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Summary. The Fuzzy Linguistic Approach has been applied successfully to many
problems dealing with qualitative aspects that are assessed by means of linguistic
terms. The use of linguistic information implies in most cases the need for using
fusion processes to obtain aggregated values that summarize the input information.
One important limitation of the fuzzy linguistic approach appears when fusion pro-
cesses are applied to problems in which the linguistic information is assessed in
linguistic term sets with different granularity of uncertainty, i.e., different cardinal-
ity; this type of information is denoted as multi-granular linguistic information. This
limitation consists of the difficulty in dealing with this type of information in fusion
processes due to the fact that there is no standard normalization process for this
type of information, as in the numerical domain.

In this contribution, taking as base the 2-tuple fuzzy linguistic representation
model and its computational technique, we shall present a method for easily dealing
with multi-granular linguistic information in fusion processes. Afterwards, we shall
apply this fusion method to a decision process in a multi-expert decision-making
(MEDM) problem with multi-granular linguistic information, that evaluates the
quality of network services from different Operative Systems.

Keywords: Linguistic variables, aggregation, fusion processes, granularity of
uncertainty, multi-granular linguistic information.

1 Introduction

On many occasions we find problems that present several sources of informa-
tion to qualify their phenomena. When these phenomena present quantitative
aspects they can be assessed by means of precise numerical values, however
3 This work is supported by Research Project TIC2002-03348



when the aspects presented by the phenomena are qualitative may be difficult
to qualify using precise values. So, the use of the fuzzy linguistic approach
[45] has shown itself as a good choice to model these phenomena, due to the
fact that it represents qualitative aspects with qualitative terms by means of
linguistic variables, i.e., variables whose values are not numbers but words or
sentences in a natural or artificial language.

An important aspect when the fuzzy linguistic approach is used, is to
determine the “granularity of uncertainty”, i.e., the cardinality of the linguistic
term set used to assess the linguistic variables. Depending on the uncertainty
degree held by a source of information qualifying a phenomenon, the linguistic
term set will have more or less terms. Then, in those problems with several
sources of information each one may have a different uncertainty degree on the
phenomena to qualify. Therefore, each source could express its knowledge by
means of linguistic term sets with a different granularity of uncertainty from
the other ones. In these situations we shall denote this type of information as
multi-granular linguistic information.

The use of the fuzzy linguistic approach implies processes of “comput-
ing with words” (CW), in the specialized literature, three different linguistic
computational techniques can be found [2, 10, 11, 20]. The first one is based
on the Extension Principle [2, 11] that acts on the linguistic terms through
computations on the associated membership functions, the second method or
Symbolic one [10] acts by direct computations on the labels and the third
method uses the 2-tuple fuzzy linguistic representation model [20] and acts
on numerical values associated with the fuzzy linguistic 2-tuple. These com-
putational techniques provide linguistic operators for CW.

When a problem presents multi-granular linguistic information, the fuzzy
linguistic approach together with the first two linguistic computational tech-
niques mentioned present an important limitation because in these computa-
tional methods, neither a standard normalization process nor fusion operators
are defined for this type of information. Therefore, it is highly complex to solve
this type of problems using these methods and the results obtained present
loss of information during computing processes. Besides, they are expressed
by values assessed in domains far removed from the initial expression ones, as
occurs in the fusion method for multi-granular linguistic information that we
presented in [18] for decision problems, introducing a fuzzy preference relation
among the alternatives as a final step because it was not possible to manage
the multi-granular information directly.

The aim of this paper is to develop an aggregation process, for multi-
granular linguistic information, that overcomes the above limitations, i.e., it
will be able to reduce the loss of information and express the final results in
an expression domain near the initial one. To do so, we shall use the 2-tuple
fuzzy linguistic representation model and its computational technique [20],
together with the multi-granular linguistic information fusion ideas presented
in [18]. For the development of a practical example of the multi-granular
fusion method based on the 2-tuple linguistic representation we shall solve an



MEDM problem that evaluates quality of the network services from different
Operative Systems.

In order to do so, this paper is structured as follows: in Section 2, we
shall make a brief review of the fuzzy linguistic approach, of the 2-tuple fuzzy
linguistic representation model and present a general scheme of an MEDM
problem. In Section 3, we develop a fusion method for multi-granular linguistic
information. In Section 4, we present an example of an evaluating services
of Operative Systems. Finally some concluding remarks are pointed out in
Section 5.

2 Preliminaries

In this section we briefly review the fuzzy linguistic approach and its computa-
tional models, afterwards we review the 2-tuple fuzzy linguistic representation
model together its linguistic computational method and finally present a gen-
eral scheme for MEDM problems.

2.1 Fuzzy Linguistic Approach

Usually, we work in a quantitative setting, where the information is expressed
by means of numerical values. However, many aspects of different activities
in the real world cannot be assessed in a quantitative form, but rather in a
qualitative one, i.e., with vague or imprecise knowledge. In that case, a better
approach may be to use linguistic assessments instead of numerical values.
The fuzzy linguistic approach represents qualitative aspects as linguistic val-
ues by means of linguistic variables [45]. This approach is adequate in some
situations, for example, when attempting to qualify phenomena related to hu-
man perception, we are often led to use words in natural language. This may
arise for different reasons. There are some situations where the information
may be unquantifiable due to its nature, and thus, it may be stated only in lin-
guistic terms (e.g., when evaluating the “comfort” or “design” of a car, terms
like “bad”, “poor”, “tolerable”, “average”, “good” can be used [28]). In other
cases, precise quantitative information may not be stated because either it is
not available or the cost of its computation is too high, then an “approximate
value” may be tolerated (e.g., when evaluating the speed of a car, linguistic
terms like “fast”, “very fast”, “slow” are used instead of numerical values).

