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Abstract

Nowadays, Linguistic Modeling is considered one of the most im-
portant applications of Fuzzy Set Theory, along with Fuzzy Control.
Linguistic models have the advantage of providing a human-readable
description of the system modeled in the form of a set of linguistic rules.
In this chapter, we will analyze several approaches to improve the accu-
racy of linguistic models while maintaining their descriptive power. All
these approaches will share the common idea of improving the way in
which the Fuzzy Rule-Based System performs interpolative reasoning
by improving the cooperation between the rules in the linguistic model
Knowledge Base.



Introduction

Nowadays, Linguistic Modeling (LM) is considered one of the most
important applications of Fuzzy Set Theory, along with Fuzzy Control.
Linguistic models have the advantage of providing a human-readable de-
scription of the system modeled in the form of a set of linguistic rules
[29], which is a desirable characteristic in many modeling problems. Un-
fortunately, their accuracy is sometimes not as high as desired when
dealing with complex modeling problems, thus causing the designer to
discard them and replace them by other kinds of more accurate but less
interpretable models. This drawback is due to some problems related to
the inflexibility of the concept of the linguistic variable, which is the one
involved in the fuzzy rule structure.

In this chapter, we review several approaches to improve the accuracy
of linguistic models while maintaining their descriptive power. All these
approaches will share the common idea of improving the way in which
the Fuzzy Rule-Based System (FRBS) performs interpolative reasoning
by improving the cooperation between the rules in the linguistic model
Knowledge Base (KB).

The rule cooperation may be induced in four different FRBS compo-
nents, namely the Inference System (IS), the KB as a whole and both
KB components in isolation, the Data Base (DB) and the Rule Base
(RB). All of them will be analyzed. To be precise, we will deal with the
following aspects:

m  Genetic tuning of the membership functions.
» Simulated Annealing-based Learning of the DB from examples.
m  Genetic selection of fuzzy rules.

s The Accurate Linguistic Modeling paradigm, based on a double-
consequent linguistic rule generation and selection.

s The Hierarchical Accurate Linguistic Modeling paradigm, based
on a hierarchical linguistic rule generation and selection.

m  Cooperative Fuzzy Reasoning Methods for classification problems.

The behaviour of the first five methods in solving the real-world S-
panish electrical distribution problem shown in the Appendix will be
analyzed. On the other hand, the performance of the last one, the only
dealing with classification problems, will be tested with the IRIS and
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PIMA data sets. In every experiment, the same basic rule generation
process will be considered, the Wang and Mendel’s one (WM-method)
[30]. Two variants of this method to deal with modeling and classifica-
tion problems are also introduced in the Appendix.

In order to put this into effect, this chapter is set up as follows. In Sec-
tion 1., the framework is presented, i.e., System Modeling with FRBSs,
structure of linguistic models and problems of LM. Section 2. describes
our proposals to improve the accuracy of LM, by presenting a short s-
tudy of rule cooperation in FRBSs and a brief description of the different
approaches. Sections 3., 4. and 5. present the specific proposals to induce
cooperation from the DB, the RB and the KB respectively. On the other
hand, our proposals to induce cooperation from the IS, including their
own experiments, are introduced in Section 6. Finally, a summary of the
chapter is presented in 7., and an Appendix describing the WM-method
and the electrical problem used as benchmark is included.

1. FRAMEWORK

In this section, some preliminary concepts will be presented. First,
System Modeling with FRBSs will be introduced and the two different
existing approaches will be reviewed. The section will focus then on LM
and the basic structure of two different kinds of linguistic models, for
regression and classification problems, will be described. Finally, the
problems of LM will be analyzed.

1.1 SYSTEM MODELING WITH FRBSS

One of the most important applications of FRBSs is system modeling
[5, 28], which in this field may be considered as an approach used to mod-
el a system making use of a descriptive language based on Fuzzy Logic
with fuzzy predicates [29]. In this kind of modeling we may usually find
two contradictory requirements, the accuracy and the interpretability of
the model obtained.

It is possible to distinguish between two types of modeling when work-
ing with FRBSs: Linguistic Modeling and Fuzzy Modeling, according to
the fact that the main requirement is the interpretability or the accu-
racy of the model, respectively. The former is developed by means of
descriptive Mamdani-type FRBSs, which use fuzzy rules composed of
linguistic variables [34] that take values in a term set with a real-world
meaning, thus the linguistic model counsists of a set of linguistic descrip-
tions regarding the behaviour of the system being modeled [29]. On the
other hand, Fuzzy Modeling is put into effect by means of approximate
Mamdani-type FRBSs [3, 5, 10], systems in which the fuzzy rules are
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composed of fuzzy predicates without a linguistic meaning, i.e., the vari-
ables forming the rules do not take as a value a linguistic term with a
fuzzy set associated defining their meaning, but a fuzzy set directly.

Therefore, a linguistic model is a system description in the form of a
linguistic rule set interpretable by human beings, which is a desirable
characteristic in some problems.

1.2 STRUCTURE OF A LINGUISTIC
MODEL

The basic structure of a linguistic model [31] is showed in Fig. 1.1.

Knowledge Base

DataBase | | Rule Base

|

real rea
input x Fuzzification Inference Defuzzification output x
Interface System Interface

Figure 1.1 Structure of a linguistic model

The Knowledge Base (KB) is the component containing the knowledge
about the system modeled in the form of linguistic rules. It is composed
of two components:

»  Rule Base (RB): Collection of linguistic rules:
R;:IF z; is A;; and ...and z, is A;, THEN vy is B;

with z; and y being linguistic system variables, and with A;; and
B; being the linguistic labels associated with fuzzy sets specifying
their meaning.

»  Data Base (DB): Semantics of the linguistic labels (Fig. 1.2).

The Fuzzification Interface has the function of computing the firing
degree of each single rule in the KB with respect to the current system
input. This is done by computing the matching degree between the
input and the rule antecedents, considering a conjunctive operator (a
t-norm) when there is more than one input variable. The Inference
System (IS) performs then the fuzzy reasoning process by applying the
Compositional Rule of Inference [33] on each individual rule in the KB.
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Figure 1.2 Example of semantics of the linguistic labels

The output obtained from the latter process is a number of fuzzy sets
equal to the number of rules fired. The Defuzzification Interface works by
aggregating these individual fuzzy sets in a single one and transforming
it into a real number, the final output of the FRBS. For more information
on the reasoning process, refer to [9].

In this chapter, the membership functions considered in the DB will
always be triangular-shaped. The minimum t-norm will be used as con-
juctive and implication operators, while the Center of Gravity weighted
by the matching will be the defuzzification method considered [9].

We use a global error measure, the mean square error (MSE), as eval-
uation measure for our proposals. The MSE will allow us to determine
the accuracy of the linguistic model obtained, which directly depends on
the cooperation levels of the rules existing in the KB. The MSE over a
training data set, E,, is represented by the following expression:

1
F(C]) = 2|E | Z (eyl - S(B.’L‘l))2
p e ck)p
where S(ez!) is the output value obtained from the FRBS when the input
variable values are ez! = (ezll, .. ,ezﬁl), and ey’ is the known desired
value.

