
DECSAI Deparment of Computer Scienceand Arti�cial Intelligence
A Linguistic Decision ProcessinGroup Decision MakingF. Herrera, E. Herrera-Viedma, J.L. Verdegay

Technical Report #DECSAI-94102February, 1994To appear in: Group Decision and Negotiation.
ETS Ingenier��a Inform�atica. Universidad de Granada.18071 Granada - Spain - Phone +34.58.244019, Fax +34.58.243317



A Linguistic Decision ProcessinGroup Decision MakingF. Herrera, E. Herrera-Viedma, J.L. VerdegayDept. of Computer Science and Arti�cial IntelligenceUniversity of Granada, 18071 - Granada, Spaine-mail: herrera, viedma, verdegay@robinson.ugr.esAbstractAssuming a set of linguistic preferences representing the preferences of the in-dividuals, a linguistic choice process is presented. This is developed using theconcept of fuzzy majority for deriving a collective linguistic preference; and theconcept of nondominated alternatives for deriving the selected alternatives in thelinguistic choice process. The fuzzy majorities are equated with fuzzy linguisticquanti�ers. The collective linguistic preference is derived by means of a linguisticordered weighted averaging operator whose weights are de�ned using a fuzzy lin-guistic quanti�er. In order to obtain the nondominated alternatives we present anovel reformulation of Orlovski's nondominance degree under linguistic informa-tion.Keywords: Group decision making, fuzzy logic, linguistic preferences, fuzzy majority,fuzzy linguistic quanti�ers, nondominance degree.1. IntroductionA group decision making process can be de�ned as a decision situation: (i) thereare two or more individuals, each of them characterized by his or her own perceptions,attitudes, motivations, and personalities; (ii) all of them recognize the existence of acommon problem; and (iii) they attemp to reach a collective decision (Bui 1987).The use of preference relations is usual in group decision making. Moreover, sincehuman judgments including preferences are often vague, fuzzy logic plays an importantrole in decision making. Several authors have provided interesting results on groupdecision making or social choice theory with the help of fuzzy sets. They proved thatfuzzy sets provided a more 
exible framework for discussing group decision making(Spillman and Spillman 1987; Kacprzyk and Roubens 1988; Kacprzyk 1990; Nurmiand Kacprzyk 1991; Kacprzyk, Fedrizzi and Nurmi 1992).



In a fuzzy environment it is supposed that there exists a �nite set of alternativesX = fx1; : : : ; xng as well as a �nite set of individuals N = f1; : : : ; mg, and eachindividual k 2 N provides his preference relation on X , i.e., Pk � XxX, and �Pk (xi; xj)denotes the degree of preference of alternative xi over xj , �Pk (xi; xj) 2 [0; 1].Sometimes, however, an individual may have vague information about the preferencedegree of the alternative xi over xj and cannot estimate his preference with an exactnumerical value. Then a more realistic approach is to use linguistic assessments insteadof numerical values, that is, to suppose that the variables (preference relations) in theproblem are assessed by means of linguistic terms (Fedrizzi and Mich 1992; Yager1992a; Delgado, Verdegay and Vila 1993a; Herrera and Verdegay 1993; Mich, Gaio andFedrizzi 1993). A scale of certainty expressions (linguistically assessed) is presented tothe individual who could then use it to describe his degree of certainty in a preference.The aim of this paper is to present a linguistic decision process in group decisionmaking. Assuming a set of linguistic preferences, representing the preferences of theindividuals, we develop a linguistic decision process.We de�ne a linguistic ordered weighted averaging (LOWA) operator based on twoconcepts: the ordered weighted averaging operator (Yager 1988), and the convex com-bination of linguistic labels (Delgado, Verdegay and Vila 1993b). The fuzzy majorityconcept, represented by a fuzzy linguistic quanti�er and the LOWA operator, is used toobtain a collective linguistic preference. Finally, the nondominated alternative conceptis used for de�ning a linguistic nondominance degree, which allows us to obtain the so-lution alternative(s) in the choice process. Figure 1 summarizes the linguistic decisionprocess.
