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Abstract

Nowadays, Linguistic Modeling is considered to be one of the most important
areas of application for Fuzzy Logic. It is accomplished by linguistic Fuzzy Rule-Based
Systems, whose most interesting feature is the interpolative reasoning developed. This
characteristic plays a key role in their high performance and is a consequence of the
cooperation among the involved fuzzy rules.

A new approach that makes good use of this aspect inducing cooperation among
rules is introduced in this contribution: the Cooperative Rules methodology. One
of its interesting advantages is its flexibility allowing it to be used with different
combinatorial search techniques. Thus, four specific metaheuristics are considered:
simulated annealing, tabu search, genetic algorithms and ant colony optimization.
Their good performance is shown when solving a real-world problem.

1 Introduction

At present, system modeling is one of the main applications of fuzzy rule-based systems
(FRBSs) [2, 17]. It may be considered as an approach to model a system making use of
a descriptive language based on fuzzy logic with fuzzy predicates [19]. In this framework,
one of the most interesting areas is Linguistic Modeling, where the interpretability of the
obtained model is the main requirement. This task is developed by means of linguistic
FRBSs, which use fuzzy rules composed of linguistic variables [22] that take values in a
term set with a real-world meaning. Thus, the linguistic model consists of a set of linguistic
descriptions regarding the behavior of the system being modeled [19].

Several tasks have to be performed in order to design an FRBS (linguistic model)
for a concrete application. One of the most important and difficult ones is to derive an
appropriate knowledge base (KB) about the problem being solved. The KB stores the
available knowledge in the form of fuzzy linguistic IF-THEN rules. It consists of the rule
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base (RB), constituted by the collection of rules in their symbolic forms, and the data
base (DB), which contains the linguistic term sets and the membership functions defining
their meanings.

In this sense, numerous methods have been proposed to automatically generate fuzzy
rules from numerical data. Usually, they consider complex rule generation mechanisms
based on neural networks [9, 15] or genetic algorithms (GAs) [5, 11, 18], among others.

Opposite to them, this contribution is devoted to present the Cooperative Rules (COR)
learning methodology (initially proposed in [3, 4]), whose good performance is related
to the consideration of cooperation among rules. The methodology simplifies the rule
generation process and is capable of being used with any combinatorial search technique.
Thus, four different neighborhood-based and global search metaheuristics will be selected
to be applied in COR:

e simulated annealing (SA) algorithms,
e tabu search (TS) algorithms,
e GAs, and

e ant colony optimization (ACO) algorithms.

The paper is organized as follows. Section 2 introduces the methodology proposed to
improve the accuracy of linguistic models by means of more cooperative rules. Section 3
shows how to learn cooperative rules with the four said metaheuristics. Section 4 analyzes
the behavior of our proposals and other methods when solving a real-world problem.
Finally, Sect. 5 outlines some concluding remarks.

2 The Cooperative Rules Methodology

A family of efficient and simple methods to derive fuzzy rules guided by covering criteria of
the data in the example set, called ad hoc data-driven methods, has been proposed in the
literature in the last few years [3]. Their high performance, in addition to their quickness
and easy understanding, make them very suitable for learning tasks.

However, ad hoc data-driven methods usually look for the fuzzy rules with the best
individual performance (e.g. [21]) and therefore the global interaction among the rules of
the RB is not considered. This sometimes causes KBs with bad cooperation among the
rules to be obtained, thus not being as accurate as desired. This is due to the interpolative
reasoning developed by FRBSs, which is one of the most interesting features of these kinds
of systems and plays a key role in their high performance, being a consequence of the
cooperative action among the linguistic rules. Moreover, the fact of locally processing
these rules makes these learning methods be more sensitive to noise.

With the aim of addressing these drawbacks keeping the interesting advantages of ad
hoc data-driven methods, a new methodology to improve the accuracy obtaining better
cooperation among the rules is proposed in [3, 4]: the COR methodology. Instead of
selecting the consequent with the highest performance in each subspace like ad hoc data-
driven methods usually do, the COR methodology considers the possibility of using another



consequent, different from the best one, when it allows the FRBS to be more accurate
thanks to having a KB with better cooperation.
In this way, its operation mode consists of two stages:

1. Obtain a set of candidate consequents for each rule.

2. Perform a combinatorial search among these sets looking for the combination of
consequents with the best global accuracy.

A wider description of the COR-based rule generation process is shown in Fig. 1, whilst
an example of the operation mode for a simple problem with two input variables and three
labels in the output fuzzy partition is graphically illustrated in Fig. 2.

