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tNowadays, Linguisti
 Modeling is 
onsidered to be one of the most importantareas of appli
ation for Fuzzy Logi
. It is a

omplished by linguisti
 Fuzzy Rule-BasedSystems, whose most interesting feature is the interpolative reasoning developed. This
hara
teristi
 plays a key role in their high performan
e and is a 
onsequen
e of the
ooperation among the involved fuzzy rules.A new approa
h that makes good use of this aspe
t indu
ing 
ooperation amongrules is introdu
ed in this 
ontribution: the Cooperative Rules methodology. Oneof its interesting advantages is its 
exibility allowing it to be used with di�erent
ombinatorial sear
h te
hniques. Thus, four spe
i�
 metaheuristi
s are 
onsidered:simulated annealing, tabu sear
h, geneti
 algorithms and ant 
olony optimization.Their good performan
e is shown when solving a real-world problem.1 Introdu
tionAt present, system modeling is one of the main appli
ations of fuzzy rule-based systems(FRBSs) [2, 17℄. It may be 
onsidered as an approa
h to model a system making use ofa des
riptive language based on fuzzy logi
 with fuzzy predi
ates [19℄. In this framework,one of the most interesting areas is Linguisti
 Modeling, where the interpretability of theobtained model is the main requirement. This task is developed by means of linguisti
FRBSs, whi
h use fuzzy rules 
omposed of linguisti
 variables [22℄ that take values in aterm set with a real-world meaning. Thus, the linguisti
 model 
onsists of a set of linguisti
des
riptions regarding the behavior of the system being modeled [19℄.Several tasks have to be performed in order to design an FRBS (linguisti
 model)for a 
on
rete appli
ation. One of the most important and diÆ
ult ones is to derive anappropriate knowledge base (KB) about the problem being solved. The KB stores theavailable knowledge in the form of fuzzy linguisti
 IF-THEN rules. It 
onsists of the rule�This resear
h is supported by CICYT, proje
t PB98-13191



base (RB), 
onstituted by the 
olle
tion of rules in their symboli
 forms, and the database (DB), whi
h 
ontains the linguisti
 term sets and the membership fun
tions de�ningtheir meanings.In this sense, numerous methods have been proposed to automati
ally generate fuzzyrules from numeri
al data. Usually, they 
onsider 
omplex rule generation me
hanismsbased on neural networks [9, 15℄ or geneti
 algorithms (GAs) [5, 11, 18℄, among others.Opposite to them, this 
ontribution is devoted to present the Cooperative Rules (COR)learning methodology (initially proposed in [3, 4℄), whose good performan
e is relatedto the 
onsideration of 
ooperation among rules. The methodology simpli�es the rulegeneration pro
ess and is 
apable of being used with any 
ombinatorial sear
h te
hnique.Thus, four di�erent neighborhood-based and global sear
h metaheuristi
s will be sele
tedto be applied in COR:� simulated annealing (SA) algorithms,� tabu sear
h (TS) algorithms,� GAs, and� ant 
olony optimization (ACO) algorithms.The paper is organized as follows. Se
tion 2 introdu
es the methodology proposed toimprove the a

ura
y of linguisti
 models by means of more 
ooperative rules. Se
tion 3shows how to learn 
ooperative rules with the four said metaheuristi
s. Se
tion 4 analyzesthe behavior of our proposals and other methods when solving a real-world problem.Finally, Se
t. 5 outlines some 
on
luding remarks.2 The Cooperative Rules MethodologyA family of eÆ
ient and simple methods to derive fuzzy rules guided by 
overing 
riteria ofthe data in the example set, 
alled ad ho
 data-driven methods, has been proposed in theliterature in the last few years [3℄. Their high performan
e, in addition to their qui
knessand easy understanding, make them very suitable for learning tasks.However, ad ho
 data-driven methods usually look for the fuzzy rules with the bestindividual performan
e (e.g. [21℄) and therefore the global intera
tion among the rules ofthe RB is not 
onsidered. This sometimes 
auses KBs with bad 
ooperation among therules to be obtained, thus not being as a