1.3 FUZZY RULE-BASED CLASSIFICATION
SYSTEMS

In this section, a special type of linguistic models is introduced: Fuzzy
Rule-Based Classification Systems (FRBCSs), the FRBSs used for clas-
sification problems.

The structure of an FRBCS is very similar to the one of an FRBS. In
an FRBCS, two components are distinguished: 1) The KB, composed of
RB and DB as in every linguistic model, and 2) an a Fuzzy Reasoning
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Method (FRM), an inference procedure which derives conclusions from
a fuzzy rule set and an example.

The FRBCS design implies finding both components, and this pro-
cess is carried out through a supervised learning process, which starts
with a set of correctly classified examples (training examples) and whose
ultimate objective is to design a Classification System, assigning class
labels to new examples with a minimum error. Finally, the system per-
formance on the test data is computed, to gain an estimate about the
FRBCS real error.

The composition of the DB is the usual one in LM. The main difference
between an usual linguistic model and an FRBCS lies on the structure of
the linguistic rule considered in the latter and, more concretely, on the
form of the consequent of the fuzzy classification rule. Three different
fuzzy classification rules have been proposed in the specialised literature
with the consequent being: a class [2, 21], a class and a certainty degree
associated to the classification of that class [24], and the certainty degree
associated to the classification of each one of the possible classes [26].

In this work, we will consider FRBCSs composed of RBs of the former
two types:

Ry : If 1 is Alf and ... and zy is Aé“v then Y is Cj
Ry : If zq is A’f and ... and zy is A’fv then Y is C; with rk

where:
" 1y,...,2n are the selected features for the classification problem,
m Ak ... A% are linguistic labels used to discretise the continuous

variable domain,

m Y is the class C; € {Cy,...,Cp} to which the example belongs,
and

» ¥ is the classification certainty degree in the class C; for an exam-
ple belonging to the fuzzy subspace defined by the rule antecedent.

Focusing on the FRM, the classical approach, called mazimum match-
ing, considers the rule with the highest association degree to make the
final decision. This FRM classifies the pattern with the class of this rule.
Graphically, this method could be seen as depicted in Fig. 1.3, where
the rule Ry would show the highest association degree.



Figure 1.3 FRM that uses only the winner rule

1.4 PROBLEMS OF LINGUISTIC
MODELING

As said, interpretability and accuracy are usually contradictory re-
queriments in System Modeling. Linguistic models present sometimes
a lack of accuracy in complex modeling problems. As Zadeh pointed
out in his principle of incompatibility [33], “as the complexity of a sys-
tem increases, our ability to make precise and yet significant statements
about its behaviour diminishes ...”7. Thus, although the use of Fuzzy
Logic-based techniques, specifically of FRBSs, allows us to deal with the
modeling of systems in which a certain degree of imprecision is involved,
building a linguistic model clearly interpretable by human beings, the
accuracy obtained is not always as good as desired and we prefer a loss
in the model description ability to obtain an improvement in the over-
all model performance. The choice between how interpretable and how
accurate the model must be usually depends on the user’s needs for the
specific problem and will condition the kind of FRBS selected to generate
it.

The lack of accuracy is due to some problems relating to the fuzzy
rule structure considered which are a consequence of the inflexibility of
the concept of linguistic variable. A brief summary of these problems is
shown as follows [6, 7]:

m Lack of flexibility due to the rigid partitioning of the input and
output spaces.

s The homogeneous partitioning of these spaces when the input-
output mapping varies in complexity within the space is inefficient
and does not scale to high-dimensional spaces.

m Dependent input variables are very hard to partition.



m Limitation on the size of the RB.

Hence, in many cases the linguistic model designed is not accurate to
a sufficient degree and has to be discarded and replaced by other less
interpretable but more accurate model. In this chapter, some proposals
allowing us to improve the accuracy of linguistic models while maintaing
their descriptive power will be introduced.

2. HOW TO IMPROVE THE ACCURACY
OF LINGUISTIC MODELING

One of the most interesting features of an FRBS is the interpolative
reasoning it develops. This characteristic plays a key role in the high
performance of FRBSs and is a consequence of the cooperation among
the fuzzy rules composing the KB. As is known, the output obtained from
an FRBS is not usually due to a single fuzzy rule but to the cooperative
action of several fuzzy rules that have been fired, because they match
the input to the system to some degree (Fig. 1.4).

OUTPUT FUZZY
FUZZY RULES SETS

Figure 1.4 Cooperation among the fuzzy rules

Improving the cooperation among the fuzzy rules in the KB can be a
good way to improve the accuracy of linguistic models. All our proposals
will be based on this idea.

There are two components in an FRBS having a significant influence
on the rule cooperation, the IS and the the KB. The accuracy of the
FRBS can be increased, while its descriptive nature can be preserved,
improving the cooperation among rules in the KB by dealing with four
different aspects: the IS, the KB as a whole, and its two components,
the DB and the RB, in isolation.
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We propose six different approaches acting on these four different
components, that are not isolated and can be combined among them:

m  Approaches to induce cooperation from the DB:

— Genetic tuning of the membership functions [10]

— Simulated Annealing-based Learning of the fuzzy partition
granularity [17]

m  Approaches to induce cooperation from the RB:

— Genetic selection of fuzzy rules [10, 19, 23]

— Accurate Linguistic Modeling paradigm: Double-consequent
linguistic rule generation and selection [12, 13]

m  Approaches to induce cooperation from the KB:
— Hierarchical Accurate Linguisitc Modeling Paradigm [18]

m  Approaches to induce cooperation from the IS:

— Cooperative Fuzzy Reasoning Methods for Classification Prob
lems [14]

In the next sections, all of these proposals will be analyzed in depth.
The specific search procedures considered will not be introduced in the
chapter with the aim of not extending it excessively. The reader can refer
to [20, 27] and [1] for clear and wide descriptions on Genetic Algorithms
(GAs) and Simulated Annealing (SA) respectively.

3. APPROACHES TO INDUCE
COOPERATION FROM THE DATA BASE

In the last few years, many approaches have been presented to auto-
matically learn the RB from numerical information (input-output data
pairs representing the system behaviour). However, there is not much in-
formation about the way to derive the DB and most of these RB learning
methods need of the existence of a previous definition for it.

A common way to proceed involves considering uniform fuzzy parti-
tions with the same number of terms (usually an odd number between
three and seven) for all the linguistic variables existing in the problem.
Therefore, this operation mode makes the DB have a significant influence
on the FRBS performance. This is why some approaches try to improve
the preliminary DB definition considered once the RB have been de-
rived. To put this into effect, a tuning process considering the whole KB
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obtained (the preliminary DB and the derived RB) is used a posteriori
to adjust the membership function parameters. Our first proposal to
improve the accuracy of LM is to do with this idea: given a complete
KB, a genetic tuning of the membership functions. Nevertheless, the
tuning process usually only adjusts the membership functions shapes
and not the number of linguistic terms in each fuzzy partition, which
remains fixed from the begining of the FRBS design process. Our second
proposal has a different starting point, it is a DB learning method and
tries to learn an adequate fuzzy partition granularity for each linguistic
variable using Simulated Annealing.