Since the search space — Fig. 2d in the example — tackled in step 2 of the algorithm
is usually large, it is necessary to use approximate search techniques. Any combinato-
rial search approach may be used for such a purpose. In this contribution, four different
well-known techniques are proposed: SA algorithms, TS algorithms, GAs, and ACO algo-
rithms. The following section introduces the particular aspects for applying the considered
techniques to the COR methodology.

3 Different Approaches to Learn Fuzzy Linguistic Rules In-
ducing Cooperation Among Them

3.1 Learning with Simulated Annealing

Introduction

SA [20] is a neighborhood-based search technique based on the analogy with the physical
annealing process of solids. The SA-based algorithm begins with an initial solution and
generates a neighbor of this solution by means of a suitable mechanism. If the latter is
better than the former, the current solution is replaced by the generated neighbor; other-
wise, this replacement is accomplished with a specific probability that will be decreased
during the algorithm progress. This process is iterated a large number of times.

Simulated Annealing Algorithms Applied to the COR Methodology

The proposed COR-based learning method with an SA algorithm is characterized as fol-
lows:

e Representation — An integer-valued vector (c) of size Ng is employed. Each cell
of the vector represents the index of the consequent used to build the rule in the
corresponding subspace:

Vs € {1,...,Ng}, c[s]| = ks s.t. By, € B®.

e Objective function — The said MSE function (Fig. 1) is used.

e (Cooling scheme — The cooling scheme used is the exponential one proposed by
Kirkpatrick [13] (Ty41 =T - C).



Inputs:

e An input-output data set — E = {ey,...,e,...,en}, with ¢ = (zh,... 2k ,9"), | €

{1,...,N}, N being the data set size, and n being the number of input variables —
representing the behavior of the problem being solved.

e A fuzzy partition of the variable spaces, in our case, uniformly distributed fuzzy sets:

Vs S M L VL

Let A; be the set of linguistic terms of the i-th input variable — with i € {1,...,n} -,
and B be the set of linguistic terms of the output variable, with |4;| (|B]) being the
number of linguistic terms of the i-th input (output) variable.

Algorithm:

1. Generate candidate rules in each subspace — For each n-dimensional fuzzy input subspace
containing at least an example, Sy = (Af,..., A,..., A}) such that E = {¢; € E |
[ as (2}) .. .-pas (z) # 0} # 0 —with A € A; being a label, {14 (+) being its membership
function, s € {1,...,Ng}, and Ng < ]}, |Ai| being the number of subspaces with
examples —, do:

(a) Let BS={By € B, k€ {1,...,|B|} s.t. Je;s € E. with pp, (y"°) # 0} be the set
of linguistic labels in the output variable term set which contain examples belonging
to E!, and let |B®| be the number of candidate consequets in the subspace Sj.

(b) For each linguistic label B;, € B® compute the covering value, CV, of the lin-
guistic rule associated with the S subspace built using this term as a value in the
consequent, R}, = IF X is A and ... and X, is Aj THEN Y is Bj., over each
example ejs € E, as follows:

OV (Rjs,e10) = Min(pag (21), ., ag (z7), i, (y1))-

2. Select the most cooperative rule in each subspace — This stage is performed by running
a combinatorial search algorithm to look for the combination {B;l, ooy Bisy ,B]Z\?S}
with the best accuracy.

To evaluate the quality of each solution, an index measuring the cooperation degree of
the encoded rule set is considered. In our case, the algorithm uses a global error function
called mean square error (MSE), which is defined as
N
MSE = o— (F(zh,...,2}) —H)?,

with F(z!,...,z!) being the output obtained from the FRBS when the example ¢; is
used, and ¢! being the known desired output. The closer to zero the measure, the greater
the global performance and, thus, the better the rule cooperation.

Figure 1: Learning generic scheme followed by the COR methodology
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Figure 2: COR-based learning process for a simple problem with two input variables (n = 2)
and three labels in the output fuzzy partition (|B| = 3): (a) data set (E) and DB previously
defined; (b) the six examples are located in four (Ng = 4) different subspaces that determine the
antecedent combinations and candidate consequents of the rules; (c) set of possible consequents for
each subspace; (d) combinatorial search accomplished within a space composed of twelve different
combinations of consequents; (e) rule decision table for the third combination; (f) RB generated

from the third combination



e Trials per temperature — The equilibrium at a specific temperature is achieved when
a maximum number of neighbors has been generated.

e [nitial solution — The initial solution is obtained by generating a possible combina-
tion at random.

e Neighbor generation — The operator considered to obtain a neighbor randomly se-
lects a specific s € {1,...,Ng} where |BS| > 2, and changes at random k° by k*'
such that Bj,, € B® and ks' # k5.

e Stopping criterion — The algorithm stops when no neighbor is accepted for a specific
temperature.