urate as desired. This is due to the interpolativereasoning developed by FRBSs, whi
h is one of the most interesting features of these kindsof systems and plays a key role in their high performan
e, being a 
onsequen
e of the
ooperative a
tion among the linguisti
 rules. Moreover, the fa
t of lo
ally pro
essingthese rules makes these learning methods be more sensitive to noise.With the aim of addressing these drawba
ks keeping the interesting advantages of adho
 data-driven methods, a new methodology to improve the a

ura
y obtaining better
ooperation among the rules is proposed in [3, 4℄: the COR methodology. Instead ofsele
ting the 
onsequent with the highest performan
e in ea
h subspa
e like ad ho
 data-driven methods usually do, the CORmethodology 
onsiders the possibility of using another2




onsequent, di�erent from the best one, when it allows the FRBS to be more a

uratethanks to having a KB with better 
ooperation.In this way, its operation mode 
onsists of two stages:1. Obtain a set of 
andidate 
onsequents for ea
h rule.2. Perform a 
ombinatorial sear
h among these sets looking for the 
ombination of
onsequents with the best global a

ura
y.A wider des
ription of the COR-based rule generation pro
ess is shown in Fig. 1, whilstan example of the operation mode for a simple problem with two input variables and threelabels in the output fuzzy partition is graphi
ally illustrated in Fig. 2.Sin
e the sear
h spa
e { Fig. 2d in the example { ta
kled in step 2 of the algorithmis usually large, it is ne
essary to use approximate sear
h te
hniques. Any 
ombinato-rial sear
h approa
h may be used for su
h a purpose. In this 
ontribution, four di�erentwell-known te
hniques are proposed: SA algorithms, TS algorithms, GAs, and ACO algo-rithms. The following se
tion introdu
es the parti
ular aspe
ts for applying the 
onsideredte
hniques to the COR methodology.3 Di�erent Approa
hes to Learn Fuzzy Linguisti
 Rules In-du
ing Cooperation Among Them3.1 Learning with Simulated AnnealingIntrodu
tionSA [20℄ is a neighborhood-based sear
h te
hnique based on the analogy with the physi
alannealing pro
ess of solids. The SA-based algorithm begins with an initial solution andgenerates a neighbor of this solution by means of a suitable me
hanism. If the latter isbetter than the former, the 
urrent solution is repla
ed by the generated neighbor; other-wise, this repla
ement is a

omplished with a spe
i�
 probability that will be de
reasedduring the algorithm progress. This pro
ess is iterated a large number of times.Simulated Annealing Algorithms Applied to the COR MethodologyThe proposed COR-based learning method with an SA algorithm is 
hara
terized as fol-lows:� Representation | An integer-valued ve
tor (
) of size NS is employed. Ea
h 
ellof the ve
tor represents the index of the 
onsequent used to build the rule in the
orresponding subspa
e:8s 2 f1; : : : ; NSg; 
[s℄ = ks s:t: Bks 2 Bs :� Obje
tive fun
tion | The said MSE fun
tion (Fig. 1) is used.� Cooling s
heme | The 
ooling s
heme used is the exponential one proposed byKirkpatri
k [13℄ (Tt+1 = Tt � C). 3



Inputs:� An input-output data set { E = fe1; : : : ; el; : : : ; eNg, with el = (xl1; : : : ; xln; yl), l 2f1; : : : ; Ng, N being the data set size, and n being the number of input variables {representing the behavior of the problem being solved.� A fuzzy partition of the variable spa
es, in our 
ase, uniformly distributed fuzzy sets:
S M L VLVS