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The paper is organized as follows: section 2 shows the linguistic approach; section3 is devoted to the use of linguistic preference relations in group decision making anda discussion of the linguistic choice process; in section 4, an example is presented; and�nally, concluding remarks in section 5.2. The linguistic approach2.1. Linguistic assessmentsThe linguistic approach assesses the variables in the problem by means of linguisticterms instead of numerical values (Zadeh 1975). This approach is appropriate forseveral problems, since it allows a representation of the experts' information in a moredirect and adequate form, whether or not they are unable to express the preferenceswith precision.We need a term set de�ning the uncertainty granularity, i.e. the �nest level ofdistinction among di�erent quanti�cations of uncertainty. The elements of the term setwill determine the granularity of the uncertainty. Bonissone and Decker (1986) studiedthe use of term sets with odd cardinality, representing the middle term by a probabilityof "approximately 0.5", with the remaining terms placed symmetrically around it andthe limit of granularity 11 or at most 13.The semantic of the elements of the term set is given by fuzzy numbers de�nedin the [0,1] interval, described by membership functions. Provided that the linguisticassessments are estimates given by the experts or decision-makers, we can considerthe linear trapezoidal membership functions good enough to capture the vagueness ofthose linguistic assessments. To obtain more accurate values may be impossible orunnecessary.For instance, as an illustration, Figure 2 shows the hierarchical structure of linguisticvalues or labels.
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Clearly, level 1 provides a granularity containing three elements, level 2 a granularitywith nine elements. Di�erent granularity levels can be presented. In Figure 2 the level4 presents the �nest granularity in a decision process, the numerical values.Obviously, the kind of label set to be used ought to be established �rst. Let S =flig; i 2 H = f0; : : : ; Tg be a �nite and totally ordered term set on [0,1] in the usualsense (Bonissone and Decker 1986; Delgado, Verdegay and Vila 1993a; Zadeh 1979). Alabel li represents a possible value for a linguistic real variable, that is, a vague propertyor constraint on [0,1]. The representation is achieved by the 4-tuple (ai; bi; �i; �i). The�rst two paremeters indicate the interval in which the membership value is 1.0 andthe third and fourth parameters indicate the left and right width of the distribution.We consider a term set with odd cardinality, where the middle label represents anuncertainty of "approximately 0.5", and the remaining terms are placed symmetricallyaround it. Moreover, we require the following properties for the term set:1) The set is ordered: li � lj if i � j.2) The negation operator is de�ned as: Neg(li) = lj such that j = T � i.3) Max(li; lj) = li if li � lj .4) Min(li; lj) = li if li � lj .For example, consider the term set of level 2:S = fl6 = P; l5 = V H; l4 = H; l3 =M; l2 = L; l1 = V L; l0 = Ngwhere P = Perfect V H = V ery High H = HighM =Medium L = Low V L = V ery LowN = NoneIt is obvious that this term set veri�es each of the above properties. Figure 3 showsa possible domain of the term set.
