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10.1 INTRODUCTION

In Spain, electrical industries do not charge the energy bill directly to the final user,
but they share the ownership of an enterprise (called R.E.E., Red Eléctrica de Espana)
which gets all payments and then distributes them according to some complex criteria
(amount of power generation of every company, number of customers, etc.)

Recently, some of these companies have asked to redistribute the maintenance costs
of the network. Since maintenance costs depend on the total length of electrical line each
company owns, and on their kind (high, medium, urban low and rural low voltage)
it was necessary to know the exact length of every kind of line each company was
maintaining.

High and medium voltage lines can be easily measured. But low voltage line is
contained in cities and villages, and it would be very expensive to measure it. This
kind of line uses to be very convoluted and, in some cases, one company may serve
more than 10000 small nuclei. An indirect method for determining the length of line is
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needed.

Data Analysis (DA) can be considered as a process in which starting from some given
data sets, information about the respective application is generated. In this sense; DA
can be defined as a search for structure in data. Since in our problem there i1s a need
to find a relationship between the population and size of a certain area and the length
of line 1n it, making use of some known data, that may be employed to predict the real
length of line in any other village, it is clear that it may be solved by means of DA
techniques.

In this work we will analyze two different approaches that make use of the
Evolutionary Algorithms (EAs) in the field of DA, the use of Genetic Algorithm
Program (GA-P) [HD95] techniques for symbolic regression and the use of Genetic
Algorithms (GAs) [Gol89] and Evolution Strategies (ESs) [Sch95] to design Mamdani
and TSK-type Fuzzy Rule-Based Systems (FRBSs) [BD95, DHR93]. We will consider
these two approaches to solve the introduced problem.

The paper is set up as follows. In Section 2, we introduce the use of the EAs
in the field of DA and present the GA-P and Genetic Fuzzy Rule-Based Systems
(GFRBSs) [CHI5]. Sections 3 and 4 are devoted to present the two different approaches
commented, the use of GA-P algorithms for symbolic regression problems and the use
of GAs and ESs to design FRBSs. In Section 5, the introduced Electrical Engineering
problem 1is tackled by means of the proposed techniques and their performance is
compared to the one obtained by some classical methods. Finally, some concluding
remarks are pointed out.

10.2 EVOLUTIONARY ALGORITHMS FOR DATA ANALYSIS
10.2.1  Framework

In DA, objects described by some attributes are considered and the specific values of
the attributes are the data to be analyzed. Objects can be, for example, things, time
series, process states, and so on. The overall goal is to find structure (information)
about these data. This leads to a complexity reduction in the considered application
which allows us to obtain improved decisions based on the gained information.

The application of DA has a wide range and occurs in diverse areas where different
problem formulations exist.

Different algorithmic methods for DA have been suggested in the literature, as
clustering algorithms, regression techniques, neural netwoks, FRBSs, EAs, etc.

As regards the DA in the light of EAs, a representation of the information structure is
considered and evolved until having an abstraction and generalization of the problem,
reflected in the fitness function. For example, in [Gre94] different approaches for
learning in the framework of GAs are to be found.

Recently a lot of research efforts have been directed towards the combination
of different methods for DA. In this way, EAs have been combined with different
techniques either to optimize their parameters acting as evolutionary tuning processes
or to obtain hybrid DA methods, for example, evolutionay-neural processes [WS92],
evolutionary regression models [Koz92] and evolutionary fuzzy sytems [HV96].

Next, we briefly introduce two specific hybrid approaches, the GA-P to perform
symbolic regressions and GFRBSs. Two particular developments in each field will be
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Figure 10.1 Member of population, GA-P algorithms

presented in Sections 4 and 5.

10.2.2 GA-P for symbolic regression

Genetic Programming (GP) [Koz92] has emerged as an effective mean of automatically
generating computer programs to solve a variety of problems in many different problem
domains, including the discovery of empirical formulae from numerical data.

GP methods generate symbolic expressions and can perform symbolic regressions.
However, the way in which GP perform symbolic regressions is quite restrictive; the
structure of an expression can be changed by crossover and mutation operations, but
the value of the constants embedded in it —generated by the implementation program
when the GP starts— can only be altered by mutations.

