A New ACO Model Integrating Evolutionary Computation
Concepts: The Best-Worst Ant System !

Oscar Cordén', Inaki Ferndndez de Viana?, Francisco Herrera', Llanos Moreno®

! Dept. of Computer Science and Artificial Intelligence. E.T.S.I. Informdtica.
University of Granada. Avda. Andalucia, 38. 18071 - Granada. Spain
2 E.T.S.I. Informdtica. University of Granada.
Avda. Andalucia, 38. 18071 - Granada. Spain
3 Infotel Informacion y Telecomunicaciones SA. ¢/ San Antén, 72,

5% planta, oficina 16. 18005 - Granada. Spain
1{oc:ordon,herrera}@dec:sai.ugr.es, ?ijfviana@navegalia.com, ®llanos@infotel.es

Abstract

In this contribution, a new ACO model, the Best-Worst Ant System, will be proposed
which is based on Evolutionary Computation concepts. Its performance will be analyzed
when solving of different instances of the traveling salesman problem and will be compared
to two existing previous models, the Ant System and the Ant Colony System.

1 Introduction

In the last few years, Ant Colony Optimization (ACO) [6] has appeared as a new bio-inspired
meta-heuristic to solve many complex optimization problems. ACO algorithms mimic the be-
havior of natural ant colonies. They are thus based on the cooperation among multiple agents,
ants, every one generating a possible solution to the problem in each algorithm iteration. To do
so, each ant travels a graph which represents a specific problem instance and makes use of two
infomation types that are common to the whole colony and specify the preference of the graph
edges at every moment:

e Heuristic information, which depends on the specific problem instance, is computed before
running the algorithm and remains fixed during it. The value associated to each edge (i, )
is noted by 7;;.

e Pheromone trail information, which is modified during the algorithm run and depends on
the number of ants that travelled each edge in the past and on the quality of the solutions
they generated. It is usually represented in the form of a pheromone matrix, 7 = [7;],
which mimics the real pheromona that natural ants deposit in their movements.

In view of the previous behavior, and as already noted in [6], it can be seen that there are
some similarities between the operation mode of ACO algorithms and the Population-Based
Incremental Learning (PBIL) [1] evolutionary algorithm (EA) due to the following reasons [3]:

e They both make use of a memoristic structure that undergoes adaption.

e This structure allows possible solutions to the problem to be generated in each iteration
and its adaption is guided by the quality of these solutions.

!This research has been supported by project CICYT PB98-1319



These similarities were also analyzed in deep by Monmarché et al. in [8], who characterized a
common framework, which they called Probabilistic Search Meta-heuristic, where a third model,
Bit-Simulated Crossover, is included as well.

The said common characteristics were the ones that motivated our idea that the integration of
some specific aspects of PBIL, in particular, and of other EAs, in general, could improve the
performance of ACO [3] (in fact, two ACO models, AS¢jite and AS,qnk, based on this idea are
to be found in [2]). The new ACO model so developed will be called Best-Worst Ant System
(BW AS) and will be introduced in this work.

To do so, once analyzed the basic operation mode of ACO algorithms and described some specific
models in Section 2, Section 3 will be devoted to briefly introduce the PBIL algorithm. Later,
our new ACO model will be described in Section 4 and its performance when solving of some
TSP instances will be analyzed and compared with other two ACO algorithms. Finally, some
concluding remarks and future works will be mentioned in Section 6.

2 Ant Colony Optimization

The basic operation mode of an ACO algorithm is the following: in each iteration, a population
of m ants gradually and concurrently build solutions to the problem according to a transition
rule which depends on the heuristic and pheromone trail information available. Ants can release
pheromone while building the solutions (online step-by-step pheromone trail updating), once
they have been generated and evaluated (online delayed pheromone trail updating) —positively
reinforcing the edges travelled with an amount of pheromone directly dependent on the solution
quality— or both. Then, all the pheromone trails suffer from evaporation.

Moreover, some daemon actions can be performed from a global perspective, such as observing
the quality of all the solutions generated and updating an additional pheromone trail only in
some of them, or applying a local search procedure to the solutions generated by the ants
and depositing additional pheromone. In both cases, the daemon replaces the online delayed
pheromone updating and the process is called offline pheromone trail updating.