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The representation values are:P = (1; 1; 0; 0) V H = (:75; :75; :15; :25) H = (:6; :6; :1; :15)M = (:5; :5; :1; :1) L = (:4; :4; :15; :1) V L = (:25; :25; :25; :15)N = (0; 0; 0; :25)2.2. Combination of linguistic valuesSince aggregation of uncertainty information is a recurrent need in the decisionprocess, combinations of linguistic values are needed. Two main di�erent approachesare used to aggregate and compare linguistic values: the �rst acts by direct computationon labels (Delgado, Verdegay and Vila 1993b); and the second uses the associatedmembership functions. Most of the available techniques belong to the latter. However,the �nal results of these are fuzzy sets which do not correspond to any label in theoriginal term set. To obtain a label a "linguistic approximation" is needed (Zadeh1975, 1979; Bonissone and Decker 1986; Fedrizzi and Mich 1992). There are neithergeneral criteria to evaluate the suitability of an approximation, nor general methodsto associate a label with a fuzzy set, and therefore speci�c problems may require thedevelopment of tailored methods.In the following, we present an aggregation operator of linguistic labels by directcomputation on labels, based on the ordered weighted averaging (OWA) operator,(Yager 1988), and the convex combination of linguistic labels (Delgado, Verdegay andVila 1993b).A mapping F In ! I(where I = [0; 1])is called an OWA operator of dimension n if it is associated with a weighting vectorW = [w1; : : : ; wn], such that: i)wi 2 [0; 1], ii)�iwi = 1; and F (a1; : : : ; an) = w1 � b1 +w2 � b2 + : : :+ wn � bn, where bi is the i-th largest element in the collection a1; : : : ; an.If we denote B as the vector consisting of the arguments of F in descending order,F (a1; : : : ; an) = W �BTprovides an aggregation type operator that always lies between the "and" and the "or"aggregation. Its properties were presented by Yager (1988).Yager (1992b) extended the OWA operator to linguistic elements. Here, we willextend it to linguistic arguments using the convex combination of linguistic labels de-�ned in Delgado et al. (1993b). In fact, let M be a collection of linguistic labels,lk 2 M; k = 1; : : : ; m, and assume without loss of generality lm � lm�1 � : : : � l1. Forany set of coe�cients f�k 2 [0; 1]; k = 1; 2; ::;m;��k = 1g, the convex combination ofthese m generalized labels is the label given byCf�k; lk; k = 1; : : : ; mg = �1 � l1 � (1� �1)�Cf�h; lh; h = 2; : : : ; mg



with �h = �h= nX2 �k; h = 2; : : : ; m:Delgado et al. (1993b) de�ne the aggregation of labels by addition, the di�erenceof generalized labels, and the product by a positive real number over a generalizedlabel space S, based on S, that is, the cartesian product S = SxZ+, with the basiclabel set S = f(li; 1); i 2 Hg. In our context all the operations are made over thebasic set S. Brie
y, the result of the expression � � lj � (1� �)� li; j � i, is lk wherek = minfT; i + round(� � (j � i))g.An example based on the term set of level 2 is the following:1� � = 0:6VL VH P VLP M VH P M� = 0:4 N VL M H VLL VL M H VLM L H VH Lwhere, for example:k11 = minf6; 1 + round(0:4 � (6� 1))g = 3) lk11 = Mk21 = minf6; 0+ round(0:6 � (1� 0))g = 1) lk21 = VLTherefore the linguistic ordered weighted aggregation (LOWA) operator can bede�ned as: F (a1; : : : ; am) = W �BT = Cfwk; bk; k = 1; : : : ; mg == w1 � b1 � (1� w1)�Cf�h; bh; h = 2; : : : ; mgwhere �h = wh=�m2 wk; h = 2; : : : ; m, and B is the associated ordered label vector. Eachelement bi 2 B is the i-th largest label in the collection a1; : : : ; am.As Yager (1988) suggested, there exist at least two methods to obtain the values ofwi. The �rst approach is to use a learning mechanism. In this approach, sample dataare used along with arguments and associated aggregated values, and then wheights are�tted to the sample data. The second approach is to give some semantics or meaningto the weights. Then, based upon these semantics we can directly provide the valuesfor the weights.In the following section, we study a semantic for the weights based on fuzzy linguisticquanti�ers (Zadeh 1983; Yager 1988), in order to obtain a collective linguistic preferencerelation.



