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Abstract. We present a new approach for Cluster Analysis based on a Greedy Randomized Adaptive Search Procedure (GRASP),
with the objective of overcoming the convergence to a local solution. It uses a probabilistic greedy Kaufman initialization to get
initial solutions and K-Means as a local search algorithm. The approach is a new initialization one for K-Means. Hence, we
compare it with some typical initialization methods: Random, Forgy, Macqueen and Kaufman. Our empirical results suggest
that the hybrid GRASP – K-Means with probabilistic greedy Kaufman initialization performs better than the other methods with
improved results. The new approach obtains high quality solutions for eight benchmark problems.
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1. Introduction

Clustering is a basic process to human understand-
ing. The grouping of related objects can be found such
diverse fields as statistics, economics, physics, psy-
chology, biology, pattern recognition, engineering, and
marketing [6,14].

The Clustering problem involves partitioning a set of
entities into a given number of subsets and finding the
location of a centre for each subset in such a way that
a dissimilarity measure between entities and centres is
minimized.

K-Means is a popular clustering algorithms [2]. Al-
though it is known for its robustness, it can fall in local
optimal solutions under certain conditions [13]. It is
also widely reported that the K-Means algorithm suf-

fers from its dependence on initialization conditions
(initial clustering and instance order) as shown in [11].

Since heuristic approaches are good for avoiding
convergence to a locally optimal solution, they could
be used to find a globally optimal solution. Heuristic
approaches used in clustering include those based on
simulated annealing [4,7,12], tabu search [1], evolution
strategies [3] and genetic algorithms [8–10,15].

In this paper, we focus on the problem suffered
by the K-Means due to the initial conditions, propos-
ing a heuristic procedure to this problem. We pro-
pose a Greedy Randomized Adaptive Search Procedure
(GRASP) [5] applied to the Clustering problem as an
initialization process, using K-Means as a local search
procedure.

Our approach tries to eliminate the classical problem
of the K-Means algorithm, by permitting a higher ex-
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ploration and exploitation of the search space, with a
low computational cost.

A GRASP is an iterative process with each iteration
consisting of two phases, a construction phase and a
local search phase:

– The construction phase is based on a probabilistic
greedy Kaufman initialization to get initial solu-
tions. It encourages search space exploration.

– The local search phase uses the K-Means algo-
rithm to exploit the search space. We use K-Means
as a local search technique because it offers bet-
ter solutions than other classical algorithms with a
low computational cost.

The construction phase builds a feasible solution,
whose neighborhood is explored by a local search. The
best solution over all GRASP iterations is returned as
the result.

In order to introduce this new approach, this paper
is organized as follows. Section 2 introduces a back-
ground on clustering, K-means and initialization ap-
proaches. Section 3 presents the GRASP approach to
clustering. Section 4 shows experiments and their anal-
ysis, and finally, Section 5 points out some concluding
remarks.

2. Background

A common problem in cluster analysis is partitioning
objects into a fixed number of groups to optimize an
objective function-based clustering. These objects are
measured according to several features that characterize
them. Patterns can be viewed as vectors in a high
dimensional space, where each dimension corresponds
to one feature.

In this section we introduce the formalization of clus-
tering, the K-Means algorithms, and four initialization
approaches.

2.1. Clustering problem

The clustering problem can be formalized as fol-
lows [2]: Considering N entitiesei, each with an as-
sociated weightwi (i = 1, . . ., N ), we search for k
centrescj(j = 1, . . ., k) minimizing:

f(c1, . . . , ck) =
N∑

i=1

min
j

(wid(ei, cj))

whered(ei, cj) measures the dissimilarity betweenei

andcj . In our case, where the entities are described

Table 1
Iris results,k = 3

K = 3

Arithmetic mean Standard deviation Best solution

Random 97.339 0.010 97.326
Forgy 97.326 0 97.326
Macq. 97.326 0 97.326
Kaufm. 97.326 0 97.326
GRASP 97.326 0 97.326

Table 2
Iris results, k = 4

K = 4

Arithmetic mean Standard deviation Best solution

Random 83.769 0.026 83.729
Forgy 83.749 0.027 83.729
Macq. 83.750 0.031 83.729
Kaufm. 83.786 0 83.786
GRASP 83.729 0 83.729

by their co-ordinates in�m, d(ei, cj) is the Euclidean
distance.