3.2 Learning with Tabu Search Algorithms
Introduction

TS [10] is an adaptive procedure for solving combinatorial optimization problems, which
guides a hill-descendent heuristic to continue exploration without becoming confounded
by a lack of improving moves, and without falling back into a local optimum from which
it previously emerged.

At each iteration, an admissible move is applied to the current solution, transforming
it into its neighbor with the smallest cost. Solutions that increase the cost function are
permitted, the reverse move is prohibited for some iterations in order to avoid cycling.
The restrictions are based on a short term memory function that determines how long
a tabu restriction will be enforced or, alternatively, which moves are admissible at each
iteration.

Tabu Search Algorithms Applied to the COR Methodology

The proposed COR-based learning method with a T'S algorithm has the following compo-
nents:

e Representation — The same proposed for the SA approach (Sect. 3.1).
e Objective function — The said MSE function (Fig. 1) is used.

e Tabu criterion — The tabu list (or history record) contains the moves applied to
obtain the most recently accepted solutions. The movement considered is the pair
subspace-consequent, i.e., (s, k%').

o Aspiration criterion — Moves that yield solutions better than the best one obtained
in the search are allowed even if they are tabu active.

e Initial solution — It is obtained as in the SA approach (Sect. 3.1).

e Neighbor generation —The same proposed in the SA approach (Sect. 3.1).



e [Intensification restart — The current solution is replaced by the best one obtained
till now when a specific intensification convergence criterion is meet. The tabu list
size is also changed by randomly reducing or increasing it by 50%. The convergence
criterion involves making a restart when the best and current costs differ during a
specific number of iterations.

e Diversification restart — A long term memory is used to keep an account of the use
frequency of each successful move. To do that, the array LT M is initialized to zero
and whenever a move is accepted (say (s, k*’)), its corresponding counter is increased
by one, i.e., LT M|s][k®'] +— LTM|[s][k*'] + 1.

Subsequently, when a specific diversification convergence criterion is meet, a new
solution is generated by selecting a consequent in each subspace according to a
probability inversely proportional to the corresponding LT M value:

1
LTM[s, k] + 1

1
LTM]|s,q%] + 1

c[s] = k* with a probability of
B €Bs

The convergence criterion is meet when the best cost has not been improved during
a specific number of iterations.

3.3 Learning with Genetic Algorithms
Introduction

GAs are general-purpose global search algorithms that use principles inspired by natural
population genetics to evolve solutions to problems. The basic principles of the GAs were
first laid down rigorously by Holland [12] and are well described in many texts as [14].

The basic idea is to maintain a population of knowledge structures that evolves over
time through a process of competition and controlled variation. Fach structure in the
population represents a candidate solution to the specific problem and has an associated
fitness to determine which structures are used to form new ones in the process of com-
petition. The new individuals are created using genetic operators such as crossover and
mutation. Figure 3 shows the structure of a simple GA.

Genetic Algorithms Applied to the COR Methodology
The proposed COR-based learning method with a GA is characterized as follows:
e Coding scheme — The same proposed for the SA approach (Sect. 3.1).
e Fitness function — The objective will be to minimize the said MSE function (Fig. 1).

e (enetic approach — An elitist generational GA with the Baker’s stochastic universal
sampling procedure [1].



Procedure Genetic Algorithm
begin
t=0;
initialize P(t);
evaluate P(t);
while (not termination-condition) do
t=t+1;
select P(t) from P(t —1);
cross P(t) with an specific probability;
mutate P(t) with an specific probability;
evaluate P(t);
end-while
end

Figure 3: Basic structure of a GA

e Initial pool — The population is initially generated with the first individual as follows

Vs € {1,...,N5},

> CV(Ris,er)

ers EE;

— S
ci[s] = arg A, | max, {CV(Rs,e15)} - |

and the remaining chromosomes generated at random:

Vp € {2,...,pool_size}, Vs € {1,...,Ns}, ¢,[s] = some ky s.t. By, € B®.

e (rossover — The standard two-point crossover is used.

e Mutation — The same that the said SA neighbor generation mechanism (Sect. 3.1).

3.4 Learning with Ant Colony Optimization Algorithms
Introduction

ACO algorithms [7] constitute a new family of global search bio-inspired algorithms that
has recently appeared. Since the first proposal, the Ant System algorithm [8] — applied to
the Traveling Salesman Problem — numerous models has been developed to solve a wide
set of optimization problems (refer to [7] for a review of models and applications).