A simplified structure of a generic ACO algorithm for static combinatorial optimization problems
is shown as follows:

1. Ghve an initial pheromone value, 19, to each edge.
2. For k=1 to m do (in parallel)

e Place ant k in an initial node r.
e Include r in Ly (tabu list of ant k keeping a record of the visited nodes).
e While (ant k not in a target node) do

— Select the next node to visit, s ¢ Ly, according to the transition rule.

— Include s in Ly.

— Optional: Online step-by-step updating of the pheromone trail 7,5 of the travelled
edge.



3. Optional: For k=1 to m do

e Fualuate the solution generated by ant k, Sy.
e For each edge (r,s) € Sk, apply the online delayed pheromone trail updating rule.

4. Evaporate pheromone.
5. Optional: Perform the daemon actions.

6. If (Stop Condition is satisfied) Then give the global best solution found as output and Stop
Else go to step 2.

In particular, the two first ACO models, Ant System (AS) [4] and Ant Colony System (ACS)
[5], implement the algorithm components as follows:

AS:

e Transition rule: The destination node s for an ant k£ located in node r is randomly chosen
according to the following probability distribution

[Trs}a'[nrs]ﬂ :
pk(r7 S) = ZuEJk(T)[TTU]a'[nTU]B’ lf 5 6 Jk (T)
0, otherwise

with 7,4 being the pheromone trail of edge (r, s), 7),s being the heuristic value (for example,
in the TSP |, n,s = i, where [,.¢ is the length of edge (r,s)), Jx(r) being the set of nodes
that remain to be visited by ant k, and with « and [ being parameters weighting the
relative importance of pheromone trail and heuristic information.

e Online delayed pheromone updating rule: 1t is developed by means of the expression

m .
N k k _ ) F(C(Sk), if(r,s) €S

Trs < (L —p) - Tps + ];1 AT where A7) = { 0. othorwise
with p € [0,1] being the pheromone decay parameter and f(C(Sk)) being the amount
of pheromone to be deposited by ant k, which depends on the quality of the solution it

generated, C(Sy) (for example, in the TSP, f(C(Sk)) = ﬁ)

It is noteworthy that, for practical purposes, the rule includes the evaporation of an (1—p)
per one of the pheromone trail (step 4 of the algorithm).

ACS:

e Transition rule: The destination node s is chosen as follows:

{ arg max {[7,]" - [nru]ﬂ}v if g <qo
s = u€Jy(r)

S, otherwise

with ¢ being a random value uniformly distributed in [0,1], go € [0, 1] being a parameter
defining the balance explotaition-biased exploration, and with S being a random node
selected according to the probability distribution given by the AS transition rule.



e Online step-by-step updating rule: Fach time an ant travels an edge, it is made in the way:

Trs — (L= p) - Tps + p - ATps

In this paper we consider A7;; = 79, thus dealing with the simple ACS.

e Offline pheromone updating: In this case, the deposit of pheromone is done by the daemon
only considering a single ant, the one who generated the global best solution, Sgjopai—best:

Trs < (1=p) Trs+p- ATy where A7 = { F(C(Sgiobat—test)), iE (1) € Sglovat—best

0, otherwise
For a review of other ACO algorithms refer to [6].
3 The PBIL algorithm
PBIL [1] takes a memoristic structure, a probability array P = (py,...,p,) of dimension n equal

to the number of problem variables, as a base. This array encodes a probability distribution
representing a prototype for good quality solutions and is used to generate a population of
possible solutions (binary arrays) in each iteration.

The probability array is the component that undergoes adaption during the algorithm run
according to its history. In the PBIL basic model, the array is updated according to the quality
of the best solution generated in the current iteration, Best-solution, as follows:

p; = (L = LR) - p; + LR - Best — solution;

with LR € [0,1] being a parameter controlling the speed of convergence, the learning rate.
Moreover, the components of P suffer random mutations with probability MutProb to avoid the
possibility of a premature convergence of the algorithm. The mutation will be performed in the
following way:

] (1 = MutShift) - p;, ifa=0,
Pi= N (1 — MutShift) - p; + MutShift, ifa=1

with a being a random value in {0,1} and MutShift € [0,1] being the mutation step size.