Basically, clustering can be considered as a combi-
natorial optimization problem, formulated as follow:

Let Q be set containing all objects to be clustered,
C be the set of all feasible clustering of Q,
J: C→ � be the internal clustering criterion,
then
Minimize J(c) subject to c ∈ C.
The complexity of the clustering problem is due to

different factors:

1. Clustering is an NP-HARD problem when it is
considered as the optimization of a certain mea-
sure. Therefore, an exhaustive approach is not
practicable due to the exponential number of po-
tential partitions of the input data. The number of
possible partitions of N elements into k clusters
is given by

∏
(k, N) =

1
k!

k∑
j=1

(−1)k−j

(
k
j

)
(j)N .

2. Clustering complexity grows if the number of
groups is unknown. In such a case he number of
solutions becomes:

∏
(k, N) =

k∑
i=1

1
i!

i∑
j=1

(−1)i−j

(
i
j

)
(j)N .

Due to these reasons, trying to get a global optimal
solution by means of an efficient and robust method is
difficult. Thus, there is a considerable interest in the
design of new heuristics to solve large-sized practical
clustering problems.
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Table 3
Ruspini results,k = 4

K = 4

Arithmetic mean Standard deviation Best solution

Random 720.142 0 720.142
Forgy 720.142 0 720.142
Macq. 720.142 0 720.142
Kaufm. 720.142 0 720.142
GRASP 720.142 0 720.142

Table 4
Ruspini results,k = 5

K = 5

Arithmetic mean Standard deviation Best solution

Random 654.918 12.193 647.672
Forgy 654.074 7.320 647.672
Macq. 655.437 6.692 647.672
Kaufm. 647.672 0 647.672
GRASP 647.672 0 647.672

2.2. K-Means algorithm

K-means evaluates a set ofk selected objects, which
are considered representatives for thek clusters to be
found within the source set ofN objects. Given the set
of representative objects, the remaining objects are as-
signed to the nearest representative one, using a chosen
distance measure.

The philosophy is that a better set of clusters is ob-
tained when thek representative objects are more cen-
trally located in the cluster they define. For this rea-
son, a suitable objective function to be minimized is
the sum of the distances from the respective centers to
all the other objects of the same cluster. The function
value depends on the current partition of the database
{C1, . . ., Ck}:

J :
∏

k
(Ω) → �

with πk(Ω) being the set of all partitions of the database
Ω = {e1, . . ., eN} in k non-empty clusters. Each in-
stanceei of the N instances in the databaseΩ is an
m-dimensional vector.

The K-Means algorithm finds locally optimal so-
lutions using the Euclidean distance in the clustering
criterion. This criterion is sometimes referred to as
square-error criterion. Therefore, it follows that:

J({C1, . . ., Ck}) =
k∑

i=1

ki∑
j=1

||eij − ci||

wherek is the number of clusters,ki the number of
objects of the clusteri, eij is the j-th object of the i-th
cluster andci is the centroid of the i-th cluster defined

Table 5
Glass results,k = 2

K = 2

Arithmetic mean Standard deviation Best solution

Random 323.323 0 323.323
Forgy 323.323 0 323.323
Macq. 323.323 0 323.323
Kaufm. 323.323 0 323.323
GRASP 323.323 0 323.323

as:

ci =
1
ki

k∑
j=1

eij , i = 1, . . . , k

The pseudo-code for this algorithm is:

1. Select an initial partition of the database in k
clusters{C1, . . . , Ck}

2. Calculate cluster centroids, using the expression
of its definition.

3. For every ei in the database and following the
instance order DO

– Reassign instanceei to its closest cluster cen-
troid. Hence,ei ∈ Cs is moved toCt if
||ei−et|| � ||ei−cs|| for all t = 1, . . . , k, t �=
s.