ACQO algorithms draw inspiration from the social behavior of ants to provide food to
the colony. In the food search process, consisting of the food find and the return to the
nest, the ants deposit a substance called pheromone. The ants have the ability of sniffing
the pheromone and pheromone trails guide the colony during the search. When an ant is
located at a branch, it decides to take the path according to the probability defined by the
pheromone existing in each trail. In this way, the depositions of pheromone terminate in



1. Set a node for each subspace — Use a node for each n-
dimensional fuzzy input subspaces containing examples (S;),
thus having a total of Ng subspace nodes.

2. Link the subspaces to consequents — The subspace S will be

linked to the consequent Bj, with j € {1,...,|B|}, if and only
if it meets the following condition:
de; € E such that ,uAi(xll) Cas ,uA%(xiZ) “ B, (y)) #0.

That is, if there is at least one example located in the fuzzy
input subspace that is covered by such a consequent.

Figure 4: Graph construction process

constructing a path between the nest and the food that can be followed by new ants. The
progressive action of the colony members involves the length of the path is progressively
reduced. The shortest paths are finally the more frequently visited ones and, therefore,
the pheromone concentration is higher on them. On the contrary, the longest paths are
less visited and the associated pheromone trails are evaporated.

The basic operation mode of ACO algorithms is as follows [8]: at each iteration, a pop-
ulation of a specific number of ants progressively construct different tracks on the graph
(i.e., solutions to the problem) according to a probabilistic transition rule that depends
on the available information (heuristic and pheromone trails). After that, the pheromone
trails are updated. This is done by first decreasing them by some constant factor (corre-
sponding to the evaporation of the pheromone) and then reinforcing the solution attributes
of the constructed solutions considering their quality. This task is developed by the global
pheromone trail update rule.

Ant Colony Optimization Algorithms Applied to the COR Methodology

The proposed COR-based learning method with an ACO algorithm has the following main
aspects:

e Problem representation — To use ACO algorithms in the COR methodology, it is
convenient to see it as a combinatorial optimization problem with the capability of
being represented on a graph. In this way, we can face the problem interpreting
the COR methodology as the way of assigning consequents (B; € B) — i.e., labels
of the output fuzzy partition — to n-dimensional fuzzy input subspaces containing
examples (Ss) with respect to an optimality criterion (MSE).

Thus, the graph is constructed taking the steps described in Fig. 4. Following these
steps, the graph corresponding to the example presented in Fig. 2 would be the one
shown in Fig. 5.

e Heuristic information — The heuristic information on the potential preference of
selecting a specific consequent, Bj, in each antecedent combination (subspace) is



Figure 5: ACO graph corresponding to the example of Fig. 2

determined as follows:

Y CV(Ren)

ers EE;

nsj = max {CV(R], eps)} -

e;s€E] |E;| ’

with R} =1IF X, is Af and ... and X,, is A THEN Y is Bj.

e Pheromone initialization — The initial pheromone value of each assignment is ob-
tained as follows:
Ns
|B]
m_alx Msj

o = s=1 """

0 N
In this way, the initial pheromone will be the mean value of the path constructed
taking the best consequent in each rule according to the heuristic information (greedy

assignment).
e Fitness function — The said MSE function (Fig. 1).

e ACO approach — The well-known Ant System [8] algorithm is considered.

4 Experimental Study Solving the Rice Taste Evaluation
Problem

This experimental study will be devoted to analyze the behavior of the proposed COR-
based methods. With this aim, we have chosen the problem of rice taste evaluation [16].
We will analyze the accuracy of the linguistic models generated from the processes intro-
duced in the previous section compared to two well-known ad hoc data-driven methods,
the ones proposed by Wang and Mendel (WM) [21] and Nozaki, Ishibuchi, and Tanaka
(NIT) [16].

With respect to the FRBS reasoning method used, we have selected the minimum
t-norm playing the role of the implication and conjunctive operators, and the center of
gravity weighted by the matching strategy acting as the defuzzification operator [6].
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4.1 Problem Description

Subjective qualification of food taste is a very important but difficult problem. In the case
of the rice taste qualification, it is usually put into effect using a subjective evaluation
called the sensory test. In this test, a group of experts, usually composed of 24 persons,
evaluate the rice according to a set of characteristics associated with it. These factors are
flavor, appearance, taste, stickiness, and toughness [16].

Because of the large quantity of relevant variables, the problem of rice taste analysis
becomes very complex, thus requiring the design of a model representing the existing non-
linear relationships. Moreover, the problem-solving goal is not only to obtain an accurate
model, but to obtain a user-interpretable model as well, capable of putting some light on
the reasoning process performed by the expert for evaluating a kind of rice in a specific
way. Due to all these reasons, in this section we deal with obtaining a linguistic model to
solve the said problem.