Analyzing the algorithm operation mode, it can be seen the similarity between PBIL and ACO.
Besides, the updating rule for P is similar to the offline updating rule in ACS.

An extension of the basic PBIL model involves considering also the worst solution in the current
population, Worst-solution, for the updating:

Pi = (1 = LRyeq) - pi + LRyeq - Worst — solution; if Worst — solution; # Best — solution;

with LRy € [0, 1] being the negative learning rate.



4 The Best-Worst Ant System

The proposed BW AS uses the transition rule of AS (see Section 2), does not perform on-
line pheromone updatings (nor step-by-step neither delayed) and considers the three following
daemon actions. The name of the algorithm is a consequence of the first of them:

e The global best and current worst solutions are considered respectively to perform
positive and negative updatings, as PBIL algorithm does with the probability array. Of
course, our aim is to reinforce the edges contained in good solutions and penalize the ones from
bad solutions. To do so, the daemon in BW AS first apply a local search procedure on the different
solutions generated by the ants, and offline updates the pheromone trail only considering the
global best solution as done in AC'S:

J(C(Sgiobat—test)), 1f (7, 5) € Sgiobai—best
1-— . A h A — g ’ 12/ global—bes
Trs < ( p) - Trs + ATps where Trs { 0, otherwise

Then, all the edges existing in the worst solution generated in the current iteration, Scyrrent—worst;
that are not present in the global best one are penalized by another decay of the pheromone
trail associated —an additional evaporation— performed as follows:

V(’F, 3) € Scurrent—worst and (T, 3) &/ Sglobal—besta Trs < (1 - P) *Trs

e BW AS also includes a restart of the search process when it get stuck, a key charac-
teristic of the CHC EA [7]. In ACO, this fact happens when the pheromone matrix has evolved
to a situation where the pheromone trails associated to the edges belonging to the best solutions
are very high, whilst the remaining ones are very close to zero (stagnation).

We should note that this aspect is not new in the ACO field, since previous models —such us
MM AS [9]— have considered it previously as a daemon action with different approaches. In
our case, we will perform the restart by setting all the pheromone matrix components to 7y, the
initial pheromone value, when the number of edges that are different between the best and the
worst solutions generated in the current iteration is lesser than a specific percentage.

e The pheromone matrix suffers mutations to introduce diversity in the search
process, as done in PBIL with the memoristic structure —the probability array P—. The
mutation operator will perform small changes in the earlier search stages and strong ones in
the later stages. Hence, it tries to find new space zones where better solutions than the current
global best one can be found in these later stages when the ACO algorithm has converged to a
specific space zone, thus encouraging the exploration instead of the exploitation. To do so, each
component of the pheromone matrix is mutated —with probability F,,— as follows:

! TT‘S + mUt(Zt7 TthT‘eShOld)7 lf a = 0 T h hold = Z(Tr‘s)esglobalfbest T’I“S
- . : threshold —
e Trs — mUt(Zta Tthreshold)u ifa=1 |Sgl0bal—best|

with a being a random value in {0, 1}, it being the current iteration, 7 esnoig being the average
of the pheromone trail in the edges composing the global best solution and with mut(-) being:
it — it

mUt(ita 7—threshold) = m * 0 * Tthreshold
— Uy



where Nit is the maximum number of iterations of the algorithm and ¢, is the last iteration
where a restart was performed.

We should note two aspects of the mutation operator proposed:

e The mutation range comes back to its initial value each time a restart is performed. Then,
the algorithm starts with a new search from an exploration phase.

e The parameter o specifies the power of the mutation with respect to the number of itera-
tions developed till the moment. For example, if 0 = 4, the value to add or subtract will
reach Typreshora €ach time a 25% of the total number of iterations remaining since the last
restart have been run.

It is noteworthy that the choice of the components integrated from the Evolutionary Computa-
tion (EC) field has been done to obtain an appropriate balance between the exploration and the
exploitation of the search space. Our pheromone updating mechanism causes a strong exploita-
tion that allows the algorithm to obtain good solutions efficiently, whilst the pheromone matrix
mutation encourages the space exploration and avoids the algorithm stagnation. Moreover, the
restart process also allows the algorithm not to get stuck and not to make unnecesary iterations.