The fuzzy linguistic approach has been applied with very good results to
different problems, such as, “information retrieval” [3, 39], “clinical diagnosis”
[11], “marketing” [42], “risk in software development” [29], “technology trans-
fer strategy selection” [7], “educational grading systems” [27], “scheduling” [1],
“consensus” [36, 4], “materials selection” [8], “personnel management” [19],
“decision-making” [9, 16, 17, 30, 31, 35, 43], etc.

We have to choose the appropriate linguistic descriptors for the term set
and their semantics. In order to accomplish this objective, an important aspect



to analyse is the “granularity of uncertainty”, i.e., the level of discrimination
among different counts of uncertainty. The universe of the discourse over which
the term set is defined can be arbitrary, in this paper we shall use linguistic
term sets in the interval [0, 1]. In [2] the use of term sets with an odd cardinal
was studied, representing the mid term by an assessment of “approximately
0.5”, with the rest of the terms being placed symmetrically around it and with
typical values of cardinality , such as 7 or 9. These classical cardinality values
seem to satisfy Miller’s observation about that human beings can reasonably
manage to bear in mind seven or so items [32].

One possibility of generating the linguistic term set consists of directly
supplying the term set by considering all terms distributed on a scale on
which a total order is defined [16, 43]. For example, a set of seven terms S,
could be given as follows:

S = {s0 = none, s1 = very low, s2 = low, s3 = medium, s4 = high,
s5 = very high, s6 = perfect}

In these cases, it is usually required that there exist:

1. A negation operator Neg(si) = sj such that j = g-i (g+1 is the cardinal-
ity).

2. A minimization and a maximization operator in the linguistic term set:
si ≤ sj ⇐⇒ i ≤ j.

The semantics of the terms is given by fuzzy numbers defined in the [0,1]
interval, which are usually described by membership functions. A way to char-
acterize a fuzzy number is to use a representation based on parameters of its
membership function [2]. Since the linguistic assessments given by the users
are just approximate ones, some authors consider that linear trapezoidal mem-
bership functions are good enough to capture the vagueness of those linguistic
assessments, since it may be impossible and unnecessary to obtain more ac-
curate values [9]. This parametric representation is achieved by the 4-tuple
(a, b, d, c), where b and d indicate the interval in which the membership value
is 1, with a and c indicating the left and right limits of the definition domain
of the trapezoidal membership function [2]. A particular case of this type of
representation are the linguistic assessments whose membership functions are
triangular, i.e., b = d, so we represent this type of membership function by
a 3-tuple (a, b, c). For example, we may assign the following semantics to the
set of seven terms:

P = Perfect = (.83, 1, 1) V H = V ery High = (.67, .83, 1)
H = High = (.5, .67, .83) M =Medium = (.33, .5, .67)
L = Low = (.17, .33, .5) V L = V ery Low = (0, .17, .33)
N = None = (0, 0, .17).

which is graphically shown in Figure 1.
Other authors use a non-trapezoidal representation, e.g., Gaussian functions
[3].
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Fig. 1. A Set of Seven Terms with its Semantic

The linguistic variables are used in processes of CW that imply their fu-
sion, aggregation, comparison, etc. To perform these computations with fuzzy
linguistic approach have been developed two methods in the literature. (i)
The model based on the Extension Principle, and (ii) the symbolic one. Here
we briefly review the two models.

Linguistic Computational Model Based on the Extension Principle

The Extension Principle has been introduced to generalize crisp mathematical
operations to fuzzy sets. The use of extended arithmetic based on the Exten-
sion Principle [12] increases the vagueness of the results. The results obtained
by the fuzzy arithmetic are fuzzy numbers that usually do not match any
linguistic term in the initial term set, so a linguistic approximation process is
needed to express the result in the initial expression domain. In the literature
we can find different linguistic approximation operators [2, 11].

A linguistic aggregation operator based on the Extension Principle acts
according to:

Sn F̃−→ F (R)
app1(·)−→ S

where Sn symbolizes the n cartesian product of S, F̃ is an aggregation operator
based on the Extension Principle, F (R) the set of all fuzzy subsets over the set
of Real numbers R, app1 : F (R) → S is a linguistic approximation function
that returns a label from the linguistic term set S whose meaning is the closest
to the obtained unlabelled fuzzy number and S is the initial term set.