To do that, we use the data set presented in [16]. This set is composed of 105 data
arrays collecting subjective evaluations of the six variables in question (the five mentioned
and the overall evaluation of the kind of rice), made up by experts on the number of
kinds of rice grown in Japan (e.g., Sasanishiki, Akita-Komachi, etc.). The six variables
are normalized, thus taking values in the real interval [0, 1].

With the aim of not biasing the learning, we have randomly obtained ten different
partitions of the mentioned set, composed by 75 pieces of data in the training set and 30
in the test one, to generate 10 different linguistic models in each experiment. Two labels
will be considered to partition each linguistic variable domain.

4.2 Experiments and Analysis Results

The following values have been considered for the parameters of each COR-based method:

e COR-SA: cooling factor (C), 0.9; trials per temperature, 32; and initial temperature,
70.

e COR-TS: number of iterations, 150; initial tabu list size, 32; intensification conver-
gence criterion, 10 iterations; and diversification convergence criterion, 7 iterations;

e COR-GA: number of generations, 500; population size, 61; crossover probability, 0.6;
and mutation probability, 0.2.

e COR-AS: number of ants, 32; pheromone evaporation (p), 0.6; pheromone trail
weight («), 1; and heuristic information weight (3), 2.

The results obtained by the six methods analyzed are collected in Table 1, where #R
stands for the number of rules, MSE;,., and MSE;4 respectively for the error obtained over
the training and test data sets, EBS for the number of evaluations needed to obtain the
best solution, and Z and o respectively for the arithmetic mean and standard deviation
values over the 10 models generated by each method. The best results are shown in
boldface.

In view of the obtained results, the methods based on the COR methodology perform
a good learning process generating accurate models in both approximation — MSE, —
and generalization — MSE,s —, overcoming the WM and NIT methods.
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Table 1: Results obtained in the rice taste evaluation problem

ZR MSE,, MSE,,, EBS
Method | Z o T o T o T o
WM 15| 0.632456 | 0.013284 | 0.005987 | 0.013119 | 0.004239 - -
NIT 64 {0.000000| 0.008626 | 0.000345 | 0.009851 | 0.001931 - -
COR-SA [32/0.000000| 0.007076 [0.000571| 0.008012 | 0.001766 |3,963| 110
COR-TS |32]0.000000| 0.007213 | 0.000553 | 0.008398 | 0.001638 | 433| 118
COR-GA [32|0.000000|0.006845 | 0.000574 | 0.007830 {0.001457|5,123|1,632
COR-AS |32{0.000000| 0.006943 | 0.000602 |0.007702| 0.001594 |1,108| 307
0.07
0.06
0.05 :
) 0.04 COR-TS COR-AS COR-GA
) T aaion
=
COR-SA
0.011 Lemmmm—
o4 COR-AS ‘ COR-GA ‘ ‘
1 100 500 1,000 1,500 2,000

Evaluation

Figure 6: Evolution chart of the four COR-based methods in the first data set partition

Within the COR-based methods, the global search techniques (GAs and ACO) obtain
better results than the neighborhood-based ones (SA and TS). Between the COR-GA and
COR-AS methods, though they both generate models with similar accuracy, the latter only
needs a fifth of the evaluations to find the solution, which is an interesting aspect to take
into account. This fact seems to be related to the consideration of heuristic information
made by ACO algorithms.

Figure 6 illustrates the behavior of the four analyzed techniques showing their evolution
charts in the first data set partition. While the COR-TS method performs a gradual
descent, the other three methods show a strong decrease at the beginning, although the
COR-SA method becomes stabilized after several initial evaluations. As may be observed,
the COR-AS method presents the best behavior quickly obtaining good solutions.

5 Concluding Remarks

A learning methodology to quickly generate accurate and simple linguistic models has
been presented in this contribution: the COR methodology. It is based on considering
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the cooperation among the fuzzy rules in the generation process making good use of the
interpolative reasoning developed by the finally designed FRBS. One of its interesting
advantages is its flexibility allowing it to be used with different combinatorial search tech-
niques.

Thus, four specific metaheuristics (SA, TS, GAs, and ACO) have been considered.
Their good performance has been shown when solving a real-world problem. From this
experimental study, the best results have been obtained by the ACO learning method
thanks to it considers heuristic information to guide the search.

The obtained results lead us to conclude that the consideration of cooperative rules
improves the performance of the linguistic models and the derivation of linguistic rules by
firstly generating a candidate rule set and then searching the best combination of rules is
a good way to accomplish this aspect.
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