The GA-P [HD95] performs symbolic regression by combining the traditional GAs
with the GP paradigm to evolve complex mathematical expressions capable of handling
numeric and symbolic data. The GA-P combines GAs and GP, with each population
member consisting of both a string and an expression as it is shown in Figure 10.1.
The GP part of the GA-P evolves the expression. The GA part concurrently evolves
the coefficients used in the expressions. Most of the GA-P’s elements are the same as
in either of the traditional genetic techniques.

The GA-P and GP make selection and child generation similarly, except that the
GA-P’s structure requires separate crossover and mutation operators for the expression
and coefficient string components. In the GA-P, crossover and mutation take place
independently for the coefficient string and the expressional component. Mutation and
crossover rates for the coefficient string (using traditional GA methods) are independent
from the rates for the expressional part (using standard GP methods).

By fusing the GA’s capability of value optimization and the GP’s capability of
creating mathematical equations, it 1s improved the ability to describe the data.
Therefore, the GA-P is a powerful DA tool.

A complete description of GA-P can be found in [HD95].
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10.2.3 Genetic Fuzzy Rule-Based Systems

Nowadays, one of the most important applications of the Fuzzy Set Theory suggested
by Zadeh in 1965 [Zad65] are the FRBSs. These kind of systems constitute an
extension of the classical Rule-Based Systems because they deal with fuzzy rules
instead of classical logic rules. Thanks to this, they have been succesfully applied
to a wide range of problems presenting uncertainty and vagueness in different ways
[BD95, Ped96, Wan94, YZ92].

An FRBS presents two main components: 1) the Inference System, which puts into
effect the fuzzy inference process needed to obtain an output from the FRBS when an
input is specified, and 2) the Knowledge Base (KB) representing the known knowledge
about the problem being solved, composed of the Rule Base (RB) constituted by
the collection of fuzzy rules, and of the Data Base (DB) containing the membership
functions defining their semantics.

There exist two different kinds of fuzzy rules in the literature according to the
expresion of the consequent:

1. Mamdani-type fuzzy rules consider a linguistic variable in the consequent

[DHR93]:

IF X; 1s A; and ... and X,, 1s A, THEN Y 1s B;

with Xi,..., X, and Y being the input and output linguistic variables,
respectively, and Aq, ..., A, and B being linguistic labels, each one of them
having associated a fuzzy set defining its meaning.

2. TSK fuzzy rules are based on representing the consequent as a polynomial
function of the inputs [TS85]:

IF Xyis Ay and ... and X, is A, THENY =p; - X; +...4+psn - Xn + po

with Xi,..., X, and Y being the input and output linguistic variables,
respectively, and pg, p1, . .., pn being real-valued weigths.

Knowledge-based methods are sutiable for fuzzy DA. In this approach, fuzzy If-Then
rules are formulated and a process of fuzzification, inference and defuzzification leads
to the final decision. Different efforts have been made to obtain an improvement on
system performance by incorporating learning mechanisms to modify the rules and/or
membership functions in the knowledge base (KB).

With the aim of solving this problem, in the last few years, many different approaches
have been presented taking EAs; usually GAs, as a base, to automatically derive the
KB, constituting the so called GFRBSs [CH95]. GFRBSs are considered nowadays
as an important branch of the Soft Computing area [Bon97]. The promising results
obtained by the EAs in the learning or tuning of the KB have extended the use of these
algorithms in the last few years (see [CHL97a, CHLI7b]).

It is possible to distinguish among three different groups of GFRBSs depending on
the KB components included in the learning process: DB, RB, or both, i.e., KB [CH95].
The third group may be divided in two different subgroups depending on wheter the KB
learning is performed in a single process or in different stages. For a wider description
of each GFRBS group see [CH95, CHI7b], and for an extensive bibliography see
[CHL97a], Section 3.13. Different approaches may be found in [CH95, HV96].
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Figure 10.2 Linear and interval estimation

10.3 INTERVAL-VALUED GA-P FOR SYMBOLIC REGRESSION

In this Section we will introduce a modified version of the GA-P method, which we will
call Interval GA-P. This approach —initially developed to solve an specific symbolic
regression problem, [San97b]— is characterized by using interval values, instead of
punctual ones, and by combining GA-P with local optimization techniques as well.

Regression analysis is concerned with the approximation of observed data by a
function, when some variables (outputs) depend on other (inputs). Let the output
Y be a random variable that will be estimated on the basis of the input variable
X = (X1,...,Xp). Usually, we understand that the regression analysis involves finding
a function g, such that ¢(X) is an admissible estimation of F(Y|X). If the structure
of ¢ i1s unknown, the problem is named symbolic regression.