Linguistic Computational Symbolic Model

A second approach used to operate on linguistic information is the symbolic
one [10], that makes computations on the indexes of the linguistic labels. Usu-
ally it uses the ordered structure of the linguistic term sets, S = {s0, . . . , sg}
where si < sj iff i < j, to perform the computations. The intermediate results
are numeric values, α ∈ [0, g], which must be approximated in each step of the
process by means of an approximation function app2 : [0, g] → {0, .., g} that
obtains a numeric value, such that, it indicates the index of the associated
linguistic term, sapp2(α) ∈ S. Formally, it can be expressed as:



Sn C−→ [0, g]
app2(·)−→ {0, ..., g} −→ S

where C is a symbolic linguistic aggregation operator, app2(·) is an approx-
imation function used to obtain an index {0, ..., g} associated to a term in
S = {s0, ..., sg} from a value in [0, g].

2.2 The 2-tuple Fuzzy Linguistic Representation Model

.
This model has been presented in [20, 21], where different advantages of

this formalism to represent the linguistic information over classical models are
shown, such as:

1. The linguistic domain can be treated as continuous, whilst in the classical
models it is treated as discrete.

2. The linguistic computational model based on linguistic 2-tuple carries out
processes of CW easily and without loss of information.

3. The results of the processes of CW are always expressed in the initial
linguistic domain.

Due to these advantages, we shall use this linguistic representation model
to accomplish our aim, to build an aggregation process for multi-granular
linguistic information that expresses the aggregated values in the initial ex-
pression domain and with a lack of precision less than in before processes.

The 2-tuple representation model is based on the symbolic one and in a
concept similar to the concept of “Translation” used in [5] to build linguistic
adaptative modifiers. The 2-tuple fuzzy linguistic model uses a pair of values
to represent the linguistic information, (s, α), where s is a linguistic label and
α is a numerical value called Symbolic Translation.

Definition 1. Let β be the result of an aggregation of the indexes of a set
of labels assessed in a linguistic term set S = {s0, ..., sg}, i.e., the result of a
symbolic aggregation operation. β ∈ [0, g], being g+1 the cardinality of S. Let
i = round(β) and α = β−i be two values, such that, i ∈ [0, g] and α ∈ [−.5, .5)
then α is called a Symbolic Translation.

From this concept in [20, 21] it was developed a linguistic representa-
tion model which represents the linguistic information by means of a 2-tuple
(si, αi), si ∈ S and αi ∈ [−.5, .5):
• si represents the linguistic label of the information, and
• αi is a numerical value expressing the value of the translation from the

original result β to the closest index label, i, in the linguistic term set (si),
i.e., the Symbolic Translation.



Remark 1: In [5] the “Translation” is used to represent knowledge in Knowl-
edge Based Systems and is computed according to the semantics of the lin-
guistic labels that depends on the shape of their membership functions, whilst
the “Symbolic Translation” is used in fuzzy preference modelling for processes
of CW and depends on the order of linguistic terms and on the symbolic
computations carried out over the linguistic labels.

This model defines a set of transformation functions between linguistic
terms and 2-tuple, and between numeric values and 2-tuple.
Definition 2. Let S = {s0, ..., sg} be a linguistic term set and β ∈ [0, g] a
value supporting the result of a symbolic aggregation operation, then the 2-tuple
that expresses the equivalent information to β is obtained with the following
function:

∆ : [0, g] −→ S × [−0.5, 0.5)

∆(β) =
{

si i = round(β)
α = β − i α ∈ [−.5, .5)

where round is the usual round operation, si has the closest index label to “β”
and “α” is the value of the symbolic translation.
Proposition 1. Let S = {s0, ..., sg} be a linguistic term set and (si, α) be a
2-tuple. There is always a ∆−1 function, such that, from a 2-tuple it returns
its equivalent numerical value β ∈ [0, g] ⊂ R.

Proof.
It is trivial, we consider the following function:

∆−1 : S × [−.5, .5) −→ [0, g]

∆−1(si, α) = i+ α = β

Remark 2: From definitions 2 and 3 and from proposition 1, it is obvious that
the conversion of a linguistic term into a linguistic 2-tuple consist of adding
a value 0 as symbolic translation:

si ∈ S =⇒ (si, 0)

Together with the fuzzy linguistic 2-tuple representation model a wide
range of 2-tuple aggregation operators were developed [20], such as, the ex-
tended LOWA, the extended weighted average, the extended OWA, ... . The
use of these extended aggregation operators is necessary for the development
of our fusion method in order to combine the information.

2.3 A General Scheme of an MEDM problem

An MEDM problem can be defined as follows. Let A = {a1, ..., an} be a set
of alternatives, each one assessed by a set of experts {e1, ..., ek}. This scheme
is shown in Table 1.



Table 1. A general MEDM problem

Alternatives Experts
(ai) e1 e2 ... ek

a1 y11 y12 ... y1k

... ... ... ... ...
an yn1 yn2 ... ynk

There exists wide literature on fuzzy MEDM problems [23, 41]. In the
following, we focus in MEDM problems defined over multi-granular linguistic
term sets, i.e., problems where their preference values yij can be assessed
in linguistic term sets Sj that can have different granularity of uncertainty
and/or semantics.

Decision-making problems that manage preferences from different experts
follow a common resolution scheme [33] composed by two phases:

1. Aggregation phase: It combines the individual preferences to obtain a col-
lective preference value for each alternative.

2. Exploitation phase: It orders the collective preference values according to
a given criterion to obtain the best alternative/s.