0.5

l rLet Ai be the set of linguisti
 terms of the i-th input variable { with i 2 f1; : : : ; ng {,and B be the set of linguisti
 terms of the output variable, with jAij (jBj) being thenumber of linguisti
 terms of the i-th input (output) variable.Algorithm:1. Generate 
andidate rules in ea
h subspa
e |For ea
h n-dimensional fuzzy input subspa
e
ontaining at least an example, Ss = (As1; : : : ; Asi ; : : : ; Asn) su
h that E0s = fel 2 E j�As1(xl1)�: : :��Asn(xln) 6= 0g 6= ; { withAsi 2 Ai being a label, �Asi (�) being its membershipfun
tion, s 2 f1; : : : ; NSg, and NS � Qni=1 jAij being the number of subspa
es withexamples {, do:(a) Let Bs = fBk 2 B; k 2 f1; : : : ; jBjg s:t: 9els 2 E0s with �Bk(yls) 6= 0g be the setof linguisti
 labels in the output variable term set whi
h 
ontain examples belongingto E0s, and let jBsj be the number of 
andidate 
onsequets in the subspa
e Ss.(b) For ea
h linguisti
 label Bsks 2 Bs 
ompute the 
overing value, CV , of the lin-guisti
 rule asso
iated with the Ss subspa
e built using this term as a value in the
onsequent, Rsks = IF X1 is As1 and ... and Xn is Asn THEN Y is Bsks , over ea
hexample els 2 E0s as follows:CV (Rsks ; els) =Min(�As1(xls1 ); : : : ; �Asn(xlsn ); �Bsks (yls)):2. Sele
t the most 
ooperative rule in ea
h subspa
e | This stage is performed by runninga 
ombinatorial sear
h algorithm to look for the 
ombination fB1k1 ; : : : ; Bsks ; : : : ; BNSkNS gwith the best a

ura
y.To evaluate the quality of ea
h solution, an index measuring the 
ooperation degree ofthe en
oded rule set is 
onsidered. In our 
ase, the algorithm uses a global error fun
tion
alled mean square error (MSE), whi
h is de�ned asMSE = 12 �N NXl=1(F (xl1; : : : ; xln)� yl)2;with F (xl1; : : : ; xln) being the output obtained from the FRBS when the example el isused, and yl being the known desired output. The 
loser to zero the measure, the greaterthe global performan
e and, thus, the better the rule 
ooperation.Figure 1: Learning generi
 s
heme followed by the COR methodology4
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Inputs

Figure 2: COR-based learning pro
ess for a simple problem with two input variables (n = 2)and three labels in the output fuzzy partition (jBj = 3): (a) data set (E) and DB previouslyde�ned; (b) the six examples are lo
ated in four (NS = 4) di�erent subspa
es that determine theante
edent 
ombinations and 
andidate 
onsequents of the rules; (
) set of possible 
onsequents forea
h subspa
e; (d) 
ombinatorial sear
h a

omplished within a spa
e 
omposed of twelve di�erent
ombinations of 
onsequents; (e) rule de
ision table for the third 
ombination; (f) RB generatedfrom the third 
ombination 5



� Trials per temperature | The equilibrium at a spe
i�
 temperature is a
hieved whena maximum number of neighbors has been generated.� Initial solution | The initial solution is obtained by generating a possible 
ombina-tion at random.� Neighbor generation | The operator 
onsidered to obtain a neighbor randomly se-le
ts a spe
i�
 s 2 f1; : : : ; NSg where jBsj � 2, and 
hanges at random ks by ks0su
h that Bsks0 2 Bs and ks0 6= ks.� Stopping 
riterion|The algorithm stops when no neighbor is a