Symbolic regression produces a punctual estimation; anyway, sometimes it is
necessary to obtain the margins in which we expect the output Y is, when the input
variables X; are known. Now, we should not look for a function ¢, but a multi-valued
mapping T'y : Im(X) — I(IR), where I(IR) is the set formed by all closed intervals in
IR, such that the random set T'y 0 X : @ — I(IR) verifies

PlweQ|Y(w)eTqgoX(w)} > 1 -«

for a given value of «.

We can assess this interval prediction in some different ways. We think that it is
reasonable to admit that, given a value for «, the shorter T, is, the better it is. So, if
we define

FhoX =[g7 0 X,g" 0 X]

for two continuous functions ¢ and g~ (see Figure 10.2) the margin of validity will
be better when

E(g+ oX — g oX)
18 as low as possible, constrained by

PlueQly  oX(w) <Y(w) <gtoX(w))}>1-a.
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In other words, given a region
Rigrg-y = {(z,y) e R | g7 (2) <y < g* ()}
it must be true that
Plo e QI (X,Y)(w) € Rigt gy} > 1—a.

Let us suppose now that g7 vy g~ also depend on a function kg : R — R in the
following way:

[g7(x), g7 ()] = {t ER |t = he(x),0 €[07,07] x ... x [0,,0%]}

where the expression of hy is known except for the value of m parameters #;, and hy
is continuous with respect to # and z (so ¢ and g~ will also be continuous functions,
as we had proposed). Then, for a random sample of size N, obtained from the random
vector (X,Y),

(X1, Y1),..., (XN, YN))

we define 0; and 9;" to be the values that minimize
| N
N Z(g+(Xi) -9 (Xy))
i=1

constrained by

N
1
l-esy > Ry (X0 Y0)
i=1
for a given value of €. Notice that o # ¢; once chosen a value for €, we can only estimate
a by means of a second sample

((Xi’Yll)’ o ’(XJ/W’YM))’

independent from the first one, by means of

M

N 1

o = 1= MZIme—)(XZ{’YZ’/)'
i=1

The random variable a s follows a binomial distribution with parameters M and o
and, by the strong law of the large numbers, it converges almost surely to the value a
when M — co.

In any case, to minimize E(gt o X —g~ 0X) with respect to the imposed constraints
we should apply non linear constrained optimization techniques (say, for instance, non
linear programming). And we cannot forget that the calculus is based in the knowledge
of hy. Both problems (the search of the analytic expression of h and the values for 9;"
and 6, ) can be simultaneously solved by applying (with some modifications) the GA-P
technique.

The adequacy of function h to a set of points 1s defined by the separation between
gt and ¢, and both were defined in terms of h:

[g7(x), g7 ()] = {t ER |t = he(x),0 €[07,07] x ... x [0,,0%]}
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that is, to find the value of g7 (z) we should find the maximum of h inside the allowed
range for its parameters,

m’)rm

g+ () = max{ho(x),0 € (07, 0F] x . x [0, 6]},

The same thing could be said of g~ . Fortunately, numerical calculus of this minimum
and this maximum can be avoided if we choose an adequate representation for the
expressional part of the GA-P algorithm.

The proposed representation is based in the use of interval arithmetic to perform all
operations involved in the expressional part (see Figure 10.3). That is, we codify the
function in a tree, whose terminal nodes represent intervals [0, 9;"] (that will contain
the unknown values of the parameters). The internal nodes represent unary interval
operations

Ou(A) ={z eR |z =o0,(t) At € A}
or binary operations
Op(A,B)={zeR|z=op(t,u) At € A u € B}

where A, B € I(R), 0 : R — R and o0 : IR x IR — IR. Then, the evaluation of the
expressional part in an input value (point or interval) will be an interval. Moreover, by
choosing operators O,, and Oy such that their evaluation depends only on the extremes
of their arguments, the number of operations needed to evaluate the length of I'(j+ ;-
will be proportional to the number of operations needed to evaluate h(z), so time of
convergence will be proportional to conventional algorithms’.