– Recalculate centroids for those clusters.

4. If cluster membership is stabilized then stop else
go to step 3.

The K-Means algorithm has the following draw-
backs:

– It assumes that the number of clusters k in the
database is known, which is not necessarily true.

– It is especially sensitive to initial conditions (initial
clusters and instance order).

– It converges finitely to a local minimum, defined
by a deterministic mapping from the initial condi-
tions to the final solution.

2.3. Initialization approaches

The second problem, sensitivity to initial conditions,
may be mitigated using different values ofk, some
instance orders and different initialization methods.

In this section we describe four initialization ap-
proaches analyzed in [11]. Each one generatesk initial
clusters following some kind of heuristic and produces
a different K-Means response.

These four classical methods are:
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Table 6
Glass results,k = 7

K = 7

Arithmetic mean Standard deviation Best solution

Random 206.632 0.704 205.307
Forgy 206.493 0.723 205.889
Macq. 206.635 0.676 205.889
Kaufm. 211.658 0 211.158
GRASP 205.239 0.486 204.992

Table 7
Glass results,k = 10

K = 10

Arithmetic mean Standard deviation Best solution

Random 179.042 2.670 175.945
Forgy 176.710 1.205 176.044
Macq. 177.144 1.389 176.044
Kaufm. 188.691 0 188.691
GRASP 176.058 0.089 175.945

– Random: Divides the database into a partition of
K randomly selected clusters.

– Forgy: k instances of the database (seeds) are
chosen at random and the rest of the instances are
assigned to the cluster represented by the nearest
seed.

– Macqueen: k instances of the database (seeds) are
chosen at random. Following the instance order,
the rest of the instances are assigned to the cluster
with the nearest centroid. After each assignment,
a recalculation of the centroid has to be carried
out.

– Kaufman: The initial clustering is obtained by the
successive selection ofk representative instances.
The first representative is chosen to be the most
centrally located instance in the database. The rest
of representative instances are selected according
to the heuristic rule of choosing the instances that
promise to have around them a higher number of
the rest of instances and that are located as far as
possible from the previously fixed ones.

Differences between these initialization methods
are:

– Random and Forgy generate an initial partition
independently of the instance order.

– Macqueen generates an initial partition that de-
pends on the instance order.

– Kaufman is the only deterministic initialization,
based on a greedy approach.

Table 8
Titanic results,k = 2

K = 2

Arithmetic mean Standard deviation Best solution

Random 1617.563 0 1617.563
Forgy 1617.564 0 1617.564
Macq. 1617.564 0 1617.564
Kaufm. 1617.564 0.00066 1617.563
GRASP 1617.562 0 1617.562

3. GRASP approach to the clustering problem

In this section we introduce the GRASP approach
and present its application to clustering.

3.1. Greedy randomized adaptive search procedure
(GRASP)

A generic GRASP pseudo-code is shown as fol-
lows [5]:

Procedure grasp( )
InputInstance();
For GRASP stopping criterion not satisfied
ConstructGreedyRandomizedSolution (Solution);
LocalSearch(Solution);
UpdateSolution(Solution,BestSolutionFound);
Rof
Return(BestSolutionFound);
End grasp;
In the construction phase, a feasible solution is it-

eratively constructed, choosing one element at a time.
At each construction algorithm iteration, the choice of
the next element to be added is determined by ordering
all elements in a candidate list with respect to a greedy
selection function. This function measures the benefit
of selecting each element.

The probabilistic component of a GRASP is char-
acterized by randomly choosing one of the best candi-
dates in the list, but not necessarily the top one. The
list of the best candidates is called the restricted can-
didate list (RCL) and has dimensionl. This choice
technique allows different solutions to be obtained at
each GRASP iteration, but does not necessarily com-
promise the power of the adaptive greedy component
of the method.