3. Linguistic preference relations and linguistic choice processSuppose we have a set of n alternatives X = fx1; : : : ; xng and a set of individualsN = f1; : : : ; mg. Each individual k 2 N provides a preference relation linguisticallyassessed into the term set S, �Pk : XxX ! S;where �Pk (xi; xj) = lkij 2 S represents the linguistically assessed preference degree ofthe alternative xi over xj . We assume that Pk is reciprocal in the sense, lkij = Neg(lkji),and by de�nition, lkii = None (the minimum label in S).As is known, two approaches may be considered. First a direct approachfP1; : : : ; Pmg ! solution � X;according to which, on the basis of the individual preference relations, a solution isderived. Secondly an indirect approachfP1; : : : ; Pmg ! P ! solution � Xproviding the solution on the basis of a collective preference relation, P , which is apreference relation of the group of individuals as a whole.Here we consider the indirect derivation, and hence we have two issues to study: (i)to derive a collective linguistic preference P from fP1; : : : ; Pmg, and (ii) how to developthe linguistic choice process, i.e., to obtain the solution from P .3.1. The collective linguistic preference relationFor the �rst question it is necessary to aggregate the linguistic preference relationsto obtain lij 2 S from fl1ij ; : : : ; lmij g for all i; j. Using a fuzzy majority speci�ed bya fuzzy linguistic quanti�er, we deal with this question. Fuzzy linguistic quanti�ersprovide tools to formally deal with fuzzy majority, and can be used to de�ne a weightvector necessary for using the LOWA operator. We then use the LOWA operator toobtain the collective preference relation P asP = F (P1; : : : ; Pm)with lij = F (l1ij ; : : : ; lmij ) and the weight vector,W , representing the fuzzy majority overthe individuals.The fuzzy linguistic quanti�ers were introduced by Zadeh (1983). Linguistic quan-ti�ers are typi�ed by terms such as most, at least half, all, as many as possible. Aquanti�er Q assumed to be a fuzzy set in [0,1]. Zadeh distinguished between two typesof quanti�ers; absolute, and proportional or relative. Absolute quanti�ers are used to



represent amounts that are absolute in nature. These quanti�ers are closely relatedto the number of elements. Zadeh suggested that these absolute quanti�er values canbe represented as fuzzy subsets of the non-negative reals R+. In particular, he sug-gested that an absolute quanti�er can be represented by a fuzzy subset Q, where forany r 2 R+, Q(r) indicates the degree to which the value r satis�es the concept rep-resented by Q. Relative quanti�ers represent proportion type statements. Thus, if Qis a relative quanti�er, then Q can be represented as a fuzzy subset of [0; 1] such thatfor each r 2 [0; 1], Q(r) indicates the degree to which r portion of objects satis�es theconcept devoted by Q.Here, we will focus on relative quanti�ers. A relative quanti�er, Q : [0; 1]! [0; 1];satis�es: Q(0) = 0;9r 2 [0; 1] such that Q(r) = 1:In addition, it is nondecreasing if it has the following property:8a; b 2 [0; 1]; if a > b then Q(a) � Q(b):The membership function of a relative quantifer can be represented as:Q(r) = 8>><>>: 0 if r < ar�ab�a if b � r � a1 if r > bwith a; b; r 2 [0; 1].Some examples of relative quanti�ers are shown in Figure 4, where the parameters,(a; b) are (0:3; 0:8), (0; 0:5) and (0:5; 1), respectively.