In this paper we deal with MEDM problems defined in multi-granular
linguistic contexts. In the literature, we can find approaches to accomplish the
aggregation phase of the above resolution scheme in these types of contexts
[18]. Those approaches carry out the aggregation phase in two processes:

• Normalization process. The multi-granular linguistic information is ex-
pressed in an unique linguistic expression domain.

• Combination process. The unified linguistic information expressed in an
unique linguistic term set is aggregated.

3 Fusion Method for Multi-Granular Linguistic
Information based on the 2-tuple Representation

This fusion method for multi-granular linguistic information is developed ac-
cording to the following scheme.

1. Making the information uniform (Normalization process). The multi-
granular linguistic input information is unified into “fuzzy sets” in a Basic
Linguistic Term Set (BLTS).

2. Transforming fuzzy sets into 2-tuple. The fuzzy sets in the BLTS are
transformed into 2-tuple assessed in the BLTS.

3. Fusion of 2-tuple values. We apply a 2-tuple aggregation operator in
order to obtain aggregated values expressed by means of 2-tuple assessed
in the BLTS.



4. Backward step. The values obtained by the aggregation method (2-
tuple), assessed in the BLTS, can be distant from the expression domains
used by the sources of information. Therefore, it may be interesting to
offer the option to make an approximation of the aggregated values to the
initial domains for a better comprehensiveness of them. This step is not
necessary, it is simply convenient.

This scheme is shown graphically, in Figure 2:

S

Make the 
Information
Uniform

Transform
to 2-tuplesj

 Linguistic Information

Multi-Granular

T
2-tuple in the BLTS

Fusion result:
 2-tuple in S

Fusion result:
 2-tuple in S

   Fusion Method Backward Step

j

Fig. 2. Fusion of multi-granularity linguistic information

Subsequently, we shall develop each step in the above scheme in the follow-
ing subsections over an MEDM problem dealing with multi-granular linguistic
information.

We must remember that the aim of an MEDM problem is to compute a
global evaluation of each alternative in order to determine the “best” one. To
do so, the decision-making problems follows a decision model as the presented
in subsection 2.3.

The scheme of Figure 2 develops a new process to carry out the processes
of the aggregation phase, i.e., the normalization and combination processes.

3.1 Making the Information Uniform

With a view to manage the information we must make it uniform, i.e., the
multi-granular linguistic information provided by all the sources must be
transformed into a unified linguistic term set, called BLTS and denoted as
ST .

Before defining a transformation function into this BLTS, ST , we have to
decide how to choose ST . We consider that ST must be a linguistic term set
which allows us to maintain the uncertainty degree associated to each expert
and the ability of discrimination to express the performance values. With this
goal in mind, we look for a BLTS with the maximum granularity. We take
into consideration two possibilities:

• When there is only one term set with the maximum granularity, then, it
is chosen as ST .



• If we have two or more linguistic term sets with maximum granularity
then, ST is chosen depending on the semantics of these linguistic term
sets, finding two possible situations to establish ST :
1. All the linguistic term sets have the same semantics, then ST is any

one of them.
2. There are some linguistic term sets with different semantics. Then, ST

is a basic linguistic term set with a larger number of terms than the
number of terms that a person is able to discriminate (normally 11
or 13, see [32]). We define a BLTS with 15 terms and the following
semantics (see Figure 3):

s0 (0, 0, .07) s1 (0, .07, .15) s2 (.07, .15, .22)
s3 (.15, .22, .29) s4 (.22, .29, .36) s5 (.29, .36, .43)
s6 (.36, .43, .5) s7 (.43, .5, .57) s8 (.5, .57, .64)
s9 (.57, .64, .71) s10 (.64, .71, .78) s11 (.71, .78, .85)
s12 (.78, .85, .93) s13 (.85, .93, 1) s14 (.93, 1, 1)

0  1 2 3 4  5 6 7 8 9 10 11 12 13 14s s s s s s s s s s s s s s s

Fig. 3. Term set with 15 terms

Remark 3: We should point out that the justification on this choice is based
on the use of linguistic term sets with odd granularity defined in the interval
[0,1] and in the idea that the semantics is a parameter used by the conversion
process, and thus, it has effect on the final result. We decide to use a sym-
metrical term set with a granularity bigger than the number of terms that an
expert is able to discriminate (11 or 13, see [32]).

Once the BLTS has been chosen, the multi-granular linguistic information
will be unified. The process of making the information uniform involves the
comparison between fuzzy sets representing the semantics of the initial terms
assessed in Si and the fuzzy sets of the linguistic terms of the BLTS. Com-
parisons are usually carried out by means of a measure of comparison, that
depending on the framework, the measure of comparison can have different
forms [13, 14, 25, 37, 38, 47]. We focus on measures of comparison which eval-
uate the resemblance or likeness of two objects (fuzzy sets in our case). These
type of measures are called “measures of similitude” [6, 34].