epted for a spe
i�
temperature.3.2 Learning with Tabu Sear
h AlgorithmsIntrodu
tionTS [10℄ is an adaptive pro
edure for solving 
ombinatorial optimization problems, whi
hguides a hill-des
endent heuristi
 to 
ontinue exploration without be
oming 
onfoundedby a la
k of improving moves, and without falling ba
k into a lo
al optimum from whi
hit previously emerged.At ea
h iteration, an admissible move is applied to the 
urrent solution, transformingit into its neighbor with the smallest 
ost. Solutions that in
rease the 
ost fun
tion arepermitted, the reverse move is prohibited for some iterations in order to avoid 
y
ling.The restri
tions are based on a short term memory fun
tion that determines how longa tabu restri
tion will be enfor
ed or, alternatively, whi
h moves are admissible at ea
hiteration.Tabu Sear
h Algorithms Applied to the COR MethodologyThe proposed COR-based learning method with a TS algorithm has the following 
ompo-nents:� Representation | The same proposed for the SA approa
h (Se
t. 3.1).� Obje
tive fun
tion | The said MSE fun
tion (Fig. 1) is used.� Tabu 
riterion | The tabu list (or history re
ord) 
ontains the moves applied toobtain the most re
ently a

epted solutions. The movement 
onsidered is the pairsubspa
e{
onsequent, i.e., (s; ks0).� Aspiration 
riterion | Moves that yield solutions better than the best one obtainedin the sear
h are allowed even if they are tabu a
tive.� Initial solution | It is obtained as in the SA approa
h (Se
t. 3.1).� Neighbor generation |The same proposed in the SA approa
h (Se
t. 3.1).
6



� Intensi�
ation restart | The 
urrent solution is repla
ed by the best one obtainedtill now when a spe
i�
 intensi�
ation 
onvergen
e 
riterion is meet. The tabu listsize is also 
hanged by randomly redu
ing or in
reasing it by 50%. The 
onvergen
e
riterion involves making a restart when the best and 
urrent 
osts di�er during aspe
i�
 number of iterations.� Diversi�
ation restart | A long term memory is used to keep an a

ount of the usefrequen
y of ea
h su

essful move. To do that, the array LTM is initialized to zeroand whenever a move is a

epted (say (s; ks0)), its 
orresponding 
ounter is in
reasedby one, i.e., LTM [s℄[ks0℄ LTM [s℄[ks0℄ + 1.Subsequently, when a spe
i�
 diversi�
ation 
onvergen
e 
riterion is meet, a newsolution is generated by sele
ting a 
onsequent in ea
h subspa
e a

ording to aprobability inversely proportional to the 
orresponding LTM value:
[s℄ = ks with a probability of 1LTM [s; ks℄ + 1XBsqs2Bs 1LTM [s; qs℄ + 1 :The 
onvergen
e 
riterion is meet when the best 
ost has not been improved duringa spe
i�
 number of iterations.3.3 Learning with Geneti
 AlgorithmsIntrodu
tionGAs are general-purpose global sear
h algorithms that use prin
iples inspired by naturalpopulation geneti
s to evolve solutions to problems. The basi
 prin
iples of the GAs were�rst laid down rigorously by Holland [12℄ and are well des
ribed in many texts as [14℄.The basi
 idea is to maintain a population of knowledge stru
tures that evolves overtime through a pro
ess of 
ompetition and 
ontrolled variation. Ea
h stru
ture in thepopulation represents a 
andidate solution to the spe
i�
 problem and has an asso
iated�tness to determine whi
h stru
tures are used to form new ones in the pro
ess of 
om-petition. The new individuals are 
reated using geneti
 operators su
h as 
rossover andmutation. Figure 3 shows the stru
ture of a simple GA.Geneti
 Algorithms Applied to the COR MethodologyThe proposed COR-based learning method with a GA is 
hara
terized as follows:� Coding s
heme | The same proposed for the SA approa
h (Se
t. 3.1).� Fitness fun
tion|The obje
tive will be to minimize the said MSE fun
tion (Fig. 1).� Geneti
 approa
h | An elitist generational GA with the Baker's sto
hasti
 universalsampling pro
edure [1℄. 7



