Mathware & Soft Computing 4 (1997) 233-249

Multi-stage Genetic Fuzzy Systems Based on the
[terative Rule Learning Approach*

Antonio Gonzalez and Francisco Herrera,
Dpto. de Ciencias de la Computacion e Inteligencia Artificial
E.T.S. de Ingenieria Informética
Universidad de Granada. 18071-Granada (Spain)

Abstract

Genetic algorithms (GAs) represent a class of adaptive search techniques
inspired by natural evolution mechanisms. The search properties of GAs
make them suitable to be used in machine learning processes and for devel-
oping fuzzy systems, the so-called genetic fuzzy systems (GFSs).

In this contribution, we discuss genetics-based machine learning processes
presenting the iterative rule learning approach, and a special kind of GFS, a
multi-stage GFS based on the iterative rule learning approach, by learning
from examples.

Keywords: Fuzzy logic, fuzzy rules, genetic algorithms, machine learning.

1 Introduction

Genetic Algorithms (GAs) are search algorithms that use operations found in nat-
ural genetics to guide the trek through a search space. GAs are theoretically and
empirically proven to provide robust search capabilities in complex spaces, offering
a valid approach to problems requiring efficient and effective searching.

Much of the interest in GAs is due to the fact that they provide a set of ef-
ficient domain-independent search heuristic which are a significant improvement
over traditional methods without the need for incorporating highly domain-specific
knowledge.

Although GAs are not learning algorithms, they may offer a powerful and
domain-independent, search method for a variety of learning tasks. In fact, there
has been a good deal of interest in using GAs for machine learning problems [22, 14].

Two alternative approaches, in which GAs have been applied to learning pro-
cesses, have been mainly used, the Michigan ([29]) and the Pittsburgh ([38]) ap-
proaches. In the first one, the chromosomes correspond to classifier rules which

*This work has been supported by the CICYT under Projects TIC95-0453 and TIC96-0778

233

234 A. Gonzdlez & F. Herrera

are evolved as a whole, whereas in the Pittsburgh approach, each chromosome
encodes a complete set of classifiers. A third way will be presented as an alterna-
tive to these models, the iterative rule learning approach where each chromosomes
represents only one rule learning.

On other hand, GAs have proven to be a powerful tool for automating the def-
inition of the fuzzy systems knowledge base (KB), since adaptive control, learning
and self-organization fuzzy systems can be considered in a lot of cases as optimiza-
tion or search processes. Their advantages have extended the use of GA s in the
development of a wide range of approaches for designing fuzzy systems in the last
few years. These approaches receive the general name of Genetic Fuzzy Systems
(GFSs) [8].

The KB is composed of two components, a Data Base (DB), containing the
membership functions of the fuzzy sets specifying the meaning of the linguistic
terms, and a Rule Base (RB), constituted by the collection of fuzzy rules rep-
resenting the expert knowledge. It is possible to distinguish different groups of
GFSs according to the KB components included in the learning process: learning
or tuning the DB with a fixed set of rules, learning the RB with fixed membership
function sets and learning the KB, that is, the fuzzy membership functions and
fuzzy rules.

The genetic learning processes belonging to the latter two last classes can do
the learning simultaneously or in various stages. In the following we present a
multi-stage GFS (MSGFS) for learning RBs or KBs based on the iterative rule
learning approach.

In order to do so, the paper is organized as follows: The next Section is devoted
to presenting the GAs; in Section 3, we introduce the genetic learning approaches
with special attention to the iterative rule learning approach; in Section 4 the GFSs
and the MSGFS are presented; and in the final Section, some concluding remarks
are made.

2 Genetic Algorithms

GAs are search algorithms that use operations found in natural genetics to guide
the trek through a search space. GAs use a direct analogy of natural behaviour.
They work with a population of chromosomes, each one representing a possible
solution to a given problem. Each chromosome is assigned a fitness score according
to how good a solution to the problem it is. GAs are theoretically and empirically
proven to provide robust search in complex spaces, giving a valid approach to
problems requiring efficient and effective searching [15].