A description on the unary and binary operators and the remaining characteristics

of the algorithm are to be found in [San97b].
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10.4 GENETIC ALGORITHMS AND EVOLUTION STRATEGIES TO
DESIGN FUZZY RULE-BASED SYSTEMS

In this section, we analyze two different approaches for designing FRBSs by means
of EAs that may be employed as DA techniques. In the first one, a GA will be used
to refine a preliminary definition of a Mamdani-type KB, while in the second one, a
(1, A) — ESs is considered to automatically derive a whole definition of a TSK-type
KB.

10.4.1 Using Genetic Algorithms to Improve a Preliminary Definition of a
Mamdani-Type Knowledge Base

In this first approach, EAs are considered to improve a previous definition of a
KB. Thus, we are working with a GFRBS belonging to the first group mentioned
in Section 2. These evolutionary methods are commonly known as evolutionary tuning
processes, and many of them are to be found in the specialized literature (see [CHL97a],
Section 3.13, and [CHL97b], Section 13). They all deal with the problem of refining
a preliminary KB obtained from the linguistic information given by human experts,
from an automatic learning process based on the numerical information available, or
from a method combining both types of information [Wan94].

These kinds of processes may work over different DB components and adjust its
previous definition by adapting it. The components that may be involved in the
evolutionary tuning process are the following:

e The definitions of the fuzzy rule membership functions collected in the DB.
e The scaling factors.
e The gain of the different fuzzy partitions considered.

In this subsection we first present a very known inductive algorithm to derive
Mamdani-type KBs, the Wang and Mendel’s (WM) one [WM92], that is considered
to generate a preliminary definition of the KB to solve any problem. Then, we will
briefly introduce a genetic tuning process for adjusting the fuzzy membership functions
of the different fuzzy partitions considered in the obtained KB [CHL96, CHI97b]. The
combination of both single methods in a two-stage process will allow us to automatically
design high-performance Mamdani-type FRBSs. Anyway, it must be noted again that
the proposed genetic tuning process may be used in combination with any other
generation process able to obtain a preliminary definition of the KB.

The Wang and Mendel’s Rule Base Generation Process

The inductive KB generation process presented in [WM92] has been widely known
because of its simplicity and good performance. It is based on working with an input-
output data set representing the behaviour of the problem being solved and with
a previous definition of the DB composed of the input and output primary fuzzy
partitions used. The fuzzy rule structure considered is the usual Mamdani-type rule
with n input variables and one output variable presented in Section 2.

The generation of the fuzzy rules of this kind is performed by putting into effect the
three following steps:
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Figure 10.4 Graphical representation of a possible fuzzy partition

1. To generate a preliminary linguistic rule set: This set will be composed of
the fuzzy rule best covering each example (input-ouput data pair) existing
in the input-output data set. The composition of these rules is obtained by
taking a specific example, i.e.; a n 4+ 1-dimensional real array (n values for
the input variables and one for the output one), and setting each one of the
rule variables to the linguistic label associated to the fuzzy set best covering
every array component.

2. To give an wmportance degree to each rule: Let R = If X1 s A and X5 1s
B then Y is C be the linguistic rule generated from the example (1,22, y)
in a problem in which three variables, two input and one output ones, are
involved. The importance degree associated to it will be obtained as follows:

G(R) = pa(z1) - pp(x2) - pe(y)

3. To obtain a final RB by using the preliminary rule set: In the case in which
all the rules in the preliminary set presenting the same antecedent values have
associated the same consequent one, this linguistic rule is automatically put
(only once) into the final RB. On the other hand, if there are conflictive rules,
1.e., rules with the same antecedent and different consequent values, the rule
considered for the final RB will be the one with higher importance degree.

A Genetic Tuning Process for Adjusting the Fuzzy Membership Functions
in a Data Base

As all the GFRBSs in the same family, the genetic tuning process presented in
[CHL96, CHITb] is based on the existence of a previous definition of the whole KB,
i.e., an initial DB and an RB composed of T" Mamdani-type fuzzy rules, called R.

Each chromosome forming the genetic population will encode a different DB
definition that will be combined with the existing RB to evaluate the individual
adaption.

The GA designed for the tuning process presents real coding issue, uses the stochastic
universal sampling [Bak87] as a selection procedure and Michaelewicz’s non-uniform
mutation operator [Mic96]. As regards the crossover operator, the max-min-arithmetical
one [HLV95, HLV97], which makes use of fuzzy tools in order to improve the GA
behaviour, is employed.