The GRASP construction phase pseudo-code is:
Procedure ConstructGreedyRandomizedSolution
(Solution)
Solution= {};
For Solution construction not done
MakeRCL(RCL);
s = SelectElementAtRandom(RCL);
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Table 9
Titanic results,k = 4

K = 4

Arithmetic mean Standard deviation Best solution

Random 1110.034 19.662 1080.426
Forgy 1437.635 297.603 1282.327
Macq. 1442.327 301.718 1282.327
Kaufm. 1170.012 0 1170.012
GRASP 1071.458 1.368 1070.661

Table 10
Titanic results,k = 10

K = 10

Arithmetic mean Standard deviation Best solution

Random 880.530 71.877 670.166
Forgy 992.681 82.042 930.914
Macq. 991.914 84.564 930.914
Kaufm. 340.696 0 340.696
GRASP 329.234 4.196 327.234

Solution= Solution∪ s;
AdaptGreedyFunction(s);
Rof
End ConstructGreedyRandomizedSolution;
The solutions generated by a GRASP construction

algorithm are not guaranteed to be locally optimal with
respect to simple neighborhood solutions. Hence, it is
almost always useful to apply a local search to attempt
to improve each constructed solution.

A local search algorithm works in an iterative fash-
ion by successively replacing the current solution by a
better solution in the neighborhood of the current one.
The key to success for a local search algorithm involves
a suitable choice for a neighborhood structure, efficient
neighborhood search techniques, and the starting solu-
tion.

Finally, the GRASP local search phase pseudo-code
is:

Procedure Local (P,N(P),s)
For s not locally optimal
Find a better solutiont ∈ N(s);
Let s = t;
Rof
Return (s as local optimal for P)
End local;

with P being a problem (clustering in our case),s and
t being a solution forP , andN(s) being a mechanism
to obtain neighbors fors.

3.2. Using GRASP for the clustering problem

Following the generic GRASP structure, it is easy
to adapt the algorithm to the clustering problem using

Table 11
Image segmentation results,k = 6

K = 6

Arithmetic mean Standard deviation Best solution

Random 158581.932 470.346 158141.047
Forgy 158261.497 626.579 157923.297
Macq. 158334.78 321.169 157923.297
Kaufm. 159233.335 0.0178 159233.297
GRASP 158246.504 312.505 157917.547

Table 12
Image segmentation results,k = 12

K = 12

Arithmetic mean Standard deviation Best solution

Random 117819.845 3263.117 114229.797
Forgy 114244.441 7.570 114237.953
Macq. 115645.357 8.724 114237.842
Kaufm. 114248.172 0 114248.172
GRASP 114221.817 1.066 114220.75

the K-means algorithm and greedy Kaufman initializa-
tion. The stopping criterion is defined in terms of the
maximum number of iterations, while the K-Means is
introduced as a local search algorithm. To construct
the greedy randomized solution, the Kaufman initial-
ization [6] is taken as a base, because it is a greedy
deterministic initialization algorithm. Using the Kauf-
man criterion, the RCL list is generated by the most
promising objects for each center of the solution and
one of those candidates is randomly selected.

A generic pseudo-code of the GRASP construction
phase for clustering is:

Step 1. Select the most centrally located instance as
the first seed.

Step 2. FOR every non selected instanceei DO

Step 2.1. FOR every non selected instance
ej DO
Calc Cji = max(Dj − dji, 0)
wheredji = ||ei − ej ||
andDj = minsdsj beings one of
the selected seeds

Step 2.2. Calculate the gain of selectingei

by
∑

j Cji

Step 3. MakeRCL(RCL) by selecting thel instances
ei which maximizes

∑
j Cji

Step 4. SelectElementAtRandom(RCL)
Step 5. If there are k selected seeds THEN stop

ELSE go to Step 2.
Step 6. For having a clustering assign each non-

selected instance to the cluster represented
by the nearest seed.
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Table 13
Texture results,k = 6

K = 6

Arithmetic mean Standard deviation Best solution

Random 406.635 0 406.635
Forgy 406.635 0 406.635
Macq. 406.635 0 406.635
Kaufm. 406.640 0 406.640
GRASP 406.635 0 406.635

Table 14
Texture results,k = 12

K = 12

Arithmetic mean Standard deviation Best solution

Random 361.731 0.782 360.172
Forgy 361.361 1.032 360.468
Macq. 361.491 0.964 360.468
Kaufm. 360.354 0 360.354
GRASP 359.989 0.135 359.803

When thek objects have been taken, the local search
(K-Means in this case) is applied taking the clustering
obtained as initialization. Then, we compare the local
solution cost with the best solution cost found so far,
and we take the best. This process continues until all
the iterations have been done.