Any GA starts with a population of randomly generated solutions, chromo-
somes, and advances toward better solutions by applying genetic operators, mod-
eled on the genetic processes occurring in nature. In these algorithms we maintain a
population of solutions for a given problem; this population undergoes evolution in
a form of natural selection. In each generation, relatively good solutions reproduce
to give offspring that replace the relatively bad solutions which die. An evaluation
or fitness function plays the role of the environment to distinguish between good

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 235

and bad solutions. The process of going from the current population to the next
population constitutes one generation in the execution of a GA.

Although there are many possible variants of the basic GA, the fundamental
underlying mechanism operates on a population of chromosomes or individuals and
consists of three operations:

(1) evaluation of individual fitness,
(2) formation of a gene pool (intermediate population) and

(3) recombination and mutation.
The next procedure shows the structure of a simple GA.

Procedure Genetic Algorithm
begin (1)
t=0;
initialize P(t);
evaluate P(t);
While (Not termination-condition) do
begin (2)
t=t+1;
select P(t) from P(t —1);
recombine P(t);
evaluate P(t);
end (2)
end (1)

A fitness function must be devised for each problem to be solved. Given a
particular chromosome, a solution, the fitness function returns a single numerical
fitness, which is supposed to be proportional to the utility or adaptation of the
individual which that chromosome represents.

There are a number of ways of making this selection. We might view the pop-
ulation as mapping onto a roulette wheel, where each chromosome is represented
by a space that proportionally corresponds to its fitness. By repeatedly spinning
the roulette wheel, chromosomes are chosen using ”stochastic sampling with re-
placement” to fill the intermediate population. The selection procedure proposed
in [1], and called stochastic universal sampling is one of the most efficient, where
the number of offspring of any structure is bound by the floor and ceiling of the
expected number of offspring.

After selection has been carried out the construction of the intermediate popu-
lation is complete, then the genetic operators, crossover and mutation, can occur.

A crossover operator combines the features of two parent structures to form
two similar offspring. It is applied at a random position with a probability of
performance, the crossover probability, P.. A mutation operator arbitrarily alters
one or more components of a selected structure so as to increase the structural
variability of the population. Each position of each solution vector in the population

236 A. Gonzdlez & F. Herrera

undergoes a random change according to a probability defined by a mutation rate,
the mutation probability, P,,.

It is generally accepted that a GA to solve a problem must take into account
the following five components:

1. A genetic representation of solutions to the problem,
2. a way to create an initial population of solutions,
3. an evaluation function which gives the fitness of each chromosome,

4. genetic operators that alter the genetic composition of offspring during repro-
duction, and

5. values for the parameters that the GA uses (population size, probabilities of
applying genetic operators, etc.).

The basic principles of GAs were first laid down rigorously by Holland [28], and
are well described in many books such as [15, 35].

3 Genetic Learning Approaches

Since the beginning of the 80s there has been growing interest in applying methods
based on GAs to automatic learning problems, especially the learning of production
rules on the basis of attribute-evaluated example sets. The main problem in these
applications consists of finding a ”comfortable” representation in the sense that it
might be capable both of gathering the problem’s characteristics and representing
the potential solutions.

Classically, two genetic learning approaches have been proposed:

The Michigan approach: The chromosomes are individual rules and a
rules set is represented by the entire population. The collection of rules
are modified over time via interaction with the environment. This model
maintains the population of classifiers with credit assignment, rule discovery
and genetic operations applied at the level of the individual rule.

There is a considerable variety in the structural and functional details of this
model. The prototype organization is composed of three parts:
1. the performance system that interacts with the environment,

2. the credit assignment system developing learning by the modification
and adjustment of conflict-resolution parameters of the classifier set,
their strengths; Holland’s Bucket Brigade is one example of it [30], and

3. the classifier discovery process that generates new classifiers from a clas-
sifier set by means of GAs.

A complete description is to be found in [3].

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 237

The Pittsburgh approach: Each chromosome encodes a whole classifier
set. Credit is assigned to the complete set of rules via interaction with the
environment. Crossover serves to provide a new combination of rules and
mutation provides new rules. In some cases, variable-length classifier sets are
used, employing modified genetic operators for dealing with these variable-
length and position independent genomes.

This model was initially proposed by Smith in 1980 [38]. Recent instances of
this approach are the GABIL [13] and GIL [31] systems.