The primary fuzzy sets considered in the initial linguistic variables fuzzy partitions
are triangular-shaped (see Figure 10.4). Thus, each one of the membership functions
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Figure 10.5 Intervals of performance

has an associated parametric representation based on a 3-tuple of real values and
a primary fuzzy partition can be represented by an array composed of 3 - N real
values, with N being the number of terms forming the linguistic variable term set. The
complete DB for a problem in which m linguistic variables are involved is encoded into
a fixed length real coded chromosome C) built by joining the partial representations
of each one of the variable fuzzy partitions as it is shown in the following:

Cri = (a1, biv, i1, .o, aing, bing, Giny) s
Cr =Cr Cra ... Crpy

The initial gene pool is created making use of the initial DB definition. This one
is encoded directly into a chromosome, denoted as Cy. The remaining individuals are
generated by associating an interval of performance, [ck, ¢;] to every gene ¢p in Cf,
h=1.. Z:nﬂ N; - 3. Each interval of performance will be the interval of adjustment
for the corresponding gene, ¢, € [c}, ¢}].

If (t mod 3) = 1 then ¢; is the left value of the support of a fuzzy number. The
fuzzy number is defined by the three parameters (e, ¢r41, crq2), and the intervals of
performance are the following:

o € [dh, cf) = [ — S, Seaame]

! r _ Ci41—Ct Ct42—Ct41
Ct41 € [Ct+1a Ct+1] = [et41 — 5 Ct41 + 3 ],
Ct42—Ci41

Coya € [Cipn, Chya] = [Copn — THEFEEL ¢y 4 SHETEL]

Figure 10.5 shows these intervals.

Therefore we create a population of chromosomes containing C as its first individual
and the remaining ones initiated randomly, with each gene being in its respective
interval of performance.

As regards the fitness funtion, F(-), two different definitions for it may be considered
[CHI7D]. Both of them are based on an application specific measure usually employed
in the design of GFRBSs, the mean square error (SE) over a training data set,
Erps, composed of a number of input-output data pairs, (exli, et eyi). The first
definition is constituted directly by this criterion. Therefore, it is represented by the
following expression:
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1

O = ——

S eyt — S(eat))?

ei€Erps

with S(ex!) being the output value obtained from the FRBS using the KB R(C}),
comprising the initial RB definition, R, and the DB encoded in the chromosome Cj,
when the input variable values are ex! = (ez!,... ex}), and ey' is the known desired
value.

The second fitness function definition is based on considering the completeness
property, an important property of KBs [DHR93]. This condition is ensured by forcing
every example contained in the training set to be covered by the considered KB to a

degree greater than or equal to 7,

CR(cj)(el) = U Rj(er) > 1, Ve € Erps and R; € R(Cj)
j=1..T

where 7 € [0, 1] is the minimal training set completeness degree, a value provided by
the system designer.

Therefore, we define a training set completeness degree of R(C;) over the set of
examples Frpg as

TSCD(R(C}), Erps) = ﬂ CR(cj)(el)

ei€Erps

and the final fitness function penalizing the lack of the completeness property is:

F(C)) = { ?(Cj) if TSCD(R(C}), Erps) > T

3 Ze,eETDS (ey’)2 otherwise.

10.4.2 Using Evolution Strategies to Derive a TSK Knowledge Base

In this second approach, we will consider a GFRBS that belongs to the third said
group, the ones learning the complete KB. We are going to work with an evolutionary
learning process presented in [CH97a], which is able to generate a whole definition of
a TSK KB from examples.

The GFRBS is based on an iterative algorithm that equally divides the input space
into a number of fuzzy subspaces and studies the existence of data in them. Each
time data are located in a specific fuzzy input subspace, the process applies a TSK
rule consequent learning method to determine the existing partial linear input-output
relation, taking the data located in this input subspace as a base. The latter method
is based on a (u, A)-ES using a new TSK rule consequent coding scheme, the angular
coding, that was proposed in [CH97a], and a local measure of error, and takes into
account the knowledge contained in this training data subset to improve the search
process.