5 Experiments and Analysis of Results

The proposed ACO model and the two first proposals of ACO algorithms, AS and ACS, will
be used to the solving of eight symmetric TSP instances. The three algorithms will consider the
same parameter values, the use of a candidate list of the same size and the same local search
procedure, as well as the same seeds for the random number generator. The tour improvement
procedure will be the restricted 2-opt procedure, where the candidate nodes are selected inside
the candidate list and the don’t look bit structure is considered.

The parameter values considered are shown in Table 1. We should note that these values have
not been selected to obtain the best possible results but to get an appropriate balance between
accuracy and efficiency for comparison purposes. For example, longer runs of the local search
procedure will be needed to obtain better results in the largest instances.

It is noteworthy that the number of iterations shown, 300, is a maximum threshold, since the
algorithm will stop if the optimal solution is found before all these iterations are performed.
This will influence the run time of the models, thus allowing us to measure the convergence
speed of the three algorithms considered.

Each model has been run 15 times in a computer with a Pentium II processor at 266 MHz.
The overall results obtained are shown in Table 2, where each column name has the following
interpretations: Best means the cost of the best solution found in the 15 runs, Average collects
the average of the costs of the 15 solutions generated, Dev. shows the standard deviations,
Error stands for the percentage difference between the average and the cost of the optimal
solution (which is shown in brackets after the instance name), and Time shows the average time
consumed by the models, measured in seconds. Finally, the last column named # Rest. contains
the average number of restarts performed by BW AS in the 15 runs.

The computational results in Table 2 show that generally BW AS presents the best performance.
It allows us to obtain the best results in all the eight instances but the largest one, Fi1577, where



Table 1: Parameter values considered for the ACO models

Parameter Value
Number of ants m = 25
Maximum number of iterations Nit = 300
Number of runs of each algorithm 15
Pheromone updating rules parameter p=0.2
AS offline pheromone rule positive updating f(C(Sk) = C(gk)
ACS offline pheromone rule positive updating F(C(Sgiobal—best)) = m
Transition rule parameters a=1, =2
ACS transition rule parameters qo = 0.8
Initial pheromone amount Ty = %
Candidate list size cl =20
BW AS parameters
Pheromone matrix mutation probability P, =0.3
Mutation operator parameter oc=4
Percentage of different edges in the restart condition 5%
Local search procedure parameters
Number of neighbors generated per iteration 40
Neighbor choice rule first improvement

ACS outperforms it. We think that this BW AS result could be improved by relaxing the restart
checking condition —a difference on the 5% of the total number of edges between the best and
worst solutions generated in the current run—, which seems to be excessively restrictive for
very large instances. On the other hand, BW AS gets the optimal solution in the five smaller
instances, whilst AS and AC'S does so only in the four and three cases, respectively.

Focusing on the average performance in the 15 runs developed, the results show that BW AS
overcomes again AS in all the eight instances and AC'S in seven of them (the only exception is
again the instance Fl1577, where BW AS is also outperformed by AC'S in average). Moreover,
in view of the standard deviation values, which are lesser than AS and AC'S ones in every case,
we can draw that BW AS is a very robust algorithm.

6 Concluding Remarks

In this contribution, BW AS has been proposed, which is a new ACO model based on the
integration of EC concepts. Its performance has been analyzed when solving of eight TSP
instances of different sizes and it has shown a good behavior in comparison with AS and AC'S.

Different ideas for future developments arise: (i) to improve BW AS performance on significantly
large instances, (ii) to study the influence of the different algorithm components in isolation and
of the appropriate values for the parameters, and (iii) to analyze the consideration of other EC
aspects such us the use of a number of the best and worst ants to positive and negatively update
the pheromone trails or the weighting of the pheromone amount each ant does depending on its
ranking —as done in ASgyt. and AS,qnk, respectively—.