Measures of similitude are very general and different classes can be identify
[6, 34]. For simplicity, in this paper we shall choose a measure of similitude



based on a possibility function S(A,B) = maxx min(µA(x), µB(x), where µA

and µB are the membership functions of the fuzzy sets A and B respectively.
Therefore, to make the information uniform, we shall use the following

function:

Definition 3 [18]. Let A = {l0, . . . , lp} and ST = {c0, . . . , cg} be two
linguistic term sets, such that, g ≥ p. Then, a multi-granular transformation
function, τAST

is defined as

τAST
: A −→ F (ST )

τAST
(li) = {(ck, αi

k) /k ∈ {0, . . . , g}}, ∀li ∈ A

αi
k = max

y
min{µli(y), µck

(y)}

where F (ST ) is the set of fuzzy sets defined in ST , and µli(y) and µck
(y) are

the membership functions of the fuzzy sets associated to the terms li and ck,
respectively.

The result of τAST
for any linguistic value of A is a fuzzy set defined in the

BLTS, ST .We shall denote each τSiST
(yij) as rij , and represents each fuzzy

set of performance, rij , by means of its respective membership degrees, i.e.,

rij = (αij
0 , . . . , α

ij
g ).

3.2 Transforming Fuzzy Sets into 2-tuple

So far, we have unified the multi-granular linguistic information transforming
each linguistic term “yij” provided by the sources in a fuzzy set by means of
τSiST

(yij) over the BLTS ST , such that, τSiST
(yij) = {(c0, αij

0 ), ..., (cg, α
ij
g )}.

These fuzzy sets are far removed from the initial linguistic terms and are
complex to manage [18]. To deal with this type of information it is usually
transformed by means of ranking fuzzy methods to obtain crisp preference
relations [13, 15, 24]. However, in this paper we try to reduce the loss of
information produced in this process and its computational complexity. To do
so, we shall transform each fuzzy set into a linguistic 2-tuple using a central
value computed by means of a weighted average, where the weights are the
membership degrees of the fuzzy set. We shall define the function χ that
computes a value β ∈ [0, g] that represents a central value of the information
in the fuzzy set τSiST

(µij).

Definition 4. Let τSiST
(li) = {(c0, αi

0), . . . , (cg, α
i
g)} be a fuzzy set that rep-

resents a linguistic term li ∈ Si over the basic linguistic term set ST . We
shall obtain a numerical value, that supports the information of the fuzzy set,
assessed in the interval [0, g] by means of the following function:

χ : F (ST ) −→ [0, g]



χ(τSiST
(li)) =

∑g
j=0 jα

i
j∑g

j=0 α
i
j

= β

This value β is easy to transform into a linguistic 2-tuple using the function
∆. Therefore, in the above step for the fusion process we have unified the
input information with fuzzy sets in ST and in this step we transform them
into linguistic 2-tuple assessed in ST by means of the functions χ and ∆:

∆(χ(τSiST
(µij))) = ∆(χ(rij)) = (sk, α)ij

where sk ∈ ST and α ∈ [−.5, .5) is the value of the symbolic translation.
On this way, although a loss of information can appear in this process,

it will be less than the presented by classical methods [13, 15, 24] since a 2-
tuple is a fuzzy number with a symbolic translation that summarizes a bigger
amount of information of a fuzzy set than a crisp value.

3.3 Fusion of 2-tuple values

Here we shall obtain the result we are looking for, an aggregated value from
the multi-granularity linguistic information.

At this time, the input information is modelled by means of linguistic 2-
tuple values assessed in ST , (sk, α)ij , and our objective is to aggregate this
information. In [20] a wide range of 2-tuple linguistic aggregation operators
were presented, therefore, to aggregate the 2-tuple values, (sk, α)ij , we shall
choose one of these linguistic 2-tuple aggregation operators and we shall apply
it to combine them, obtaining as a result an aggregated linguistic 2-tuple
assessed in ST .

Formally, it can be expressed as:

FO((sk, α)1j , ..., (sk, α)nj)) = (sk, α)j

where FO is any 2-tuple fusion operator.
An example of this type of operator was shown in the subsection 2.2 where

the arithmetic mean for 2-tuple values is defined as:

xe{(r1, α1), . . . , (rn, αn)} = ∆(
n∑

i=1

1
n
∆−1(ri, αi)) = ∆(

1
n

n∑
i=1

βi)

And applied to the set of 2-tuples {(M, 0), (L, 0), (V L, 0), (H, 0)}, obtained as
result:

xe{(M, 0), (L, 0), (V L, 0), (H, 0)} = (M,−.5)

3.4 The Backward Step

This is an optional step in the fusion process. Depending on the problem we
are dealing with, the aggregated 2-tuple may be expressed in a domain distant



from the initial ones used by the sources of information. In these situations
it might be appropriate to offer the possibility of making a transformation
to the initial expression domains, for improving the comprehensiveness of the
results. To accomplish the backward step we shall present a transformation
function, that obtains 2-tuple in an initial expression domain Si = {s0, ..., sgi

}
from a 2-tuple expressed in the BLTS, ST = {s0, ..., sg}. This function will
carry out the following processes:

1. In first place, it transforms each 2-tuple (sk, α) ∈ ST into a fuzzy set in
ST with an only two values of membership degree different from 0:

ST × [−.5, .5) −→ {ST × [0, 1]} × {STx[0, 1]}

(sk, α) = {(sh, 1− γ), (sh+1, γ)}
where

h = trunc(∆−1(sk, α))
γ = ∆−1(sk, α)− h

trunc is the usual trunc operation.
An example can be:
Let (s8, .3) be a 2-tuple, with s8 ∈ ST , ST = {s0, ..., s14} and “.3” the
value of the symbolic translation, its equivalent fuzzy set is:

(s8, .3) = {(s8, .7), (s9, .3)}
2. Following, it is applied the measure of similitude τST Si

to the above fuzzy
set, obtaining two fuzzy sets in Si:

τST Si
(sh) = {(s0, αh

0 ), ..., (sgi
, αh

gi
)}

τST Si
(sh+1) = {(s0, αh+1

0 ), ..., (sgi
, αh+1

gi
)}

3. The fuzzy sets in the initial expression domain, Si, are converted into
numerical values assessed in [0, gi] by means of the χ function, obtaining
βh and βh+1 ∈ [0, gi], such that,

χ(τST Si
(sh)) = βh

χ(τST Si
(sh+1)) = βh+1

4. To achieve our objective, we need to obtain a value βi ∈ [0, gi] that
represents the amount of information of {(sh, 1 − γ), (sh+1, γ)}. We
have βh and βh+1 ∈ [0, gi], that represent the information supported by
sh and sh+1, now we make a linear combination using the degrees of
membership of the fuzzy set to obtain the value that we are looking for:

(βh ∗ (1− γ)) + (βh+1 ∗ γ) = βi ∈ [0, gi]

Then applying ∆ to βi we shall obtain the linguistic 2-tuple assessed in
Si that we were looking for:

∆(βi) = (si
k, α)



Now we define the function Γ that accomplish the whole process of the
backward step:

Definition 5: Let (sk, α), sk ∈ ST be a 2-tuple assessed in the BLTS,
therefore its equivalent 2-tuple in Si is computed as:

Γ : ST × [−.5, .5) −→ Si × [−0.5, 0.5)
Γ ((sk, α)) = ∆(χ(τST Si

(sh)) · (1− γ) + χ(τST Si
(sh+1) · γ)

h = trunc(∆−1(sk, α))

γ = ∆−1(sk, α)− h

This process will be carried out for all source expression domains Si, therefore
each source can easily understand the results.

The backward step has sense only if the order of the alternatives is not
altered during the process.

Proposition 2. Let (sk, αk) > (sj , αj) be two 2-tuple assessed in ST , then
Γ (sk, αk) > Γ (sj , αj), i.e., Γ satisfies the property of monotonicity.
Proof.

We have to prove that every process carried out for Γ is monotone.

• The transformation of (sk, α) into a fuzzy set in ST is monotone:

(sk, αk) > (sj , αj)

1. k = j ⇒ αk > αj

shk=shj

shk+1=sh−j+1

}
⇒γk>γj⇒{(shk

, 1−γk), (shk+1 , γk)}>{(shj
, 1−γj), (shj+1 , γj)}

2. k > j ⇒ shk
> shj

⇒ {(shk , 1−γk), (shk+1 , γk)} > {(shj , 1−γj), (shj+1 , γj)}
• In [6] we can see that τST Si

is a particular case of M-measure of similitude,
therefore it satisfies the property of monotonicity. And it is obvious that
χ and the linear combination are monotone.

Therefore Γ satisfies the property of monotonicity and hence the backward
step has sense.

4 Evaluating the Quality of Network Services from
Different Operative Systems

Here we shall apply the 2-tuple multi-granular fusion method in a decision
process over the following MEDM problem.

A distribution company needs to evaluate the quality of the network ser-
vices from the different Operative Systems to decide which to install in its



Information System. So it contracts a consulting company to carry out a sur-
vey of the different possibilities existing on the market, to decide which is the
best option for his customer. The alternatives are the following ones:

UNIX Windows-XP Linux VMS
x1 x2 x3 x4

The consulting company has a group of four consultancy departments
(experts), that evaluate the network services from different viewpoints.

Cost Analysis Systems Analysis Risk Analysis Technology Analysis
p1 p2 p3 p4

Each department (expert) provides a performance vector expressing its
preferences for each alternative assessed in linguistic term sets with a different
granularity and/or semantics:

• p1 provides his preferences in the set of 9 labels, A.
• p2 provides his preferences in the set of 7 labels, B.
• p3 provides his preferences in the set of 5 labels, C.
• p4 provides his preferences in the set of 9 labels, D.

Label set A Label set B

a0 (0, 0, .12) b0 (0, 0, .16)
a1 (0, .12, .25) b1 (0, .16, .33)
a2 (.12, .25, .37) b2 (.16, .33, .5)
a3 (.25, .37, .5) b3 (.33, .5, .66)
a4 (.37, .5, .62) b4 (.5, .66, .83)
a5 (.5, .62, .75) b5 (.66, .83, .1)
a6 (.62, .75, .87) b6 (.83, 1, 1)
a7 (.75, .87, .1)
a8 (.87, 1, 1)

Label set C Label set D

c0 (0, 0, .25) d0 (0, 0, 0, 0)
c1 (0, .25, .5) d1 (0, .01, .02, .07)
c2 (.25, .5, .75) d2 (.04, .1, .18, .23)
c3 (.5, .75, 1) d3 (.17, .22, .36, .42)
c4 (.75, 1, 1) d4 (.32, .41, .58, .65)

d5 (.58, .63, .80, .86)
d6 (.72, .78, .92, .97)
d7 (.93, .98, .99, 1)
d8 (1, 1, 1, 1)

The performance vectors provided by the experts are the following:



alternatives
µij x1 x2 x3 x4

p1 a4 a6 a3 a5

experts p2 b3 b4 b3 b5
p3 c2 c3 c2 c1
p4 d4 d5 d3 d5

where µij ∈ Sk is the performance value given by the expert pi over the
alternative xj in the term set Sk.