Next subsections will introduce the different process components. First of all, the
TSK rule consequent learning method is introduced. Then we propose the use of the
knowledge contained in the training data set to improve the search process. Finally
we present the algorithm of the whole generation process; which makes use of the two
previous aspects.
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The TSK rule consequent learning method

In this method, the (u, A)-ES is considered to define TSK rule consequent parameters.
The dimension n of the object variable vector ¥ is determined by the number of input
variables in the problem being solved. When there are v input variables, there are
n = iv+1 parameters to learn in the TSK rule consequent. The Z part of the individuals
forming the (p, A)-ES population is built by encoding the possible values using the
angular coding proposed in [CH97a]. This coding scheme is based on encoding the
angle value associated to the TSK rule consequent parameters instead of the tangent
one by means of the function

C:R— (—g, g) ; C(y) = arctan(y)
EA evolution is guided by a fitness function composed of a local measure of error.
The expression of the measure used is the following:

Z hy - (eyl — S(ear:l))2

e el

where E is the set of input-output data pairs ¢; = (ex},... ezl  ey') located in the
fuzzy input subspace defined by the rule antecedent, hy = T/(A;(ex}), ..., Aj(exh,)) is
the matching between the antecedent part of the rule and the input part of the current
data pair, ex!, and S(ez') is the ouput provided by the TSK fuzzy rule when it receives
ez! as input.

The object variables of the individuals in the first population are generated in the
way shown in the next subsection, taking into account the knowledge contained in
the input-output data set. As regards the composition of the remaining vectors, the
components of & are initiated to 0.001, and the ones in &, when considered, are set to

arctan (1).

Using available knowledge in the design process

To develop the knowledge-based generation of the initial population, we compute the
following indices and obtain the following set from the input-output data set E:

2een Y

: l l
= ; in — 1NN € ; = Imax ¢
Ymed [E] s Ymin B { Y } 5y Ymazx s { Yy }

hmax:mag{hl}a EGI{el EE/hl Zahmax}
ere

Therefore, we generate the initial ES population in three steps as follows:

1. Generate the # part of the first individual, #;, initiating parameters x;,
t=1,... v, to zero, and parameter zy to the angular coding of ynmeq.

2. Generate the & part of the following v individuals, Zo,..., Zy41, with v €
{0,..., 0 — 1} defined by the GFRBS designer, initiating parameters z;,
t = 1,...,%v, to zero, and zy to the angular coding of a value computed
at random in the interval [Ymin, Ymaz]-
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3. Generate the & part of the remaining p — (v + 1) individuals, #y49, ..., %,
initiating parameters z;, ¢ = 1,...,iv, to the angular coding of values
computed at random in the interval (=%, 7), and zg to the angular coding

of a value computed from a randomly selected element e in Ey (6 € [0.5,1]

is provided by the GFRBS designer as well) in such a way that e belongs to

the hyperplane defined by the TSK rule consequent generated. Thus, we shall
ensure that this hyperplane intersects with the swarm of points contained in

Ey, the most significative ones from E.

Since with small angular values, large search space zones are covered, it seems

interesting to generate small values for the parameters x; in this third step.

To do this, we make use of a modifier function that assigns greater probability

of appearance to the smaller angles according to a parameter ¢, also provided

by the GFRBS designer. We use the following function:

Fil0]x{-1,1 = (== 5y o fa )=z Dot
272 2

Hence, the individual generation is performed as follows in this third step:
Forj=~v+2,...,udo
a) Fori=1,...,4v do

a.l) Generate y at random in [0, 1].

a.2) Generate z at random in {—1,1}.

a.3) Set z; to f(y, z).
b) Generate the value of zg:

b.1) Select e at random from Fjy.

b.2) Set g to ey—zzvzl C~(xg)-exy, where C~1(3) = tan() is the inverse

of C'.

Algorithm of the Evolutionary Generation Process
The generation process proposed is developed by means of the following steps:

1. Consider a fuzzy partition of the input variable spaces obtained from the
expert information (if it is availaible) or by a normalization process. If the
latter is the case, perform a fuzzy partition of the input variable spaces
dividing each universe of discourse into a number of equal or unequal
partitions, select a kind of membership function and assign one fuzzy set to
each subspace. In this paper, we will work with symmetrical fuzzy partitions
of triangular membership functions (see Figure 10.4).

2. For each multidimensional fuzzy subspace obtained by combining the
individual input variable subspaces using the and conjunction do:

(a) Build the set E' composed of the input-ouput data pairs e € E that are
located in this subspace.

(b) If |El| # 0, 1. e, if there is any data in this space zone, apply the TSK rule
consequent learning method over the data set E' to determine the partial
linear input-output relation existing in this subspace. Therefore, no rules
are considered in the fuzzy subspaces in which no data are located.