Pro
edure Geneti
 Algorithmbegint = 0;initialize P (t);evaluate P (t);while (not termination-
ondition) dot = t+ 1;sele
t P (t) from P (t� 1);
ross P (t) with an spe
i�
 probability;mutate P (t) with an spe
i�
 probability;evaluate P (t);end-whileend Figure 3: Basi
 stru
ture of a GA� Initial pool|The population is initially generated with the �rst individual as follows8s 2 f1; : : : ; NSg;
1[s℄ = arg maxBks2Bs8>>><>>>: maxels2E0s fCV (Rsks ; els)g � Xels2E0sCV (Rsks ; els)jE0sj 9>>>=>>>; ;and the remaining 
hromosomes generated at random:8p 2 f2; : : : ; pool sizeg; 8s 2 f1; : : : ; NSg; 
p[s℄ = some ks s:t: Bks 2 Bs :� Crossover | The standard two-point 
rossover is used.� Mutation | The same that the said SA neighbor generation me
hanism (Se
t. 3.1).3.4 Learning with Ant Colony Optimization AlgorithmsIntrodu
tionACO algorithms [7℄ 
onstitute a new family of global sear
h bio-inspired algorithms thathas re
ently appeared. Sin
e the �rst proposal, the Ant System algorithm [8℄ { applied tothe Traveling Salesman Problem {, numerous models has been developed to solve a wideset of optimization problems (refer to [7℄ for a review of models and appli
ations).ACO algorithms draw inspiration from the so
ial behavior of ants to provide food tothe 
olony. In the food sear
h pro
ess, 
onsisting of the food �nd and the return to thenest, the ants deposit a substan
e 
alled pheromone. The ants have the ability of sniÆngthe pheromone and pheromone trails guide the 
olony during the sear
h. When an ant islo
ated at a bran
h, it de
ides to take the path a

ording to the probability de�ned by thepheromone existing in ea
h trail. In this way, the depositions of pheromone terminate in8



1. Set a node for ea
h subspa
e | Use a node for ea
h n-dimensional fuzzy input subspa
es 
ontaining examples (Ss),thus having a total of NS subspa
e nodes.2. Link the subspa
es to 
onsequents | The subspa
e Ss will belinked to the 
onsequent Bj, with j 2 f1; : : : ; jBjg, if and onlyif it meets the following 
ondition:9el 2 E su
h that �As1(xl1) � : : : � �Asn(xln) � �Bj (yl) 6= 0 :That is, if there is at least one example lo
ated in the fuzzyinput subspa
e that is 
overed by su
h a 
onsequent.Figure 4: Graph 
onstru
tion pro
ess
onstru
ting a path between the nest and the food that 
an be followed by new ants. Theprogressive a
tion of the 
olony members involves the length of the path is progressivelyredu
ed. The shortest paths are �nally the more frequently visited ones and, therefore,the pheromone 
on
entration is higher on them. On the 
ontrary, the longest paths areless visited and the asso
iated pheromone trails are evaporated.The basi
 operation mode of ACO algorithms is as follows [8℄: at ea
h iteration, a pop-ulation of a spe
i�
 number of ants progressively 
onstru
t di�erent tra
ks on the graph(i.e., solutions to the problem) a

ording to a probabilisti
 transition rule that dependson the available information (heuristi
 and pheromone trails). After that, the pheromonetrails are updated. This is done by �rst de
reasing them by some 
onstant fa
tor (
orre-sponding to the evaporation of the pheromone) and then reinfor
ing the solution attributesof the 
onstru
ted solutions 
onsidering their quality. This task is developed by the globalpheromone trail update rule.Ant Colony Optimization Algorithms Applied to the COR MethodologyThe proposed COR-based learning method with an ACO algorithm has the following mainaspe
ts:� Problem representation | To use ACO algorithms in the COR methodology, it is
onvenient to see it as a 
ombinatorial optimization problem with the 
apability ofbeing represented on a graph. In this way, we 
an fa
e the problem interpretingthe COR methodology as the way of assigning 
onsequents (Bj 2 B) { i.e., labelsof the output fuzzy partition { to n-dimensional fuzzy input subspa
es 
ontainingexamples (Ss) with respe
t to an optimality 
riterion (MSE).Thus, the graph is 
onstru
ted taking the steps des
ribed in Fig. 4. Following thesesteps, the graph 
orresponding to the example presented in Fig. 2 would be the oneshown in Fig. 5.� Heuristi
 information | The heuristi
 information on the potential preferen
e ofsele
ting a spe
i�
 