3.1 GENETIC TUNING OF THE
MEMBERSHIP FUNCTIONS

The genetic tuning process [10] is based on the existence of a previous
complete KB, that is, an initial DB definition and an RB constituted
by m fuzzy rules. The chromosomes only encode the primary fuzzy
partitions constituting the DB in order to adjust the linguistic labels
membership functions for all the fuzzy rules contained in the RB.

The GA designed presents a real coding issue that allows us to main-
tain the FRBS descriptive nature. Each chromosome encodes a different
DB definition. A primary fuzzy partition is represented as an array com-
posed by 3- N real values, with N being the number of terms forming the
linguistic variable term set. The complete DB for a problem, in which m
linguistic variables are involved, is encoded into a fixed length real coded
chromosome ). built by joining the partial representations of each one
of the variable fuzzy partitions as is shown in the following:

(aj,bj,c;) = 3-tuple encoding of the fuzzy set j
Cri = (a1, bi1,¢i1, - - - ,inN; bin,,s CiNi) — fuzzy partition
of the linguistic variable 3.

C, =Cy1 Cpy ... Cpyy — whole DB definition.

The initial gene pool is created making use of the initial DB defini-
tion. This one is encoded directly into a chromosome, denoted as Cf.
The remaining individuals are generated by associating an interval of
performance, [c}, c}] to every gene ¢, in Cp, h=1...3" N;-3. Bach
interval of performance will be the interval of adjustment for the corre-
sponding gene, ¢, € [ch, c}].

If (¢t mod 3) = 1 then ¢ is the left value of the support of a fuzzy
number. The fuzzy number is defined by the three parameters (¢, ¢i41,
¢t+2) and the intervals of performance are the following:

ct € [cf, cf] = [or — S ¢p 4 =
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Figure 1.5 Membership function and intervals of performance for the tuning process

Ct41—Ct Ct+2*Ct+1]
2 2

Ct+1 € [Cé+1;cz+1] = [Ct+1 - , Ce+1 +

! Ct42Ct41
Coy2 € [Chya, Cryn] = [cepn — L crpn +

s ey

Fig. 1.5 shows these intervals. Therefore, we create a population
of chromosomes containing C as its first individual and the remaining
ones initiated randomly, with each gene being in its respective interval
of performance.

The GA designed uses the stochastic universal sampling as selection
procedure together with an elitist scheme. The operators employed for
performing the individual recombination and mutation are Michalewicz’s
non-uniform mutation [27] and the max-min-arithmetical crossover [22].
The MSE introduced in Section 1.2 plus a criterion penalyzing the lack
of the completeness property compose the fitness function. Further in-
formation about this approach can be found in [10].

Table 1.1 collects the results of a brief experimentation where the KB
obtained from the WM-method for the electrical problem shown in the
Appendix is refined by means of the introduced tuning process. The
large accuracy improvement can be clearly seen.

Table 1.1 Results obtained with the genetic tuning process

Method Granularity # Rules MSEiraining MSE¢est
WM-method TTT 24 222622 240018
DB Tuning TTT 24 144510 173167
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3.2 LEARNING AN ADEQUATE FUZZY
PARTITION GRANULARITY

As said, most of RB learning methods needs a previous definition of
the DB, and the consideration of uniform fuzzy partitions with the same
number of terms significatively affects the linguistic model accuracy. To
solve this problem, we have developed a method to learn a good fuzzy
partition granularity for a determinated problem [17]. We try to learn
the number of linguistic terms for each variable, maintaining uniform
fuzzy partitions. Since the exhaustive exploration of the search space is
a very time consuming task, we consider the SA heuristic local search
technique to perform the search.

In our case, given an RB generating method and an specific problem,
each candidate solution is a concrete granularity level for each prob-
lem variable (number of labels), and the cost function is based on the
MSE of the FRBS obtained with the WM-method using a DB with that
granularity.

Three stopping criteria have been considered in order to reduce the
run time of the procedure:

s The maximum number of iterations allowed without global im-
provement is reached.

= No solution was accepted in the last iteration.

# The maximum number of solutions have been generated.

It is interesting to point out that in all the runs done in [17] the
procedure finished due to the first or second stopping criteria.

The basic operation mode of SA, adapted to our problem, is described
in the next algorithm, with L being the number of possible values for
the labels (seven in our case, {3,...,9}), with N being the number of
problem variables, with « being the decreasing factor of the tempera-
ture, and with 7,, T being respectively the initial temperature, and the
temperature in successive iterations.

SA (To,a,N, L)
T < Tp;
Sact — Generate_Initial_Solution;
Spest < Sact;
while (solutions < LN) and (iterations_without_improv. < N)
and not(iteration_without_accepted_solution) do
begin
count < 0
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while (count < N3) and (accepted_solution_number < N?) do
begin
Scand  Generate_Solution_N (Sqct);
d < cost(Scand) — cost(Saet);
if (U(0,1) < el=9/D)) or (§ < 0)
then Saet < Scands
Zf COSt(Sact) < COSt(Sbest)
then Spest < Sacts
count < count + 1;
end;
T < o(T);
end;
{Write as final solution, Spes; }

The implementation of our SA procedure incorporates a taboo record
of explored solutions, along with their cost, in order to eliminate the
possibility of redundant executions of the RB generating method, with
the consequent saving of run time. In fact, only 32 of the 59 solutions
generated in the experiment developed in this chapter were evaluated.
The results obtained are shown in Table 1.2, where the linguistic model
generated by means of the granularity learning process can be compared
with the one generated by the WM-method when considered the same
number of labels (seven) for the three problem variables.

For more details about the SA procedure used and a wider experi-
mentation, refer to [17].

Table 1.2 Results obtained with the SA-based fuzzy partition granularity learning

Method Granularity # Rules MSEiraining MSEtest
WM-method TTT 24 222622 240018
SA-based granularity learning 899 28 192980 230675

4. APPROACHES TO INDUCE
COOPERATION FROM THE RULE BASE

In this section, two methods to improve the FRBS performance by
increasing the cooperation among the rules belonging to the RB are
proposed: a genetic selection process of fuzzy rules and the Accurate
Linguistic Modeling paradigm, based on double-consequent fuzzy rules.
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4.1 GENETIC SELECTION OF FUZZY
RULES

The operation mode of many RB generation methods means that, in
each input subspace, the rules are created individually from the examples
in the input-output data set without taking into account the coopera-
tion existing between them to give the final model output. That is, no
information about the neighbour rules is considered in order to generate
them. Because of this, the generated RB may present redundant or un-
necessary rules making the model using this KB less accurate. In order
to avoid this fact, a rule selection genetic process is proposed in [10, 23]
with the aim of simplifying the initial linguistic rule set by removing the
unnecessary rules from it and generating a KB with good cooperation.

The selection of the subset of linguistic rules best cooperating is a
combinatorial optimization problem. Since the number of variables in-
volved in it, i.e., the number of preliminary rules, may be very large, we
consider an approximate algorithm to solve it, a GA. Another process
solving the problem of selecting rules by means of the same technique is
to be found in [25].