We shall apply the decision process presented in section 2.3 to solve this
MEDM problem with multi-granular linguistic information.
A. Collective Performance Vector.

1. Making the Information Uniform
We have to choose the BLTS, ST = {c0, . . . , cg}. In this case, there are two
term sets with the maximum granularity and different semantics, hence,
we choose as ST the special term set of 15 labels given in Figure 3. All
the assessments must be converted to ST by means of the set of multi-
granular transformation functions {τAST

, τBST
τCST

, τDST
}. We obtain the

following results:

r11 (0, 0, 0, 0, .05, .45, .8, .82, .48, .23, 0, 0, 0, 0, 0)
r12 (0, 0, 0, 0, .11, .45, .65, .95, .68, .39, .1, 0, 0, 0, 0)
r13 (0, 0, 0, .22, .35, .59, .8, .98, .75, .52, .32, .1, 0, 0, 0)
r14 (0, 0, 0, 0, .3, .77, 1, 1, 1, .51, 0, 0, 0, 0, 0)
r21 (0, 0, 0, 0, 0, 0, 0, 0, .25, .99, .7, .31, .01, 0, 0)
r22 (0, 0, 0, 0, 0, 0, 0, .35, .63, .94, .76, .46, .2, 0, 0)
r23 (0, 0, 0, 0, 0, 0, .01, .25, .5, .7, .9, .9, .65, .45, .2)
r24 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, .55, 0, 0)
r31 (0, 0, 0, .18, .55, .95, .7, .35, 0, 0, 0, 0, 0, 0, 0)
r32 (0, 0, 0, 0, .1, .45, .65, .95, .68, .39, .1, 0, 0, 0, 0)
r33 (0, 0, 0, .22, .35, .59, .8, .98, .75, .52, .32, .1, 0, 0, 0)
r34 (0, 0, .41, 1, 1, .99, 0, 0, 0, 0, 0, 0, 0, 0, 0)
r41 (0, 0, 0, 0, 0, 0, 0, .36, .71, .91, .56, .22, 0, 0, 0)
r42 (0, 0, 0, 0, 0, 0, 0, 0, 0, .23, .54, .84, .86, .58, .3)
r43 (.25, .4, .7, .9, .87, .65, .4, .2, 0, 0, 0, 0, 0, 0, 0)
r44 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1.55, 0, 0)

.

2. Transforming fuzzy sets (rij) into 2-tuple
To avoid dealing with fuzzy sets, we shall transform all the rij into 2-tuple
based on the symbolic translation using the functions χ and ∆:



∆(χ(r11)) = (s7,−.32)11 ∆(χ(r12)) = (s7,−.05)12
∆(χ(r13)) = (s7,−.16)13 ∆(χ(r14)) = (s7,−.32)14
∆(χ(r21)) = (s9, .48)21 ∆(χ(r22)) = (s9, .28)22

∆(χ(r23)) = (s10, .25)23 ∆(χ(r24)) = (s10, .3)24

∆(χ(r31)) = (s5, .17)31 ∆(χ(r32)) = (s7,−.05)32
∆(χ(r33)) = (s7,−.15)33 ∆(χ(r34)) = (s4,−.25)34
∆(χ(r41)) = (s9,−.15)41 ∆(χ(r42)) = (s12,−.43)42
∆(χ(r43)) = (s3, .44)43 ∆(χ(r44)) = (s10, .3)

44

After this transformation, we manage 2-tuple values based on the symbolic
translation assessed in the BLTS, ST .

3. Computing the collective performance values
For each alternative xi we compute its collective performance value using
a 2-tuple linguistic aggregation operator, in this case we choose the 2-
tuple mean operator. The collective performance values obtained for each
alternative, xi, are:

x1 −→ φe
Q((s7,−.32)11, (s9, .48)21, (s5, .17)31, (s9,−.15)41) = (s8,−.46)1

x2 −→ φe
Q((s7,−.05)12, (s9, .28)22, (s7,−.05)32, (s12,−.43)42) = (s9,−.32)2

x3 −→ φe
Q((s7,−.16)13, (s10, .25)23, (s7,−.15)33, (s3, .44)43) = (s7,−.16)3

x4 −→ φe
Q((s7,−.32)14, (s10, .3)24, (s4,−.25)34, (s10, .3)44) = (s8,−.25)4

Then the collective performance vector is:

{(s8,−.46)1, (s9,−.32)2, (s7,−.16)3, (s8,−.25)4}

4. The Backward step
The collective performance vector obtained in the above step is sufficient
to solve the decision process, but it is expressed in a different term set
from the one used by the sources of information. Therefore, we can make
the backward step to express the collective performance vector in the
expression domains used by the experts, i.e., A,B,C,D. To do so, we
shall use the Γ function:
a) First, the collective values are transformed into fuzzy sets in ST .