As mentioned in [12], the Michigan approach will prove to be most useful in
an on-line, real-time environment in which radical changes in behaviour cannot be
tolerated, whereas the Pittsburgh approach will be more useful for off-line environ-
ments in which more leisurely exploration and more radical behavioral changes are
acceptable.

As commented in [4], the roles of the GAs in the Pittsburgh and Michigan
approaches are rather different, and the distinction arises from the difference in
the level at which the GAs are applied. Both approaches, at least in their simplest
forms, suffer from distinct known problems which arise from the different way in
which the GA is applied.

The major problem in the Michigan approach is that of resolving the conflict
between the individual and collective interests of classifiers within the system. The
ultimate aim of a learning classifier system is to evolve a set of co-adapted rules
which act together in solving some problem. In a Michigan style system, with
selection and replacement at the level of the individual rule, rules which cooperate
to effect good actions and receive payoff also compete with each other under the
action of the GA. Such a conflict between individual and collective interests of
individual classifiers does not arise with Pittsburgh-style classifier systems, since
reproductive competition occurs between complete rule sets rather than individual
rules. However, maintenance and evaluation of a population of complete rule-sets in
Pittsburgh-style systems can often lead to a much greater computational burden
(in terms of both memory and processing time). Therefore, problems with the
Pittsburgh approach have proven to be, at least, equally as challenging. Although
the approach avoids the problem of explicit competition between classifiers, large
amounts of computing resources are required to evaluate a complete population of
rule-sets.

As compared to the two classic models (the Michigan and Pittsburgh ones), in
recent literature we may find different algorithms that use a new learning model
based on GAs, the iterative rule learning approach. In the latter model, as in the
Michigan one, each chromosome in the population represents a single rule, but con-
trary to the latter, only the best individual is considered as the solution, discarding
the remaining chromosomes in the population. Therefore, in the iterative model,
the GA provides a partial solution to the problem of learning. This model has been
used in papers such as [42, 16, 18, 19, 24, 25, 9] and attempts to reduce the search
space for the possible solutions.

In order to obtain a set of rules, which will be a true solution to the problem,
the GA has to be placed within an iterative scheme similar to the following:

238 A. Gonzdlez & F. Herrera

1. Use a GA to obtain a rule for the system.
2. Incorporate the rule into the final set of rules.
3. Penalize this rule.

4. If the set of rules obtained is adequate to represent the examples in the
training set, the system ends up returning the set of rules as the solution.
Otherwise return to step 1.

A very easy way to penalize the rules already obtained, and thus be able to
learn new rules, consists of eliminating from the training set all those examples
that are covered by the set of rules obtained previously. Some learning algorithms
not based on GAs, such as those in the AQ family or the CN2 algorithm [5], use
this way of penalizing rules.

This learning way is to allow ”niches” and ”species” formation. Species forma-
tion seems particularly appealing for concept learning, considering the process as
the learning of multimodal concepts.

The main difference with respect to the Michigan approach is that the fitness
of each chromosome is computed individually, without taking into account cooper-
ation with other ones. This reduces substantially the search space, because in each
sequence of iterations only one rule is searched.

In the literature we can find some genetic learning processes that use this model
such as SLAVE [18], SIA [42] and the genetic generation process proposed in [24].
These three genetic learning processes use the iterative rule learning approach with
light difference:

e SLAVE launches a new GA to find a new rule after having eliminated the
examples covered by the last rule obtained. SLAVE was designed to work
with or without linguistic information.

e STA uses a single GA that goes on detecting rules and eliminating the exam-
ples covered by the latter. STA can only work with crisp data.

e The genetic generation process runs a GA for obtaining the best rule according
to different features, assigns a relative covering value to every example, and
removes the examples with a covering value greater than a constant.

From the description above, we may see that in order to implement a learning
algorithm based on GAs using the iterative rule learning approach, we need, at
least, the following:

1. a criterion for selecting the best rule in each iteration,
2. a penalization criterion, and

3. a criterion for determining when enough rules are available to represent the
examples in the training set.

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 239

The first criterion is normally associated with one or several characteristics that
are desirable so as to determine good rules. Usually criteria about the rule strength
have been proposed (number of examples covered), criteria of consistency of the
rule or criteria of simplicity.