The rule selection genetic process is based on a binary coded GA, in
which the selection of the individuals is performed using the stochastic
universal sampling procedure together with an elitist selection scheme,
and the generation of the offspring population is put into effect by using
the classical binary multipoint crossover (performed at two points) and
uniform mutation operators.

The coding scheme generates fixed-length chromosomes. Considering
the rules contained in the initial linguistic rule set counted from 1 to m,
an m-bit string C' = (cy, ..., ¢;,) represents a subset of candidate rules to
form the RB finally obtained, B?, such that,

If ¢c; =1 then R; € B? else R; ¢ B®

The initial population is generated by introducing a chromosome rep-
resenting the complete previously obtained rule set, i.e., with all ¢; = 1.
The remaining chromosomes are selected at random.

As regards the fitness funtion, F(C}), it is based on the MSE of the
FRBS using the RB encoded in the chromosome over the training data
set as well as a criterion penalyzing the lack of the completeness property
of the said RB.

A possible improvement of this method is the genetic multiselection
process [19], which obtains different simplified RBs for modeling and
classification problems. It selects the rules cooperating best from the
previous RB, by working as follows:
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m  The basic rule selection genetic process is run several times.

m FEach time a simplified rule set is generated, the space zone where
it is located is penalized by means of a genotypic sharing function
(niching GAs [20]).

s The process ends when the desired number of simplified RBs is
generated.

Results for this proposal will not be presented in this chapter, since
the WM-method generates a small rule set which does not verify the
completeness property. For some results obtained when applying the
genetic selection process to RBs generated from other learning methods,
refer to [10, 19, 23]. On the other hand, we will see that the genetic
selection process is considered in the other approach proposed to induce
cooperation from the RB (next subsection) and on the one presented to
induce it from the whole KB (Section 5.).

4.2 THE ACCURATE LINGUISTIC
MODELING PARADIGM

The Accurate Linguistic Modeling (ALM) [12, 13] is a methodology
to obtain more cooperative RBs for linguistic models. It is based on the
following two aspects:

m  The usual linguistic model structure is extended allowing the RB to
present rules where each combination of antecedents may have two
consequents (the primary and secondary in importance) associated
when it is necessary to improve the model accuracy. It is clear
that this will improve the capability of the model to perform the
interpolative reasoning and, thus, its performance.

We should note that this operation mode does not constitute an
incounsistency from the interpolative reasoning point of view but
only a shift of the main labels making that the final output of the
rule lie in an intermediate zone between them both. Hence, it may
have the following linguistic interpretation. Let us suppose that
a specific combination of antecedents, “xq is Ay and ...and z,, is
A7, has two different consequents associated, B; and By. From
a LM point of view, the resulting double-consequent rule may be
interpreted as follows:

IF z; is A1 and ...and z, is A, THEN y is between B; and B>

s The previous point deals with the improvement of the fuzzy rea-
soning in an input subspace defined by a specific combination of
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antecedents. On the other hand, the second aspect deals with the
cooperation between the rules in the KB, i.e., with the overlapped
space zones that are covered by different linguistic rules. Hence, it
is considered an operation mode based on generating a preliminary
fuzzy rule set in which single and double-consequent rules coexist
and selecting the subset of them best cooperating. It is important
to remark that each double-consequent rule is decomposed in two
simple ones in the selection process. Thus, this stage will specify
which double-consequent rules in the preliminary rule set will re-
main in the final RB, that is, those fuzzy input subspaces whose
two simple rules associated have been finally selected.

On the other hand, it should be noted that the said operation mode
gives more freedom to the RB generation process. As is known,
the generation of the best fuzzy rule in each subspace does not
ensure that the FRBS designed will perform well, due to the fact
that the rules composing the KB may not cooperate suitably. The
rule selection considered in ALM can make the final RB present
single-consequent rules not being the best ones in their fuzzy input
subspaces in order to improve the cooperation of the global RB.

In [12], two specific generation processes based on the ALM method-
ology are introduced. Both of them are based on two stages: double-
consequent rule generation and rule selection. In the following, one of
these processes is briefly described:

1. A linguistic rule generation method from examples based on a mod-
ification of the WM-method that involves generating the two most
important consequents for each combination of antecedents (in-
stead of only the most important one, as this method usually do).
All the WM-method steps shown in the Appendix remains the
same but the fourth one (Obtain a final RB from the preliminary
fuzzy rule set). Whilst in that method the rule with the highest
importance degree is the only one chosen for each combination of
antecedents, in our case we allow two different rules, the two most
important ones in each input subspace (if they exist), to form part
of the RB, thus creating a double-consequent rule.

Of course, a combination of antecedents may not have rules asso-
ciated (if there are no examples in that input subspace) or only
one rule (if all the examples in that subspace generated the same
rule). Therefore, the generation of rules with double consequent is
only addressed when the problem complexity, represented by the
example set, shows that it is necessary.
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2. The rule selection genetic process, introduced in Section 4.1, that
selects the subset of rules in the preliminary linguistic set cooper-
ating best working in the said way.

Another important characteristic of ALM is that it has no influence
on the linguistic model inference system. The only restricition imposed
is that the defuzzification method must counsider the matching degree
of the rules fired. In this chapter we work with the Center of Gravity
weighted by the matching degree [9].

The inference mechanism designed will perform in the way shown next
when it receives an input zg = (z1,...,%,):

1. For each rule R;, 1 =1,...,T, in the KB:
(a) Compute the matching degree, h;, of the rule:
hi = Min(:U‘Ail (1'1)7 s A, (In))

(b) Apply the Minimum t-norm in the role of implication operator
to obtain the fuzzy set resulting from the application of the
inference process on that rule, B}:

pnp(y) = Min(hi, ps, (y))
2. Obtain the Center of Gravity for each individual fuzzy set Bj:

i — Y- ps(y) - dy
Y fvns(y) - dy

3. Compute the final output given by the system as output, yo, by
aggregating the partial actions obtained by means of the matching
degree weighted average:

i1 hi - yi
S b

The results obtained by the ALM-based process proposed in the solv-
ing of the electrical application tackled are showed in Table 1.3. In order
to analyze the influence of the genetic selection process introduced in
Section 4.1, two different rows will be associated to the ALM process in
the table, each one collecting the results obtained after the application of
each stage composing it. As can be seen, the linguistic model obtained
is simpler and more accurate to a high degree than the WM-method
one. We should note that the number of rules showed (20) stands for
simple rules, i.e., the double-consequent rules existing in the RB have
been counted twice for comparison purposes.

Yo =
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Table 1.8 Results obtained with ALM

Method Granularity # Rules MSEirqining MSEest
WM-method TTT 24 222622 240018
ALM (generation) TTT 34 231174 260067
ALM (selection) TTT 20 155866 178601

5. APPROACHES TO INDUCE
COOPERATION FROM THE
KNOWLEDGE BASE

A single method will be introduced belonging to the group of ap-
proaches inducing cooperation from the whole KB (i.e., both from the
DB and the RB), the Hierarchical System of Linguistic Rules (HSLR)
learning methodology. In HSLRs, the linguistic variables involved in the
fuzzy rules are defined in linguistic partitions with different granularity
levels, thus making the rules belong to different hierarchical levels [18].