(c) Add the generated rule to the KB.
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10.5 PRACTICAL APPLICATION

We have mentioned that the development of the Interval GA-P Method was driven
by a practical symbolic regression problem. That work dealt with maintenance cost
estimation in some different kinds of electrical lines, and one of its intermediate results
was the definition of a model relating the lenght of line in a rural population with its
characteristics. We think that this problem is well suited to numerically compare the
models we have defined, so we reproduce it here partially.

We were provided with the measured line length, the number of inhabitants and the
mean distance from the center of the town to the three furthest clients in a sample of 495
rural nuclei. Our objective was to relate the first variable (line length) with the other
two ones (population, radius of village), first by classical methods, later by applying
the DA techniques presented in this paper. Numerical results will be compared in the
next section.

Our variables are named as shown in Table 10.1.

Table 10.1 Notation considered for the problem variables

Symbol Meaning
A; Number of clients in population
R; Radius of ¢ population in the sample
n Number of populations in the sample
l; Line length, population ¢

o~
N

Estimation of {;

10.5.1  Application of classical methods

In order to apply classical methods, we needed to make some hypothesis [San97a]. In the
populations that are being studied, electrical networks are star-shaped and arranged
in sectors. A main line passes near all clients inside them, and clients are connected to
these main lines by small segments (see Figure 10.6).

To build a theoretical simplified model we have admitted that:

e A population comprises s; sectors. Each sector covers an angle 26;. All sectors
in the same population cover the same angle. Each sector is served by one
output of the only transformation center in the village.

e All sectors in a population have the same radius, R;.

e Clients are uniformly distributed inside every sector.

e Inside a sector, the electrical line comprises a main nerve of length R; and so
many branches as consumers.

If we admit that customers are uniformly distributed, we can approximate the total
length by multiplying the mean distance between one of them and the nerve by the
number of inhabitants. Let us name this mean distance d; for population ¢, and let the
sector be 26, wide. Then

cbook2e 4/8/1997 14:06—PAGE PROOFS for John Wiley & Sons Ltd (jwcbook.cls v5.0, 17th April 1997)



EVOLUTIONARY LEARNING PROCESSES FOR DATA ANALYSIS 15

o o
e °oeo
o
[ °e © \ [
| ° ° o | (
\ o g ° | \
. e
o
o

2(1 — cosb;)
dz = Rz
36;
so cable length will be
~ A; 2(1 — cosb;
li = s;(R; + ?di) =il + Ai%Ri

10.5.2 Classical regression adjust

If the angles §; and the numbers s; were similar enough between them, we could
regard them as constants and estimate them by the parameters §; = 8 y 5, = s of a
least squares linear regression

Li/R; = 5+ k(0)A;.

to a set of pairs (z,y) = (A, li/R;).

We can get a better adjust by allowing a certain dependence between the number of
sectors, their angles and the number of inhabitants. This can be done by dividing the
sample into classes or by mean of a change of variables. Both cases were studied, and
the best adjust was obtained with the model

I
— =k A
R;

10.5.3 GA-P and Interval GA-P adjust

Let us apply GA-P algorithms to check whether we can obtain a formula that is
comparable in complexity with the last one, while getting better adjust to the real
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Table 10.2 Parameter values considered for the GA-P process

Parameter Decision
Population size 100
Maximum number of generations 1000 (steady state)
Parent selection (See text)

GA Part encoding Real

GA Crossover operator
GP Crossover operation

Two points
Subexpression exchange,
not context-dependant

GA Cross. probability 0.9
GP Cross. prob. internal nodes 0.9
GP Cross. prob. leaves 0.1
GA Mutation probability 0.01
GP Mutation probability 0.01
Expressional part limited to 20 nodes
Complexity individuals initial pop. 20 nodes
Maximum number of parameters 10
Enrichment initial population 1000 individuals
Edition probability 0
Encapsulation probability 0
Permutation probability 0
Decimation No
ADFs maximum 0

Local GA optimization

Nelder and Mead’s simplex

data. We will define “simple expression” as a formula that can be codified in a tree
with no more than 20 nodes and depending on no more than 10 parameters. Binary
operations will be sum, subtraction, product, quotient and power. The unary operation
will be the square root. Other decisions (whose meaning is well known, see for instance
[HD95, KR94, Mic96]) are shown in the Table 10.2.

