-by-step updating of the pheromone trail �rs of the travellededge.



3. Optional: For k=1 to m do� Evaluate the solution generated by ant k, Sk.� For ea
h edge (r; s) 2 Sk, apply the online delayed pheromone trail updating rule.4. Evaporate pheromone.5. Optional: Perform the daemon a
tions.6. If (Stop Condition is satis�ed) Then give the global best solution found as output and StopElse go to step 2.In parti
ular, the two �rst ACO models, Ant System (AS) [4℄ and Ant Colony System (ACS)[5℄, implement the algorithm 
omponents as follows:AS:� Transition rule: The destination node s for an ant k lo
ated in node r is randomly 
hosena

ording to the following probability distributionpk(r; s) = 8<: [�rs℄��[�rs℄�Pu2Jk(r)[�ru℄��[�ru℄� ; if s 2 Jk(r)0; otherwise ;with �rs being the pheromone trail of edge (r; s), �rs being the heuristi
 value (for example,in the TSP , �rs = 1lrs , where lrs is the length of edge (r; s)), Jk(r) being the set of nodesthat remain to be visited by ant k, and with � and � being parameters weighting therelative importan
e of pheromone trail and heuristi
 information.� Online delayed pheromone updating rule: It is developed by means of the expression�rs  (1� �) � �rs + mXk=1��krs where ��krs = ( f(C(Sk)); if (r; s) 2 Sk0; otherwise ;with � 2 [0; 1℄ being the pheromone de
ay parameter and f(C(Sk)) being the amountof pheromone to be deposited by ant k, whi
h depends on the quality of the solution itgenerated, C(Sk) (for example, in the TSP, f(C(Sk)) = 1C(Sk) ).It is noteworthy that, for pra
ti
al purposes, the rule in
ludes the evaporation of an (1��)per one of the pheromone trail (step 4 of the algorithm).ACS:� Transition rule: The destination node s is 
hosen as follows:s = 8<: arg maxu2Jk(r)f[�ru℄� � [�ru℄�g; if q < q0S; otherwise ;with q being a random value uniformly distributed in [0,1℄, q0 2 [0; 1℄ being a parameterde�ning the balan
e explotaition-biased exploration, and with S being a random nodesele
ted a

ording to the probability distribution given by the AS transition rule.



� Online step-by-step updating rule: Ea
h time an ant travels an edge, it is made in the way:�rs  (1� �) � �rs + � ���rsIn this paper we 
onsider ��ij = �0, thus dealing with the simple ACS.� O�ine pheromone updating: In this 
ase, the deposit of pheromone is done by the daemononly 
onsidering a single ant, the one who generated the global best solution, Sglobal�best:�rs  (1��)��rs+����rs where ��rs = ( f(C(Sglobal�best)); if (r; s) 2 Sglobal�best0; otherwiseFor a review of other ACO algorithms refer to [6℄.3 The PBIL algorithmPBIL [1℄ takes a memoristi
 stru
ture, a probability array P = (p1; : : : ; pn) of dimension n equalto the number of problem variables, as a base. This array en
odes a probability distributionrepresenting a prototype for good quality solutions and is used to generate a population ofpossible solutions (binary arrays) in ea
h iteration.The probability array is the 
omponent that undergoes adaption during the algorithm runa

ording to its history. In the PBIL basi
 model, the array is updated a

ording to the qualityof the best solution generated in the 
urrent iteration, Best-solution, as follows:pi = (1� LR) � pi + LR �Best� solutioniwith LR 2 [0; 1℄ being a parameter 
ontrolling the speed of 
onvergen
e, the learning rate.Moreover, the 
omponents of P su�er random mutations with probabilityMutProb to avoid thepossibility of a premature 
onvergen
e of the algorithm. The mutation will be performed in thefollowing way: pi = ( (1�MutShift) � pi; if a = 0;(1�MutShift) � pi +MutShift; if a = 1with a being a random value in f0; 1g and MutShift 2 [0; 1℄ being the mutation step size.Analyzing the algorithm operation mode, it 
an be seen the similarity between PBIL and ACO.Besides, the updating rule for P is similar to the o�ine updating rule in ACS.An extension of the basi
 PBIL model involves 
onsidering also the worst solution in the 
urrentpopulation, Worst-solution, for the updating:pi = (1� LRneg) � pi + LRneg �Worst� solutioni if Worst� solutioni 6= Best� solutioniwith LRneg 2 [0; 1℄ being the negative learning rate.