To do so, the KB structure of linguistic models is extended by in-
troducing the concept of “layers”. In this extension, which is also a
generalization, the KB is composed of a set of layers where each one
contains linguistic partitions with different granularity levels and lin-
guistic rules whose linguistic variables take values in these partitions.
This KB is called Hierarchical Knowledge Base (HKB), and it is formed
by a Hierarchical Data Base (HDB) and a Hierarchical Rule Base (HRB),
containing linguistic partitions of the said type and linguistic rules de-
fined over them, respectively.

The description of the HKB and the relation between its components
is studied next, and the methodology to automatically design an HSLR
from generic linguistic rule generating methods is introduced later on.
For more details about HSLR methodology, refer to [18].

5.1 HIERARCHICAL KNOWLEDGE BASE

This HKB is composed of a set of layers. We define a layer by its
components in the following way:

layer(t,n) = DB(t,n) + RB(t,n)

with DB(t,n) being the DB which contains the linguistic partitions with
granularity level n of layer ¢, and with RB(¢,n) being the RB formed by
those linguistic rules whose linguistic variables take values in the former
partitions. From now on and for the sake of simplicity, we are going
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to refer to the components of a DB(t,n) and RB(t,n) as n-linguistic
partitions and n-linguistic rules, respectively.

This set of layers is organized as a hierarchy, where the order is given
by the granularity level of the linguistic partition defined in each layer.
That is, given two succesive layers ¢ and ¢+ 1, then the granularity level
of the linguistic partitions of layer ¢t + 1 is greater than the ones of layer
t. This causes a refinement of the previous layer linguistic partitions.

As a consequence of the previous definitions, we could now define the
HDB as the union of the DBs of every layer ¢:

HDB =UiDB(t,n)
and by the same token, the HRB is defined as:
HRB = UiRB(t,n)

Focusing again on the HDB, we should note that, in this work, we are
using n-linguistic partitions with the same number of linguistic terms
for all input-output variables, composed of triangular-shaped, symetrical
and uniformly distributed membership functions.

In order to build the HDB, we develop an strategy which satisfies two
main requirements:

m  To preserve all possible fuzzy set structures from one layer to the
next in the hierarchy.

= To make smooth transitions between successive layers.

Hence, to build a new linguistic partition in the DB of the layer ¢ 4+ 1
from a n-linguistic partition of the layer ¢t with the minimum change be-
tween their granularity levels, we just add a new linguistic term between
each two consecutive terms of the n-linguistic partition, after reducing
the support of these linguistic terms in order to keep place for the new
one, which is located in the middle of them. An example of the corre-
spondence between a 3-linguistic partition and 5-linguistic partition is
shown in Fig. 1.6.

Generically, we could say that a DB from a layer ¢+ 1 is obtained as:

DB(t,n) - DB(t+1,2-n—1)

which means that an n-linguistic partition in DB(t,n) with n linguistic
terms becomes a (2-n — 1)-linguistic partition in DB(t 4+ 1,2-n — 1).

As regards the HRB, the n-linguistic rules contained in RB(t,n) are
those rules whose linguistic variables take values from the n-linguistic
partitions contained in DB(t,n).
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DB(1,3)

DB(2,5)

Figure 1.6 'Transition from a partition in DB(1,3) to another one in DB(2,5)

The main purpose of developing an HRB is to model the space of
the problem in a more accurate way. To do so, those n-linguistic rules
that model a subspace with bad performance are expanded in a set of
(2-n—1)-linguistic rules, which become their image in RB(t+1,2-n—1).
This set of rules models the same subspace that the former one and
replaces it.

We should note that not all n-linguistic rules are to be expanded.
Only those n-linguistic rules which model a subspace of the problem
with a significant error become the ones that are involved in this rule
expansion process to build the RB(¢+1,2-n — 1). The remaining rules
preserve their location in RB(t,n).

An explanation for this behaviour could be found in the fact that
it is not always true that a set of rules with a higher granularity level
perform a better modeling of a problem than other set composed of
linguistic rules with a lower granularity level. Moreover, this is not true
for all kinds of problems, and what is more, it is also not true for all
linguistic rules that model a problem [16]. In an attempt to put this idea
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into effect, we consider a three-stage process to perform the mentioned
rule expansion:

m  Selection of those bad performance n-linguistic rules from RB(t,n)
that are going to be expanded in RB(t+1,2-n — 1).

m Selection of those terms from DB(t + 1,2 -n — 1) that are going
to be contained in the (2:n — 1)-linguistic rules, considered as an
image of the bad rules.

»  Accomplishment of the (2-n —1)-linguistic rule generation process,
based on the previously selected term sets.

5.2 STRUCTURE OF THE HSLR
LEARNING METHODOLOGY

Our HSLR learning methodology is composed of three main processes
which will be described in detail in the following subsections [18]:

s The first process generates the HKB following the descriptions
given previously.

m  The second process performs a genetic rule selection task that re-
moves the redundant or unnecessary rules from the HRB in order
to select a subset of rules that cooperate better.

m In the third process, a user evaluation process extends this ap-
proach to an iterative process, where he could adapt many param-
eters and re-execute the processes to achieve better results.

5.3 HIERARCHICAL KNOWLEDGE BASE
GENERATION PROCESS

In this subsection we present our metodology to generate an HKB. It is
based on an inductive linguistic rule generation method (LRG-method),
that in this chapter will be the WM-method. It also takes as a base a
set of input-output data E, and a previously defined DB(t,n).

Our HKB generation process has three main steps, that are listed
below:

1. RB(t,n) generation process, where the rules from the present
DB(t,n) are generated.

An LRG-method is run with the terms defined in the present par-
titions, that are in DB(t,n), denoted as LRG(DB(t,n), E,).



22

2. RB(t+1,2:n-1) generation process, where the linguistic rules
from layer ¢+1 are generated taking into account RB(t,n), DB(t,n)
and DB(t+1,2-n—1).

(a) Calculate the error of RB(t,n): Compute M SE(E,, RB(t,n))

(b) Calculate the error of each individual n-linguistic rule: Com-
pute MSE(E;, R}).

(c) Select the set of n-linguistic rules with bad performance: S-
elect those bad n-linguistic rules which are going to be ex-
panded:

IF MSE(E;,R}) > o- MSE(E,,RB(t,n)) THEN R} €
RBbad(t,’n) ELSE R? S RBgood(t,n)

For example, « = 1.1 means that an n-linguistic rule with
an MSE a 10 % higher than the MSE of the entire RB(t,n)
should be expanded.

(d) Obtain the DB(t+1,2n—1): create DB, (t+1,2-n—1) for all
input linguistic variables ; (j = 1,...,m), and DB (t+1,2-n—
1) for the output linguistic variable y.

(e) Select the (2-n — 1)-linguistic partition terms: Obtain those
terms in DB(t+1,2-n — 1) that are considered in the fuzzy
input and output subspaces of the bad rules that are to be
expanded: I(R}), VR} € RByu(t,n).

(f) Combine the selected (2-n — 1)-linguistic partition terms to
perform (2-n—1)-linguistic rules: For each R} € RBypaq(t,n),
compute LRG(I(R}), E;).