onsequent, Bj , in ea
h ante
edent 
ombination (subspa
e) is9
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Figure 5: ACO graph 
orresponding to the example of Fig. 2determined as follows:�sj = maxels2E0s fCV (Rsj ; els)g � Xels2E0sCV (Rsj ; els)jE0sj ;with Rsj = IF X1 is As1 and ... and Xn is Asn THEN Y is Bj .� Pheromone initialization | The initial pheromone value of ea
h assignment is ob-tained as follows: �0 = NSXs=1 jBjmaxj=1 �sjNS :In this way, the initial pheromone will be the mean value of the path 
onstru
tedtaking the best 
onsequent in ea
h rule a

ording to the heuristi
 information (greedyassignment).� Fitness fun
tion | The said MSE fun
tion (Fig. 1).� ACO approa
h | The well-known Ant System [8℄ algorithm is 
onsidered.4 Experimental Study Solving the Ri
e Taste EvaluationProblemThis experimental study will be devoted to analyze the behavior of the proposed COR-based methods. With this aim, we have 
hosen the problem of ri
e taste evaluation [16℄.We will analyze the a

ura
y of the linguisti
 models generated from the pro
esses intro-du
ed in the previous se
tion 
ompared to two well-known ad ho
 data-driven methods,the ones proposed by Wang and Mendel (WM) [21℄ and Nozaki, Ishibu
hi, and Tanaka(NIT) [16℄.With respe
t to the FRBS reasoning method used, we have sele
ted the minimumt-norm playing the role of the impli
ation and 
onjun
tive operators, and the 
enter ofgravity weighted by the mat
hing strategy a
ting as the defuzzi�
ation operator [6℄.10



4.1 Problem Des
riptionSubje
tive quali�
ation of food taste is a very important but diÆ
ult problem. In the 
aseof the ri
e taste quali�
ation, it is usually put into e�e
t using a subje
tive evaluation
alled the sensory test. In this test, a group of experts, usually 
omposed of 24 persons,evaluate the ri
e a

ording to a set of 
hara
teristi
s asso
iated with it. These fa
tors are
avor, appearan
e, taste, sti
kiness, and toughness [16℄.Be
ause of the large quantity of relevant variables, the problem of ri
e taste analysisbe
omes very 
omplex, thus requiring the design of a model representing the existing non-linear relationships. Moreover, the problem-solving goal is not only to obtain an a