4 The Best-Worst Ant SystemThe proposed BWAS uses the transition rule of AS (see Se
tion 2), does not perform on-line pheromone updatings (nor step-by-step neither delayed) and 
onsiders the three followingdaemon a
tions. The name of the algorithm is a 
onsequen
e of the �rst of them:� The global best and 
urrent worst solutions are 
onsidered respe
tively to performpositive and negative updatings, as PBIL algorithm does with the probability array. Of
ourse, our aim is to reinfor
e the edges 
ontained in good solutions and penalize the ones frombad solutions. To do so, the daemon in BWAS �rst apply a lo
al sear
h pro
edure on the di�erentsolutions generated by the ants, and o�ine updates the pheromone trail only 
onsidering theglobal best solution as done in ACS:�rs  (1� �) � �rs +��rs where ��rs = ( f(C(Sglobal�best)); if (r; s) 2 Sglobal�best0; otherwiseThen, all the edges existing in the worst solution generated in the 
urrent iteration, S
urrent�worst,that are not present in the global best one are penalized by another de
ay of the pheromonetrail asso
iated |an additional evaporation| performed as follows:8(r; s) 2 S
urrent�worst and (r; s) 62 Sglobal�best; �rs  (1� �) � �rs� BWAS also in
ludes a restart of the sear
h pro
ess when it get stu
k, a key 
hara
-teristi
 of the CHC EA [7℄. In ACO, this fa
t happens when the pheromone matrix has evolvedto a situation where the pheromone trails asso
iated to the edges belonging to the best solutionsare very high, whilst the remaining ones are very 
lose to zero (stagnation).We should note that this aspe
t is not new in the ACO �eld, sin
e previous models |su
h usMMAS [9℄| have 
onsidered it previously as a daemon a
tion with di�erent approa
hes. Inour 
ase, we will perform the restart by setting all the pheromone matrix 
omponents to �0, theinitial pheromone value, when the number of edges that are di�erent between the best and theworst solutions generated in the 
urrent iteration is lesser than a spe
i�
 per
entage.� The pheromone matrix su�ers mutations to introdu
e diversity in the sear
hpro
ess, as done in PBIL with the memoristi
 stru
ture |the probability array P|. Themutation operator will perform small 
hanges in the earlier sear
h stages and strong ones inthe later stages. Hen
e, it tries to �nd new spa
e zones where better solutions than the 
urrentglobal best one 
an be found in these later stages when the ACO algorithm has 
onverged to aspe
i�
 spa
e zone, thus en
ouraging the exploration instead of the exploitation. To do so, ea
h
omponent of the pheromone matrix is mutated |with probability Pm| as follows:� 0rs = ( �rs +mut(it; �threshold); if a = 0�rs �mut(it; �threshold); if a = 1 �threshold = P(r;s)2Sglobal�best �rsjSglobal�bestjwith a being a random value in f0; 1g, it being the 
urrent iteration, �threshold being the averageof the pheromone trail in the edges 
omposing the global best solution and with mut(�) being:mut(it; �threshold) = it� itrNit� itr � � � �threshold



where Nit is the maximum number of iterations of the algorithm and itr is the last iterationwhere a restart was performed.We should note two aspe
ts of the mutation operator proposed:� The mutation range 
omes ba
k to its initial value ea
h time a restart is performed. Then,the algorithm starts with a new sear
h from an exploration phase.� The parameter � spe
i�es the power of the mutation with respe
t to the number of itera-tions developed till the moment. For example, if � = 4, the value to add or subtra
t willrea
h �threshold ea
h time a 25% of the total number of iterations remaining sin
e the lastrestart have been run.It is noteworthy that the 
hoi
e of the 
omponents integrated from the Evolutionary Computa-tion (EC) �eld has been done to obtain an appropriate balan
e between the exploration and theexploitation of the sear
h spa
e. Our pheromone updating me
hanism 
auses a strong exploita-tion that allows the algorithm to obtain good solutions eÆ
iently, whilst the pheromone matrixmutation en
ourages the spa
e exploration and avoids the algorithm stagnation. Moreover, therestart pro
ess also allows the algorithm not to get stu
k and not to make unne
esary iterations.5 Experiments and Analysis of ResultsThe proposed ACO model and the two �rst proposals of ACO algorithms, AS and ACS, willbe used to the solving of eight symmetri
 TSP instan
es. The three algorithms will 
onsider thesame parameter values, the use of a 
andidate list of the same size and the same lo
al sear
hpro
edure, as well as the same seeds for the random number generator. The tour improvementpro
edure will be the restri
ted 2-opt pro
edure, where the 
andidate nodes are sele
ted insidethe 
andidate list and the don't look bit stru
ture is 
onsidered.The parameter values 
onsidered are shown in Table 1. We should note that these values havenot been sele
ted to obtain the best possible results but to get an appropriate balan
e betweena