3. HRB summarization process, where the linguistic rules from
the both RBs are joined to obtain the HRB.

Obtain a set of linguistic rules, joining the group of the new gen-
erated (2-n — 1)-linguistic rules and the former good performance
n-linguistic rules:

HRB = RByooa(t,n) URB(t+1,2-n — 1)

5.4 HIERARCHICAL RULE BASE
SELECTION PROCESS

As has been seen in previous sections, the operation mode of the
proposed generation method means that in each input subspace, the n-
linguistic rules are created individually from the examples in the input-
output data set. This happens without taking into account the cooper-
ation existing among the rules which gives the final model output. That
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is, no information about the neighbor rules is considered in order to
generate them.

In the HRB -where there are coexisting rules with different granularity
levels- it may happen that a complete set of (2-n — 1)-linguistic rules,
which replaces an expanded rule, does not produce good results. This
means that there will be higher errors. However, a subset of this set of
(2-n — 1)-linguistic rules may work properly, with less rules that have
good cooperation between them. Thus, the HRB generated may present
redundant or unnecessary rules making the model using this HKB less
accurate.

In order to avoid this fact, we will use the linguistic rule selection
genetic process described in Section 4.1. with the aim of simplifying the
initial linguistic rule set by removing the unnecessary rules from it and
generating an HKB with good cooperation.

5.5 USER EVALUATION PROCESS

The application of our metodology could be also considered as an
user controlled iterative process. In this sense, the user could adapt
the granularity of the initial linguistic partitions and/or the threshold
« which determines if an n-linguistic rule will be expanded in a set of
(2-n — 1)-linguistic rules, and apply again the process in order to obtain
a better model.

This process works in this way: if the error measure of the obtained
model (i.e. global error) does not satisfy the user requirements, then
the user can adapt the parameter o —item 2.c in the HKB Generation
Process— and/or reinitialize the process with a different granularity level
for the initial partition of the linguistic variables domain.

5.6 EXPERIMENTAL STUDY

The results obtained by applying the HSLR learning process intro-
duced in this section to the electrical problem are shown in Table 1.4.
For a complete experimentation to solve this and other problems, refer
to [18]. In view of the data showed in the table, it can be seen that
the model generated performs significantly better than the WM-method
one, with a short intrepretability lose (28 rules in the KB instead of 24).
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Table 1.4 Results obtained with the HSLR methodology

Method Granularity # Rules MSEiqining MSEest
WDM-method TTT 24 222622 240018
granularity learning  (WM,5,9) 28 157755 180488

6. APPROACHES TO INDUCE
COOPERATION FROM THE INFERENCE
SYSTEM

In this section, we propose a new fuzzy reasoning model for a con-
crete type of linguistic models: FRBCSs, the FRBSs for classification
problems. Some specific FRMs included in the general model will be
also introduced with the aim of improving the rule cooperation in these
kinds of systems.

6.1 IMPROVING THE RULE
COOPERATION IN FRBCSS

By using the classical FRBCS reasoning method shown in Section
1.3, the information provided by the other rules that also are compatible
(have also been fired) with the example is not considered. In this section,
we propose to use FRMs that combine the information given by the
different rules fired by a pattern.

To do so, a general reasoning model for FRBCSs [14] is introduced,
that in this paper is particularised to an RB composed of rules with a
class and its certainty degree in the consequent. This model is described
in the following.

In the classification of an example E' = (¢f,...,€%), the RB R =
{Ry,...,RL} is divided into M subsets according to the class indicated
by its consequent,

R=Rc, URc,U...URc,,
and the next scheme is followed:

1. Compatibility degree. The compatibility degree of the an-
tecedent with the example is computed for all the rules in the
RB, applying a t-norm over the membership degree of the values
of the example (e!) to the corresponding fuzzy subsets.

RE(EY) = T(uge (), s (), k=1,....L
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2. Association degree. The association degree of the example E*
with the M classes is computed according to each rule in the RB.

bF = h(RF(EY),r%), k=1,...,|R¢,| i=1,....,M

3. Weighting function. The values obtained are weighted by means
of a function g. An expression which promotes the highest values
and penalizes the smallest ones seems to be the most adequate
choice for this function.

B =g(b), k=1,...,|Re| i=1,..,M

4. Pattern classification soundness degree for all classes. To
compute this value, an aggregation operator is used which com-
bines, for each class, the positive association degrees computed in
the previous step

Y;=f(Bf, k=1,...,|Rc,| and BF>0), i=1,...,M
with f being an aggregation operator that returns a value between
the minimum and the maximum.

5. Classification. A decision function F' is applied to the classifi-
cation degrees of the example. This function will return the class
label corresponding to the maximum value.

Cy=F(Y1,...,Yy) such that ¥, = I{l&XM}/j
]: "t

We should note that, in this general model, if we select the function f
in the fourth step as the maximum operator, we have the classical FRM:

folai,...,as) = max a;
i=1,...,s
with ai,...,as being the values to aggregate for an example E' with

respect to a class Cj.

According to the general reasoning model, we propose a new kind of
inference models. The difference lies on the choice of function f(-) in
step 4, due to the fact that we consider FRMs that integrate all fuzzy
rules to derive conclusions from a set of fuzzy classification rules and a
pattern. This idea is graphically represented in Fig. 1.7.

Some proposals for the function f in FRBCSs belonging to this family
are described in Table 1.5. An analysis of them, as well as a review of
previous applications of the first function f1, is to be found in [14].
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(e )

Figure 1.7 FRM integrating all fuzzy rules

Table 1.5 Different proposals for the aggregation function f in step 4

Normalized Sum Sowa and-like
s S
filay,. .., as) = % fa(ar,...,as) = a- amin + (1 —a)% > ai
maz_ i=1
flimae =Maxj=1,..,m ) ,,_, @i a €10,1], amin = min{a,...,as}
Arithmetic Mean Sowa or-like
Zai f5(al,...,as)Za'amax'l'(]-_a)éZai
i= i=1
fo(as,...,as) = ; a €10,1], @maz =maz{ai,...,as}
Quasiarithmetic Mean Badd B
NERS doeit!
L..,as)=H " |= H(a; e ¢
f3(a1’ @ ) |:Sz=2:1 (a ):| fg(al,...,as):——i 5 a€R
H(z)=a", peR >
i=1
with a1,...,as being the values to aggregate for pattern E' with respect to a class Cj
6.2 EXPERIMENTAL STUDY

For this brief study, two well known sets of samples, IRIS and PIMA,
have been considered. The IRIS data base is a set of 150 examples of
iris flowers with three classes and four attributes. PIMA is a set of 768
solved cases of diagnostics of diabetes where eight variables are taken
into account and there are two possible classes (having or not having the
disease).

Taking into account the characteristics of the example sets, fuzzy
partitions constituted by five triangular fuzzy sets have been considered
to define the DB in both cases. As regards the RB, two different kinds of
fuzzy classification rules have been considered for the experimentation,
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the ones with only a class and with a class and its certainty degree in
the consequent. The RB has been generated by means of the adaption
of the WM-method to classification problems shown in the Appendix in
both cases.

To calculate an error estimation of an FRBCS, random resampling
[32] with five random partitions of the sample bases in training and test
sets (70% and 30% respectively) have been considered.