The use of K-Means offers an efficient and low com-
putational cost method to obtain relatively good solu-
tions, but converges to a local minimum. The GRASP
construction phase corrects this problem, performing a
wide space exploration search. Note that our algorithm
constitutes a new initialization method for K-Means,
which better explores the search space.

4. Experimental results

Next, we present the sample process, the results ob-
tained in our experiments, and their analysis.

4.1. Sampling process

The performance of our algorithm is studied with
various instance sets, trying to get conclusions inde-
pendent of the problem. Eight real-world databases are
considered:

– Iris, which has 150 instances, 4 attributes and 3
classes.

– Ruspini , which has 75 instances, 2 attributes and
4 classes.

– Glass, which has 214 instances, 9 attributes and 7
clusters that can be grouped in 2 bigger classes.

Table 15
Vehicle results,k = 4

K = 4

Arithmetic mean Standard deviation Best solution

Random 427.314 0 427.314
Forgy 427.351 0.124 427.314
Macq. 427.635 0.116 427.314
Kaufm. 427.314 0 427.314
GRASP 427.314 0 427.314

– Titanic, which has 2200 instances, 4 attributes and
2 classes.

– Image Segmentation, which has 2310 instances,
19 attributes and 7 classes.

– Textures, which has 1024 instances, 32 attributes
and 6 classes.

– Vehicle, which has 846 instances, 18 attributes and
4 classes.

– Pima, which has 768 instances, 8 attributes and 2
classes.

Since the K-Means algorithm strongly depends on
initial conditions, this problem is mitigated using dif-
ferent values ofk and some instance orders. In this
case, the following initial number of clusters have been
considered:

– Iris: k = 3, 4
– Ruspini:k = 4, 5
– Glass:k = 2, 7, 10
– Titanic: k = 2, 4, 10
– Textures:K = 6, 12
– Image Segmentation:k = 6, 12
– Vehicle: K = 4, 8, 12
– Pima:k = 6, 10

First, we applied three K-Means variants, each one
with its own initialization: Random, Forgy and Mac-
queen.

The sampling process followed is based on the com-
bination of four initial partitions and four instance or-
ders (see [11]), running the K-Means over every one of
them, and taking the best result of these sixteen runs.

This sampling process is repeated ten times and the
following three values are taken:

– the arithmetic mean of the objective function,
square-error criterion (J(·)), of the best solution
obtained in each one of the runs of the ten sampling
processes, denoted by “Arithmetic mean”.

– the standard deviation, and
– the best solution (objective function value) ob-

tained from the run of the ten sampling processes.
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Table 16
Vehicle results,k = 8

K = 8

Arithmetic mean Standard deviation Best solution

Random 370.256 0.79 369.768
Forgy 370.344 0.754 369.703
Macq. 369.945 0.464 369.703
Kaufm. 371.934 0 371.934
GRASP 369.7 0.001 369.699

Table 17
Vehicle results,k = 12

K = 12

Arithmetic mean Standard deviation Best solution

Random 335.661 1.585 333.045
Forgy 334.343 0.94 333.267
Macq. 334.671 1.163 333.301
Kaufm. 336.131 0 336.131
GRASP 333.313 0.675 332.845

On the other hand, the evaluation of K-Means with
Kaufman initialization has been done using 10 random
instance orders of each problem. Although Kaufman
initialization seems to be a completely deterministic
initialization method, this is not completely true. When
one instance has the same Euclidean distance to two
cluster centers, this instance will be associated to the
first of them. If we have some instances in this situation,
their order will modify the evolution of thek centers.