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3.2. The linguistic choice processWhen fuzzy preferences are used, numerous answers (called the solution concepts)derived from a collective fuzzy preference have been presented in the literature, in-cluding: a consensus winner (Kacprzyk 1986); a competitive-like pooling, (Kacprzyk,Fedrizzi and Nurmi 1990b); and a fuzzy �-majority uncovered fuzzy set based on theconcept of fuzzy tournaments, (Nurmi and Kacprzyk 1991).Next, we propose a process to derive a solution on the basis of the collective prefer-ence relation, a process based on the concept of non-dominated alternatives (Orlovski1978).Let P s be a linguistic strict preference relation �P s(xi; xj) = lsij such that,lsij = None if lij < lji;or lsij = lk 2 S if lij � lji with lij = ll; lji = lt and l = t + k:The linguistic nondominance degree of xi is de�ned as�ND(xi) = Minxj2X [Neg(�P s(xj ; xi))]where the value �ND(xi) is to be interpreted as the linguistic degree to which thealternative xi is not dominated by any of the elements in X .Finally, a set of maximal nondominated alternatives, XND � X , is obtained asXND = fx 2 X=�ND(x) = Maxy2X [�ND(y)]g:Therefore, aggregating the knowledge of the experts, XND is selected as the set ofpreferred alternatives in the linguistic choice process.4. ExampleWe consider the above seven term set (Fig. 3), and suppose a situation with fourindividuals whose linguistic preferences are:P1 = 2666664 � V L V H VLVH � H HV L L � V LV H L VH � 3777775P2 = 2666664 � L H V LH � VH LL VL � V LV H H VH � 3777775P3 = 2666664 � M VH NM � V H LV L V L � V LP H VH � 3777775P4 = 2666664 � L VH V LH � L V LV L H � V LVH VH VH � 3777775



We apply the choice process with di�erent fuzzy quanti�ers:a) Using the linguistic quanti�er "As many as possible" with the pair (0:5; 1:0), and thecorresponding LOWA operator, with W = [0; 0; 0:5; 0:5], then the collective linguisticpreference is: P = 2666664 � V L H NM � M VLVL V L � V LVH M VH � 3777775The linguistic strict preference relation is:P s = 2666664 � N M NL � L NN N � NVH L H � 3777775and the linguistic nondominance degree is:�ND(x1; x2; x3; x4) = [V L;H; L; P ] :Finally, the set of maximal nondominated alternatives, XND, is:XND = fx4g:Therefore, x4 is the maximal nondominated alternative and the solution to thelinguistic decision process.b) Using the linguistic quanti�er "At least half" with the pair (0:0; 0:5), and the cor-responding LOWA operator, with W = [0:5; 0:5; 0:0; 0:0], then the collective linguisticpreference is: P = 2666664 � L VH VLH � V H MVL M � V LVH H VH � 3777775The linguistic strict preference relation is:P s = 2666664 � N H NL � L NN N � NH V L H � 3777775



and the linguistic nondominance degree is:�ND(x1; x2; x3; x4) = [L; VH; L; P ] :Finally, the set of maximal nondominated alternatives, XND, is:XND = fx4g:Similarly, x4 is the maximal nondominated alternative and the solution to the lin-guistic decision process.5. ConclusionsWe have presented a representation of commonsense knowledge by means of lin-guistic labels, and developed a linguistic decision process in group decision making forthis representation.The linguistic decision process has been de�ned as an indirect approach based onthe concepts of fuzzy majority and nondominated alternatives, where fuzzy linguisticquanti�ers have been used as tools to deal with fuzzy majority. This model seems tobe very consistent to the social choice in an imprecise environment.Finally, note that in group decision making, the linguistic approach is a tool whichprovides a framework with more human-consistency than usual ones, and thereforehelps the development of decision processes.ReferencesBonissone, P.P., K.S. Decker. (1986). "Selecting Uncertainty Calculi and Granularity:An Experiment in Trading-o� Precision and Complexity." In L.H. Kanal and J.F.Lemmer (eds.). Uncertainty in Arti�cial Intelligence. New-York: North-Holland.Bui, T.X. (1987) Co-oP. A Group Decision Support System for Cooperative MultipleCriteria Group Decision Making. Berlin: Springer-Verlag.Delgado, M., J.L. Verdegay, M.A. Vila. (1993a) "Linguistic Decision Making Models,"International Journal of Intelligent Systems 7, 479-492.Delgado, M., J.L. Verdegay, M.A. Vila. (1993b). "On Aggregation Operations ofLinguistic Labels," International Journal of Intelligent Systems 8, 351-370.Fedrizzi, M. and L. Mich. (1992). "Rule Based Model for Consensus Reaching GroupDecisions Support." In Proc. of Fourth Conference on Information Processingand Management of Uncertainty in KBS (IPMU), Spain.Herrera, F., J.L. Verdegay. (1993). "Linguistic assessments in group decision". InProc. of First European Congress on Fuzzy and Intelligent Technologies, Aachen.
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