The best results obtained with our different proposals of FRMs are
showed in Tables 1.6 and 1.7 for the two types of rules considered. The
classification percentages obtained by the classical reasoning method
are also shown for comparison purposes. For a complete experimental
study including all the FRMs proposed and comparing against different
classification techniques, refer to [14].

Table 1.6 Results obtained when using rules with a class in the consequent

Iris Pima
FRM Tra Test FRM Tra Test
Classical (fo) 90.97 88.25 | Classical (fo) 89.51 64.88
f192 98.56 94.38 | f1 g1 83.97 72.11
f5 92 90.64 92.27 | fs g2 91.32 67.38
f3 g2 89.73 91.78 | f5 g2 85.78  64.56

Table 1.7 Results obtained when using rules with a class and a certainty degree in
the consequent

Iris Pima
FRM Tra Test FRM Tra Test
Classical (fo) 97.31 94.32 | Classical (fo) 85.81 73.23
fs g1 9731 94.32 | fo g2 85.80 173.53
fs ¢ 97.31 9432 | fo g1 85.85 73.53
fo g1 97.31 9432 | f3 ¢o 85.78  73.44

In view of the results obtained, the cooperative FRMs have demon-
strated a good behaviour with RBs obtained from rule generation pro-
cesses not considering them. However, it is possible to obtain better
results by including them in the FRBCS learning process. To do so, a
three-stage genetic fuzzy rule-based classification system considering the
rule cooperation induction during the learning stage was introduced in
[11].
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7. SUMMARY

This chapter has been devoted to the problem of improving the ac-
curacy of linguistic models while maintaining its descriptive power. As
shown, linguistic models are human-readable rule-based descriptions of
the system modeled but sometimes they are not as accurate as desired
due to some problems of the linguistic rule structure.

With this aim, the possibility of improving the way in which the lin-
guistic model performs interpolative reasoning by improving the cooper-
ation between the rules in the KB has been analyzed. Several approaches
to do so have been introduced, classified in four different groups accord-
ing to the FRBS component from which the cooperation is induced: IS,
KB, DB and RB. To be precise, the following six approaches have been
studied:

»  Genetic tuning of the membership functions (DB).
m  SA-based Learning of the DB from examples (DB).
»  Genetic selection of fuzzy rules (RB).

m The ALM paradigm, based on a double-consequent linguistic rule
generation and selection (RB).

m The HALM paradigm, based on a hierarchical linguistic rule gen-
eration and selection (KB).

m  Cooperative FRMs for classification problems (IS).

The behaviour of the first five has been analyzed in solving a real-
world Spanish electrical distribution problem, where all of them have
obtained good results, being more accurate than the basic linguistic
model generated from the WM-method. On the other hand, the last
one has shown good performance with the classical IRIS and PIMA
data sets.

As mentioned in the chapter, the different approaches proposed are
not mutually exclusive and can be combined to obtain better linguistic
models. In fact, the ALM and HALM paradigms make use of other of
the approaches introduced, the rule selection genetic process, as one of
their components. This fact makes us think that the combination of the
different approaches can be a promising research field and our future
work will be focused on studying it.
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Appendix: The Wang and Mendel Rule Generation
Method

The Wang and Mendel’s RB generation method (WM-method) [30]
is one of the simplest and most known LM design methods (for more
information about the different learning techniques considered for this
task and some specific approaches, refer to [4]). In this inductive method,
the generation of the RB is put into effect by means of the following steps:

1. Consider a fuzzy partition of the input variable spaces: It may
be obtained from the expert information (if it is availaible) or
by a normalization process. If the latter is the case, perform a
fuzzy partition of the input variable spaces dividing each universe
of discourse into a number of equal or unequal partitions, select
a kind of membership function and assign one fuzzy set to each
subspace.

2. Generate a preliminary linguistic rule set: This set will be formed
by the rule best covering each example (input-ouput data pair)
contained in the tarining data set. The structure of these rules is
obtained by taking a specific example, i.e., an n + 1-dimensional
real array (n input and 1 output values) and setting each one of
the rule variables to the linguistic label associated to the fuzzy set
best covering every array component.

3. Give an importance degree to each rule: Let Ry = IF x1 is Ay and
...and x, is A, THEN y is B be the linguistic rule generated
from the example ¢; = (z},...,z!,4"). The importance degree

associated to it will be obtained as follows:

G(Ry) = pa,(zh) - ... pa, (2h) - p(y')

4. Obtain o final RB from the preliminary fuzzy rule set: The rule
with the highest importance degree is chosen for each combination
of antecedents.

Appendix: The Wang and Mendel Rule Generation
Method for Classification

In [8], an extension of the WM-method was proposed to deal with
classification problems. This process starts with a set of input-output
data pairs (the training data set) with the following structure:

E' = (el,... ey, 0l), B> = (&2,...,¢%,0%), ..., EP = (€l,... ek, oP)
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Table 1.C.1 Variables of the electrical problem

Symbol Meaning
T1 Number of inhabitants of the town
To Distance from the center of the town to the three furthest clients
y Total length of low voltage line installed

where 0" is the class label for the pattern E™.

The task here is to generate a set of linguistic classification rules from
the training data set that describes the relationship between the system
variables and determines a mapping D between the feature space SV
and the class set C = {Cy,...,Cn}.

The method counsists of the following steps:

m  Fuzzifying the feature space. Finding the domain intervals of the at-
tributes and partition each domain into X; regions (i = 1,...,N).
A membership function is adopted for each fuzzy region.

m  Generating fuzzy rules from given data pairs. For each training
data E" = (ef,... ek, o), we have

— To determine the membership degrees of e? in different input
fuzzy subsets.

— To assign the input e?,... ,e?\, to the region with the maxi-
mum membership degree.

— To produce a fuzzy rule from E”, with the if-part that rep-
resents the selected fuzzy region and the consequent with the
class determined by o”. Repeated fuzzy rules are not consid-
ered.

Appendix: Total low voltage line length installed in
a rural town

The problem considered is that of finding a model that relates the
total length of low voltage line installed in Spanish rural towns [15]. This
model will be used to estimate the total length of line being maintained
by an electrical company. We were provided with a sample of 495 towns
in which the length of line was actually measured and the company used
the model to extrapolate this length over more than 10.000 towns with
these properties. We will limit ourselves to the estimation of the length
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of line in a town, given the inputs showed in Table 1.C.1. To develop
the different experiments in this chapter, the sample has been randomly
divided in two subsets, the training and test ones, with an 80%-20%
of the original size respectively. Thus, the training set contains 396
elements, whilst the test one is composed by 99 elements.

References

1]

2]

3]

Aarts, E.H.L., Simulated Annealing and Boltzman Machines: A S-
tochastic Approach to Combinatorial Optimization and Neural Com-
puting, John Wiley & Sons, 1989.

Abe, S., Thawonmas, R., “A Fuzzy Classifier with Ellipsoidal Region-
s,” IEEE Transactions on Fuzzy Systems, Volume 5, No. 3, 1997, pp.
358-368.