The proposed GRASP algorithm is studied using six-
teen iterations in each execution (running sixteen K-
means). Ten executions of the GRASP algorithm are
made, getting the arithmetic mean, the standard devia-
tion and the best solution. The RCL size used is fifteen
(l = 15), which is flexible enough to obtain optimal
solutions due the database sizes. Therefore, in order
to compare GRASP evaluation with the remaining K-
Means initialization methods, we use the same number
of K-Means runs as GRASP iterations for every exe-
cution of Random, Forgy and Macqueen initialization
methods.

4.2. Results

Experimental results are presented in Tables 1–20.

4.3. Analysis

Comparing results, we notice that Forgy and Mac-
queen usually give very similar results. They seem to
have the same performance, keeping the same or sim-
ilar local minima. Their results improve those given
by Random initialization, with any number of clusters,

Table 18
Pima results,k = 2

K = 2

Arithmetic mean Standard deviation Best solution

Random 52072.211 0.005 52072.203
Forgy 52072.211 0.005 52072.203
Macq. 52072.211 0.005 52072.203
Kaufm. 52072.233 0.010 52072.219
GRASP 52072.233 0.009 52072.219

Table 19
Pima results,k = 6

K = 6

Arithmetic mean Standard deviation Best solution

Random 29415.066 15.681 29403.762
Forgy 29426.369 14.519 29403.762
Macq. 29428.447 15.117 29403.762
Kaufm. 30729.2 0.013 30729.195
GRASP 29403.763 0.001 29403.762

except in the Titanic database. Thus, both Forgy and
Macqueen initializations respond better than Random,
with this difference more significant whenk grows.

It is clear that Kaufman initialization by itself does
not obtain the best results compared to the classical
initialization methods. We conclude that the heuristic
used in Kaufman initialization needs a more flexible
centroid selection to reach the global optimum.

Finally, we compare the results obtained from
GRASP with the remaining K-Means initialization
methods. As said, this comparison is feasible because
we are comparing ten GRASP runs versus ten sam-
pling processes runs (16 K-Means runs with different
initialization approaches). This comparison is based
on effectiveness and robustness:

– If we study each individual table, we notice that
GRASP gets the best results in every problem for
the majority of executions.
Table 21 shows the percentage of times that
GRASP executions are the best, equal or worse
than the remaining ones (names in the fist row)
with respect to the “Arithmetic mean column” and
“Best Solution column” in the 20 tables of results,
denoting them as AM and BS respectively.

– On the other hand, GRASP presents similar ro-
bustness (small values for the standard deviation)
to Kaufman K-Means in most of the cases, and
better robustness than the remaining approaches,
Random, Forgy and Macqueen.

Although GRASP is computationally a little more
demanding than the remaining K-Means initializations
with the same number of runs/iterations (due to the
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Table 20
Pima results,k = 10

K = 10

Arithmetic mean Standard deviation Best solution

Random 24287.956 134.991 24120.801
Forgy 24136.125 26.718 24117.748
Macq. 24137.881 23.687 24117.748
Kaufm. 24340.811 0 24340.811
GRASP 24127.770 7.929 24117.748

Table 21
Percentage of the performance improvement of GRASP versus the
remaining initializations

Random Forgy Macq. Kaufm.
AM BS AM BS AM BS AM BS

GRASP best 75% 50% 75% 50% 75% 50% 70% 70%
GRASP equal 20% 45% 20% 45% 20% 45% 25% 25%
GRASP worst 5% 5% 5% 5% 5% 5% 5% 5%

computational time needed by the construction phase),
GRASP induces the K-Means algorithm to present a
better performance and a more robust behaviour.

5. Concluding remarks

The K-Means algorithm suffers from its dependence
on initial conditions. We present a GRASP algorithm
to the clustering problem based on the greedy Kaufman
initialization to avoid this drawback. The GRASP algo-
rithm has been empirically compared with four classi-
cal initialization methods (Random, Forgy, Macqueen,
and Kaufman), and it proved to be the most effective
algorithm.
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