Table 2: Results obtained in the different instances

Eil51 (426) Berlin52 (7542)
Model Best  Average Dev. Error Time #R Best  Average  Dev.  Error  Time #R
BWAS | 426 426 0 0 1.72 3.33 7542 7542 0 0 0.13 0
AS 426 426.93 0.46 0.22 11.41 — 7542 7542 0 0 0.34 —
ACS 429 436.07 4.28 2.36 7.37 — 7542 7716.53  105.68 2.31 6.14 —
Brazil58 (25395) Kroal0O0 (21282)
Model Best  Average Dev. Error Time #R Best  Average  Dev.  Error  Time #R
BWAS | 25395 25395 0 0 0.45 0 21282 21285.07 8.09 0.01 6.73 6.2
AS 25395 25395 0 0 0.59 — 21282 21331.27  34.69 0.23 26.61 —
ACS 25395 25395 0 0 0.31 — 21320 21558.67 155.89 1.3 15.73 —
Gr120 (6942) Att532 (27686)

Model Best  Average Dev. Error Time #R Best  Average  Dev.  Error  Time #R
BWAS | 6942 6950.87 5.24 0.13 20.96 9.53 | 27842 27988.87 100.82 1.09 119.84 16.13
AS 7031 7088.27  32.98 2.11 34.88 — 29348  29573.27 156.99 6.82 253.91 —
ACS 7057 7210.73  74.84 3.87 22.72 — 28000 28370.20 162.27 2.47 99.97 —

Rat783 (8806) F11577 (22249)
Model Best  Average Dev. Error Time #R Best  Average  Dev.  Error  Time #R
BWAS | 8972 9026.27  35.26 2.50 186.92  13.27 | 22957 23334.53 187.33 4.88 656.64 0
AS 9586 9647.80  45.96 9.56  421.14 — 26063 26944 376.41 21.10 1251.01 —
ACS 9218 9307.33 5297  5.69 167.25 — 22749  23122.53  260.92 3.93 865.96 —
References

[1]

2]

S. Baluja, R. Caruana. Removing the Genetics from the Standard Genetic Algorithm. In A. Prieditis,
S. Rusell (Eds.), Machine Learning: Proceedings of the Twelfth International Conference, pp. 38-46.
Morgan Kaufmann Publishers, 1995.

B. Bullnheimer, R.F. Hartl, C. Strauss. A New Rank Based Version of the Ant System: A Compu-
tational Study. Central European Journal for Ops. Research and Economics, 7(1):25-38, 1999.

O. Cordén, F. Herrera, L. Moreno. Integracion de Conceptos de Computacion Evolutiva en un Nuevo
Modelo de Colonias de Hormigas (in spanish). In Actas de la CAEPIA’99. Seminario Especializado
sobre Computacion Evolutiva, Vol. II, pp. 98-105. 1999.

M. Dorigo, V. Maniezzo, A. Colorni. The Ant System: Optimization by a Colony of Cooperating
Agents. IEEE Trans. on Systems, Man, and Cybernetics, Part B, 26(1):29-41, 1996.

M. Dorigo, L.M. Gambardella. Ant Colony System: A Cooperative Learning Approach to the Trav-
elling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1):53-66, 1997.

M. Dorigo, G. Di Caro. Ant Algorithms for Discrete Optimization. Artificial Life 5(2): 137-172.
1999.

L.J. Eshelman. The CHC Adaptive Search Algorithm: How to Safe Search when Engaging in Non-
traditional Genetic Recombination. In G.J.E. Rawlins (Ed.), Foundations of Genetic Algorithms,
pp. 265-283. Morgan Kaufmann Publishers, 1991.

N. Monmarché, E. Ramat, G. Dromel, M. Slimane, G. Venturini. On the Similarities Between AS,
BSC and PBIL: Toward the Birth of a New Meta-Heuristic. Technical Report 215, Ecole d’Ingénieurs
en Informatique pour I'Industrie (E3i), Université de Tours, 1999.

T. Stiitzle, H. Hoos. The MAX-MIN Ant System and Local Search for the Traveling Salesman Prob-
lem. In Proceedings of the Fourth International Conference on Evolutionary Computation (ICEC’97),
pp- 308-313. IEEE Press, 1997.