Alcala, R., Casillas, J., Corddén, O., Herrera, F., “Approxi-
mate Mamdani-type Fuzzy Rule-Based Systems,” Technical Report
#DECSAI-990117, Dept. of Computer Science and A.l., University
of Granada, October 1999.

Alcalé, R., Casillas, J., Corddn, O., Herrera, F., Zwir, 1., “Techniques
for Learning and Tuning Fuzzy Rule-Based Systems for Linguistic
Modeling and Their Application,” in: C.T. Leondes (ed.), Knowledge
Engineering. Systems, Techniques and Applications, Academic Press,
1999.

Bardossy, A., Duckstein, L., Fuzzy Rule-Based Modeling With Ap-
plication to Geophysical, Biological and Engineering Systems, CRC
Press, 1995.

Bastian, A., “How to Handle the Flexibility of Linguistic Variables
with Applications,” International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, Volume 2, No. 4, 1994, pp. 463-484.

Carse, B., Fogarty, T.C., Munro, A., “Evolving Fuzzy Rule Based
Controllers using Genetic Algorithms,” Fuzzy Sets and Systems, Vol-
ume 80, 1996, pp. 273-293.

Chi, Z., Wu, J., Yan, H., “Handwritten Numeral Recognition Using
Self-organizing Maps and Fuzzy Rules,” Pattern Recognition, Volume
28, No. 1, 1995, pp. 59-66.

Cordén, O., Herrera, F., Peregrin, A., “Applicability of the Fuzzy
Operators in the Design of Fuzzy Logic Controllers,” Fuzzy Sets and
Systems, Volume 86, 1997, pp. 15-41.

[10] Cordén, O., Herrera, F., “A Three-stage Evolutionary Process for

Learning Descriptive and Approximative Fuzzy Logic Controller



32

Knowledge Bases from Examples,” International Journal of Approx-
imate Reasoning, Volume 17, No. 4, 1997, pp. 369-407.

[11] Cordén, O., del Jesus, M.J., Herrera, F., “Genetic Learning of Fuzzy
Rule-based Classification Systems Cooperating with Fuzzy Reason-

ing Methods,” International Journal of Intelligent Systems, Volume
13, No. 10-11, 1998, pp. 1025-1053.

[12] Cordén, O., Herrera, F., “A Proposal for Improving the Accuracy
of Linguistic Modeling,” Technical Report #DECSAI-980113, Dept.
of Computer Science and A.l., University of Granada, May 1998.

[13] Cordén, O., Herrera, F., “ALM: A Methodology to Design Accurate
Linguistic Models for Intelligent Data Analysis,” Third Intelligen-
t Data Analysis Conference (IDA’99), L.N.C.S. 1642, Amsterdam,
Holland, 1999, pp. 15-26.

[14] Cordén, O., del Jesus, M.J., Herrera, F., “A Proposal on Reasoning
Methods in Fuzzy Rule-based Classification Systems,” International
Journal of Approzimate Reasoning, Volume 20, 1999, pp. 21-45.

[15] Cordén, O., Herrera, F., Sdnchez, A., “Solving Electrical Distri-
bution Problems Using Hybrid Evolutionary Data Analysis Tech-
niques,” Applied Intelligence, Volume 10, 1999, pp. 5-24.

[16] Cordén, O., Herrera, F., Villar, P., “Influence of Fuzzy Partition
Granularity on Fuzzy Rule-Based System Behaviour”, EUSFLAT-
ESTYLF Joint Conference, Palma de Mallorca, Spain, 1999, pp. 159-
162.

[17] Cordén, O., Herrera, F., Villar, P., “Analysis and Guidelines to
Obtain a Good Uniform Fuzzy Partition Granularity for Fuzzy
Rule-Based Systems using Simulated Annealing,” Technical Report
#DECSAI-990116, Dept. of Computer Science and A.L., University
of Granada, September 1999.

[18] Cordén, O., Herrera, F., Zwir, 1., “Linguistic Modeling by Hier-
archical Systems of Linguistic Rules,” Technical Report #DECSAI-
990114, Dept. of Computer Science and A.I., University of Granada,
July, 1999.

[19] Cordén, O., Herrera, F., “Hybridizing Genetic Algorithms with
Sharing Scheme and Evolution Strategies for Designing Approximate
Fuzzy Rule-Based Systems”, Fuzzy Sets and Systems, Volume 111,
No. 3, 2000.

[20] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, 1989.



33

[21] Gonzélez, A., Pérez, R., “Completeness and Counsistency Conditions
for Learning Fuzzy Rules,” Fuzzy Sets and Systems, Volume 96, 1998,
pp- 37-51.

[22] Herrera, F., Lozano, M., Verdegay, J.L., “Tuning Fuzzy Controllers
by Genetic Algorithms,” International Journal of Approximate Rea-
soning, Volume 12, 1995, pp. 299-315.

[23] Herrera, F., Lozano, M., Verdegay, J.L., “Fuzzy Connectives Based
Crossover Operators to Model Genetic Algorithms Population Diver-
sity,” Fuzzy Sets and Systems, Volume 92, No. 1, 1997, pp. 21-30.

[24] Ishibuchi, H., Nozaki, K., Tanaka, H., “ Distributed Representation
of Fuzzy Rules and Its Application to Pattern Classification,” Fuzzy
Sets and Systems, Volume 52, 1992, pp. 21-32.

[25] Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., “ Selecting
Fuzzy If-then Rules for Classification Problems Using Genetic Al-
gorithms,” IEEE Transactions on Fuzzy Systems, Volume 3, No. 3,
1995, pp- 260-270.

[26] Mandal, D.P., Murthy, C.A., Pal, S.K., “Formulation of a Multi-
valued Recognition System,” IEEE Transactions on Systems, Man,
and Cybernetics, Volume 22, No. 4, 1992, pp. 607-620.

[27] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution
Programs, Third edition, Springer-Verlag, 1996.

[28] Pedrycz, W. (Ed.), Fuzzy Modelling: Paradigms and Practice, K-
luwer Academic Press, 1996.

[29] Sugeno, M., Yasukawa, T., “A Fuzzy-logic-based Approach to Qual-
itative Modeling,” IEEE Transactions on Fuzzy Systems, Volume 1,
No. 1, 1993, pp. 7-31.

[30] Wang, L.X., Mendel, J.M., “Generating Fuzzy Rules by Learning
from Examples,” IEEE Transactions on Systems, Man, and Cyber-
netics, Volume 22, 1992, pp. 1414-1427.

[31] Wang, L.X., Adaptive Fuzzy Systems and Control, Prentice-Hall,
1994.

[32] Weiss. S.M., Kulikowski, C.A., Computer Systems that Learn, Mor-
gan Kaufmann Publishers, 1991.

[33] Zadeh, L.A., “Outline of a New Approach to the Analysis of Com-
plex Systems and Decision Processes,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Volume 3, No. 1, 1973, pp. 28-44.

[34] Zadeh, L.A., “The Concept of a Linguistic Variable and its Applica-
tion to Aproximate Reasoning,” Information Science, Part I: Volume
8, 1975, pp. 199-249, Part II: Volume 8, 1975, pp. 301-357, Part III:
Volume 9, 1975, pp. 43-80.