uratemodel, but to obtain a user-interpretable model as well, 
apable of putting some light onthe reasoning pro
ess performed by the expert for evaluating a kind of ri
e in a spe
i�
way. Due to all these reasons, in this se
tion we deal with obtaining a linguisti
 model tosolve the said problem.To do that, we use the data set presented in [16℄. This set is 
omposed of 105 dataarrays 
olle
ting subje
tive evaluations of the six variables in question (the �ve mentionedand the overall evaluation of the kind of ri
e), made up by experts on the number ofkinds of ri
e grown in Japan (e.g., Sasanishiki, Akita-Koma
hi, et
.). The six variablesare normalized, thus taking values in the real interval [0, 1℄.With the aim of not biasing the learning, we have randomly obtained ten di�erentpartitions of the mentioned set, 
omposed by 75 pie
es of data in the training set and 30in the test one, to generate 10 di�erent linguisti
 models in ea
h experiment. Two labelswill be 
onsidered to partition ea
h linguisti
 variable domain.4.2 Experiments and Analysis ResultsThe following values have been 
onsidered for the parameters of ea
h COR-based method:� COR-SA: 
ooling fa
tor (C), 0.9; trials per temperature, 32; and initial temperature,70.� COR-TS: number of iterations, 150; initial tabu list size, 32; intensi�
ation 
onver-gen
e 
riterion, 10 iterations; and diversi�
ation 
onvergen
e 
riterion, 7 iterations;� COR-GA: number of generations, 500; population size, 61; 
rossover probability, 0.6;and mutation probability, 0.2.� COR-AS: number of ants, 32; pheromone evaporation (�), 0.6; pheromone trailweight (�), 1; and heuristi
 information weight (�), 2.The results obtained by the six methods analyzed are 
olle
ted in Table 1, where #Rstands for the number of rules, MSEtra and MSEtst respe
tively for the error obtained overthe training and test data sets, EBS for the number of evaluations needed to obtain thebest solution, and �x and � respe
tively for the arithmeti
 mean and standard deviationvalues over the 10 models generated by ea
h method. The best results are shown inboldfa
e.In view of the obtained results, the methods based on the COR methodology performa good learning pro
ess generating a

urate models in both approximation { MSEtra {and generalization { MSEtst {, over
oming the WM and NIT methods.11



Table 1: Results obtained in the ri
e taste evaluation problem#R MSEtra MSEtst EBSMethod �x � �x � �x � �x �WM 15 0.632456 0.013284 0.005987 0.013119 0.004239 { {NIT 64 0.000000 0.008626 0.000345 0.009851 0.001931 { {COR-SA 32 0.000000 0.007076 0.000571 0.008012 0.001766 3,963 110COR-TS 32 0.000000 0.007213 0.000553 0.008398 0.001638 433 118COR-GA 32 0.000000 0.006845 0.000574 0.007830 0.001457 5,123 1,632COR-AS 32 0.000000 0.006943 0.000602 0.007702 0.001594 1,108 307
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Figure 6: Evolution 
hart of the four COR-based methods in the �rst data set partitionWithin the COR-based methods, the global sear
h te
hniques (GAs and ACO) obtainbetter results than the neighborhood-based ones (SA and TS). Between the COR-GA andCOR-AS methods, though they both generate models with similar a

ura
y, the latter onlyneeds a �fth of the evaluations to �nd the solution, whi
h is an interesting aspe
t to takeinto a

ount. This fa
t seems to be related to the 
onsideration of heuristi
 informationmade by ACO algorithms.Figure 6 illustrates the behavior of the four analyzed te
hniques showing their evolution
harts in the �rst data set partition. While the COR-TS method performs a gradualdes
ent, the other three methods show a strong de
rease at the beginning, although theCOR-SA method be
omes stabilized after several initial evaluations. As may be observed,the COR-AS method presents the best behavior qui
kly obtaining good solutions.5 Con
luding RemarksA learning methodology to qui
kly generate a

urate and simple linguisti
 models hasbeen presented in this 
ontribution: the COR methodology. It is based on 
onsidering12



the 
ooperation among the fuzzy rules in the generation pro
ess making good use of theinterpolative reasoning developed by the �nally designed FRBS. One of its interestingadvantages is its 
exibility allowing it to be used with di�erent 
ombinatorial sear
h te
h-niques.Thus, four spe
i�
 metaheuristi
s (SA, TS, GAs, and ACO) have been 
onsidered.Their good performan
e has been shown when solving a real-world problem. From thisexperimental study, the best results have been obtained by the ACO learning methodthanks to it 
onsiders heuristi
 information to guide the sear
h.The obtained results lead us to 
on
lude that the 
onsideration of 
ooperative rulesimproves the performan
e of the linguisti
 models and the derivation of linguisti
 rules by�rstly generating a 
andidate rule set and then sear
hing the best 
ombination of rules isa good way to a

omplish this aspe
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