ura
y and eÆ
ien
y for 
omparison purposes. For example, longer runs of the lo
al sear
hpro
edure will be needed to obtain better results in the largest instan
es.It is noteworthy that the number of iterations shown, 300, is a maximum threshold, sin
e thealgorithm will stop if the optimal solution is found before all these iterations are performed.This will in
uen
e the run time of the models, thus allowing us to measure the 
onvergen
espeed of the three algorithms 
onsidered.Ea
h model has been run 15 times in a 
omputer with a Pentium II pro
essor at 266 MHz.The overall results obtained are shown in Table 2, where ea
h 
olumn name has the followinginterpretations: Best means the 
ost of the best solution found in the 15 runs, Average 
olle
tsthe average of the 
osts of the 15 solutions generated, Dev: shows the standard deviations,Error stands for the per
entage di�eren
e between the average and the 
ost of the optimalsolution (whi
h is shown in bra
kets after the instan
e name), and T ime shows the average time
onsumed by the models, measured in se
onds. Finally, the last 
olumn named #Rest: 
ontainsthe average number of restarts performed by BWAS in the 15 runs.The 
omputational results in Table 2 show that generally BWAS presents the best performan
e.It allows us to obtain the best results in all the eight instan
es but the largest one, Fl1577, where



Table 1: Parameter values 
onsidered for the ACO modelsParameter ValueNumber of ants m = 25Maximum number of iterations Nit = 300Number of runs of ea
h algorithm 15Pheromone updating rules parameter � = 0:2AS o�ine pheromone rule positive updating f(C(Sk)) = 1C(Sk)ACS o�ine pheromone rule positive updating f(C(Sglobal�best)) = 1C(Sglobal�best)Transition rule parameters � = 1, � = 2ACS transition rule parameters q0 = 0:8Initial pheromone amount �0 = #
itiesC(SGreedy)Candidate list size 
l = 20BWAS parametersPheromone matrix mutation probability Pm = 0:3Mutation operator parameter � = 4Per
entage of di�erent edges in the restart 
ondition 5%Lo
al sear
h pro
edure parametersNumber of neighbors generated per iteration 40Neighbor 
hoi
e rule �rst improvementACS outperforms it. We think that this BWAS result 
ould be improved by relaxing the restart
he
king 
ondition |a di�eren
e on the 5% of the total number of edges between the best andworst solutions generated in the 
urrent run|, whi
h seems to be ex
essively restri
tive forvery large instan
es. On the other hand, BWAS gets the optimal solution in the �ve smallerinstan
es, whilst AS and ACS does so only in the four and three 
ases, respe
tively.Fo
using on the average performan
e in the 15 runs developed, the results show that BWASover
omes again AS in all the eight instan
es and ACS in seven of them (the only ex
eption isagain the instan
e Fl1577, where BWAS is also outperformed by ACS in average). Moreover,in view of the standard deviation values, whi
h are lesser than AS and ACS ones in every 
ase,we 
an draw that BWAS is a very robust algorithm.6 Con
luding RemarksIn this 
ontribution, BWAS has been proposed, whi
h is a new ACO model based on theintegration of EC 
on
epts. Its performan
e has been analyzed when solving of eight TSPinstan
es of di�erent sizes and it has shown a good behavior in 
omparison with AS and ACS.Di�erent ideas for future developments arise: (i) to improve BWAS performan
e on signi�
antlylarge instan
es, (ii) to study the in
uen
e of the di�erent algorithm 
omponents in isolation andof the appropriate values for the parameters, and (iii) to analyze the 
onsideration of other ECaspe
ts su
h us the use of a number of the best and worst ants to positive and negatively updatethe pheromone trails or the weighting of the pheromone amount ea
h ant does depending on itsranking |as done in ASelite and ASrank, respe
tively|.



Table 2: Results obtained in the di�erent instan
esEil51 (426) Berlin52 (7542)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 426 426 0 0 1.72 3.33 7542 7542 0 0 0.13 0AS 426 426.93 0.46 0.22 11.41 | 7542 7542 0 0 0.34 |ACS 429 436.07 4.28 2.36 7.37 | 7542 7716.53 105.68 2.31 6.14 |Brazil58 (25395) Kroa100 (21282)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 25395 25395 0 0 0.45 0 21282 21285.07 8.09 0.01 6.73 6.2AS 25395 25395 0 0 0.59 | 21282 21331.27 34.69 0.23 26.61 |ACS 25395 25395 0 0 0.31 | 21320 21558.67 155.89 1.3 15.73 |Gr120 (6942) Att532 (27686)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 6942 6950.87 5.24 0.13 20.96 9.53 27842 27988.87 100.82 1.09 119.84 16.13AS 7031 7088.27 32.98 2.11 34.88 | 29348 29573.27 156.99 6.82 253.91 |ACS 7057 7210.73 74.84 3.87 22.72 | 28000 28370.20 162.27 2.47 99.97 |Rat783 (8806) Fl1577 (22249)Model Best Average Dev: Error T ime #R Best Average Dev: Error T ime #RBWAS 8972 9026.27 35.26 2.50 186.92 13.27 22957 23334.53 187.33 4.88 656.64 0AS 9586 9647.80 45.96 9.56 421.14 | 26063 26944 376.41 21.10 1251.01 |ACS 9218 9307.33 52.97 5.69 167.25 | 22749 23122.53 260.92 3.93 865.96 |Referen
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