(s8,−.46)1 = {(s7, .46), (s8, .54)}1

(s9,−.32)2 = {(s8, .32), (s9, .68)}2

(s7,−.16)3 = {(s6, .16), (s7, .84)}3

(s8,−.25)4 = {(s7, .25), (s8, .75)}4

b) Following, we shall apply the functions τST A, τST B , τST C , τST D to the
above fuzzy sets:



τST A(s6) = {(a0, 0)(a1, 0)(a2, .02)(a3, .69)(a4, .66)(a5, 0)(a6, 0)(a7, 0)(a8, 0)}
τST A(s7) = {(a0, 0)(a1, 0)(a2, 0)(a3, 0.35)(a4, 1)(a5, .38)(a6, 0)(a7, 0)(a8, 0)}
τST A(s8) = {(a0, 0)(a1, 0)(a2, 0)(a3, 0)(a4, .64)(a5, .75)(a6, .1)(a7, 0)(a8, 0)}
τST A(s9) = {(a0, 0)(a1, 0)(a2, 0)(a3, .0)(a4, .25)(a5, .92)(a6, .49)(a7, 0)(a8, 0)}
τST B(s6) = {(b0, 0)(b1, 0)(b2, .65)(b3, .8)(b4, 0)(b5, 0)(b6, 0)}
τST B(s7) = {(b0, 0)(b1, 0)(b2, .3)(b3, .9)(b4, .3)(b5, 0)(b6, 0)}
τST B(s8) = {(b0, 0)(b1, .0)(b2, .0)(b3, .63)(b4, .63)(b5, 0)(b6, 0)}
τST B(s9) = {(b0, 0)(b1, .2)(b2, 0)(b3, .35)(b4, .85)(b5, .21)(b6, 0)}
τST C(s6) = {(c0, 0)(c1, .4)(c2, .79)(c3, 0)(c4, 0)}
τST C(s7) = {(c0, 0)(c1, .22)(c2, 1)(c3, .22)(c4, 0)}
τST C(s8) = {(c0, 0)(c1, .0)(c2, .77)(c3, .45)(c4, 0)}
τST C(s9) = {(c0, 0)(c1, 0)(c2, .55)(c3, .67)(c4, 0)}
τST D(s6) = {(d0, 0)(d1, 0)(d2, 0)(d3, .5)(d4, 1)(d5, 0)(d6, 0)(d7, 0)(d8, 0)}
τST D(s7) = {(d0, 0)(d1, 0)(d2, 0)(d3, 0)(d4, 1)(d5, 0)(d6, 0)(d7, 0)(d8, 0)}
τST D(s8) = {(d0, 0)(d1, 0)(d2, 0)(d3, 0)(d4, 1)(d5, .51)(d6, 0)(d7, 0)(d8, 0)}
τST D(s9) = {(d0, 0)(d1, 0)(d2, 0)(d3, 0)(d4, .51)(d5, 1)(d6, 0)(d7, 0)(d8, 0)}

c) Transforming the fuzzy sets into numerical values by means of the χ
function:

χ(τST A(s6)) = 3.47 χ(τST A(s7)) = 4 χ(τST A(s8)) = 4.63 χ(τST A(s9)) = 5.15
χ(τST B(s6)) = 2.55 χ(τST B(s7)) = 3 χ(τST B(s8)) = 3.5 χ(τST B(s9)) = 3.9
χ(τST C(s6)) = 1.66 χ(τST C(s7)) = 2 χ(τST C(s8)) = 2.28 χ(τST C(s9)) = 2.54
χ(τST D(s6)) = 3.66 χ(τST D(s7)) = 4 χ(τST D(s8)) = 4.33 χ(τST D(s8)) = 4.66

d) Expressing the collective vector in all initial domains:
i. Domain A:

{(a4, .34)1, (a5,−.02)2, (a4,−.09)3, (a5,−.14)4}
where the collective value of x1 is obtained as follows:

∆((4 ∗ .46) + (4.63 ∗ .54)) = (a4, .34)

ii. Domain B:

{(b3, .3)1, (b4,−.23)2, (b3,−.08)3, (b4,−.33)4}
iii. Domain C:

{(c2, .15)1, (c2, .44)2, (c2,−.06)3, (c2, .21)4}
iv. Domain D:

{(d4, .17)1, (d5,−.46)2, (d4, .02)3, (d4, .24)4}
B. Selection Process

Finally, we shall apply a choice degree to the collective performance vector
to obtain the solution set of alternatives. In this problem the solution set
obtained is:



{x2}
The Operative System with high quality network services according to the
needs of the company after the survey of the experts is the Windows-XP
based system.

If we apply the choice degree to the results expressed in the term set ST

the solution reached would be the same, since the backward step is monotone.

5 Concluding Remarks

In this paper we have presented a fusion method based on the 2-tuple fuzzy
linguistic representation that allows us to easily deal with multi-granular lin-
guistic information in fusion processes. The development of this method takes
as base the 2-tuple linguistic representation model and its computational tech-
nique. This new fusion method is useful for problems with multiple sources of
information that express their knowledge with linguistic information assessed
in several linguistic term sets with different cardinality and/or semantics. We
have applied this fusion method to an MEDM problem to evaluate the quality
of the network services from different Operative Systems.
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