We randomly select three individuals every generation. The worst one of them is
replaced with the best descendent of the crossover of the remaining ones. Observe that
this strategy is elitist and steady state.

10.5.4 GFRBS fuzzy modeling

To solve the problem by means of the GFRBSs proposed, we have considered the
parameter values shown in Tables 10.3 and 10.4. In both cases, the initial DB
considered is constituted by some primary equally partitioned fuzzy partitions formed
by seven linguistic terms with triangular-shaped fuzzy sets giving meaning to them
(as shown in Figure 10.4), and the adequate scaling factors to translate the generic
universe of discourse into the one associated with each problem variable.
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Table 10.3 Parameter values considered for the genetic tuning process

Parameter Decision
Population size 61
Maximum number of generations 1000
Non-uniform mutation parameter b 5
Max-min-arithmetical parameter a 0.35
Crossover probability 0.6
Mutation probability 0.1
Fitness function E

Table 10.4 Parameter values considered for the TSK GFRBS

Parameter Decision
Number of parents p 15
Number of descendents A 100
Maximum number of generations 500
Parameter ~ 02-p=3
Parameter 6 0.7
Parameter ¢ 5
Recombination operators considered 7 (3,2,0)

Number of parents considered for recombination 5 (g, 1, 1)

Table 10.5 Results obtained in the problem being solved

Method Training  Test Complexity
Linear 287775 209656 7 nodes, 2 par.
Exponential 232743 197004 7 nodes, 2 par.

2th order polynomial 235948 203232 25 nodes, 6 par.
3rd order polynomial 235934 202991 49 nodes, 10 par.

3 layer perceptron 2-25-1 169399 167092 102 par.
GA-P 183693 159837 20 nodes, 3 par.
Interval GA-P 192908 158737 16 nodes, 3 par.
WM fuzzy model 175337 180102 13 rules
TSK fuzzy model 162609 148514 20 rules
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10.5.5 Comparison between methods

To compare classical method, GA-P technique and GFRBS fuzzy modeling we have
divided the sample into two sets comprising 396 and 99 samples. SE values over these
two sets are labeled training and test. In this case, we define SE as

1 X
Bl
i=1

and the column complerity contains the number of parameters and the number of nodes
in the parse tree of the expression, as well as the number of rules in the KB of every
generated fuzzy model.

The parameters of the polynomial models were fitted by Levenberg-Marquardt;
exponential and linear models were fitted by linear least squares and the multilayer
perceptron was trained with the QuickPropagation algorithm. The number of neurons
in the hidden layer was chosen to minimize the test error.

We can observe that fuzzy models and GA-P techniques clearly outperform classical
non linear regression methods, being equal or superior to neural networks. This result
has great significance, because it means that neural network performance can be
achieved with a model with a high descriptive power. WM fuzzy models provide the
most comprehensive explanation of its functioning, and should be used when a human-
readable, rule based, description of the problem is needed. In this case, the genetic
based method has found a very simple structure, comprising only 13 rules.

When a mathematical formula is preferred to the rule bank, GA-P methods provide
a suitable expression where the user can select the balance between complexity and
precision. We observed that usually Interval GA-P finds a simpler expression that
punctual GA-P, besides its convergence is somewhat slower. Observe that Interval
GA-P is not intended to provide an estimation but a range of values in which the
output is, with a probability higher than a preselected value. The number collected in
the table is the scoring achieved by a punctual model formed when every interval of
parameters is replaced by its mean point in the final model.

By last, observe that the best precision can only be obtained if we choose the less
descriptive of fuzzy models, TSK. This model has a high complexity (20 rules) and
definitely it is the selection that should be made when the precision is more important
than the easiness of explanation. Anyway, this fuzzy model has associated a higher level
of description than neural network models, because of the possibility of interpreting
the antecedent part of the fuzzy rules.

10.6 CONCLUDING REMARKS

In this contribution we have presented the application of two hybrid EA-based DA
methods, the Interval GA-P for symbolic regression and GFRBSs, in a real-world
Electrical Engineering problem.

Both techniques have demonstrated to be powerful DA tools capable of making
abstraction on the data with good generalization properties in view of the results
obtained in the application tackled. The first one allows us to obtain expressions with
algebraic operators while the second one is able to generate KBs giving a linguistic
local description of the problem.
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