The second criterion is often associated, although it is not necessary, with the
elimination of the examples covered by the previous rules.

Finally, the third criterion is associated with the completeness of the set of
rules and must be taken into account when we can say that all the examples in
the training set are sufficiently covered and no more rules are needed to represent
them.

4 Genetic Fuzzy Systems

In this Section we briefly introduce the GFSs and present a fuzzy rule genetic
learning process, the MSGFS for learning either RBs or KBs in different stages,
generating the fuzzy rules using the iterative rule learning approach.

4.1 Regarding Genetic Fuzzy Systems

The GAs’ properties make them suitable to be used in order to design and optimize
fuzzy systems. The automatic definition of the KB may be considered in many cases
as optimization or search processes. The application to the learning and/or tuning
of KB has provided fairly promising results.

As mentioned in the introduction, GAs are applied to modify/learning the DB
and/or the RB, and it is possible to distinguish three different groups of GFSs
depending on the KB components included in the genetic learning process.

Genetic definition of the DB. The tuning of the fuzzy rule membership func-
tions is an important task in the design of fuzzy systems. The tuning method using
GAs fits the membership functions of the fuzzy rules dealing with their parameters
according to a fitness function. Several methods have been proposed in order to
define the DB using GAs, based on the existence of a previously defined RB. Each
chromosome involved in the evolution process represents different DB definitions,
that is, each chromosome contains a coding of the whole membership functions
giving meaning to the linguistic terms. Two possibilities can be considered de-
pending on whether the fuzzy model nature is descriptive or approximative, either
to code the fuzzy partition maintaining a linguistic description of the system, or
to code the rule membership functions tuning the parameters of a label locally for
every rule, thereby obtaining a fuzzy approximative model. Different approaches
are presented in [32, 39, 2, 23].

Genetic derivation of the RB. All the methods belonging to this family are
suppose the existence a collection of fuzzy set membership functions giving meaning
to the labels, a DB, and learning a rule base. Some approaches are presented in
[33, 40, 36, 18, 19].

240 A. Gonzdlez & F. Herrera

Genetic learning of the KB. There are many approaches for the genetic learn-
ing processes of a complete KB, fuzzy rules and membership functions. We find
approaches presenting variable chromosome length, others coding a fixed number of
rules and their membership functions, several working with chromosomes encoding
single control rules instead of a complete KBs, etc. Some approaches are presented
in [6, 34, 37, 25, 41, 4, 9].

For a more detailed description see [8], for an extensive bibliography see [7]
(section 3.13), and some approaches may be found in [27].

In the following, we present the MSGFS for learning RB or KB based on the
iterative rule learning approach.

4.2 A Multi-Stage Genetic Fuzzy System

Learning algorithms that use the iterative rule learning approach do not envisage
any relationship between them in the process for obtaining rules. Therefore, the
final set of rules usually needs an a posteriori process that will modify and/or fit
the said set. The methodology that is presently applied includes different processes
that are not necessarily applied simultaneously. This methodology, which we call
multi-stage genetic fuzzy systems and has been abbreviated as MSGFS, consists of
three component parts:

I A genetic generation stage for generating fuzzy rules using the iterative rule
learning approach.

IT A postprocessing stage working on the rule set obtained in the previous stage
in order to either to refine rules or eliminate redundant rules.

III A genetic tuning stage that tunes the membership functions of the fuzzy rules.

We describe these shortly below.

4.2.1 Genetic generation stage

In this stage the iterative rule learning approach is used for learning fuzzy rules
capable of including the complete knowledge from the set of examples.

A chromosome represents a fuzzy rule, the generation method selects the best
rule according to different features included in the fitness function of the GA,
features that include general properties of the KB and particular requirements to
the fuzzy rule. This features lead to the definition of the covering degree between a
rule and an example and the use of the concept of positive and negative examples.

The iterative rule learning approach uses a covering method of the set of exam-
ples. This covering method assigns a relative covering value to every example, and
removes the examples with an adequate covering value, according to a covering
criterion.

As we have indicated, this model may be used for learning RB as SLAVE[16, 18]
and for learning KB as the genetic generation process proposed in [24, 25]. In the
following we shortly show how both learning algorithms use this approach.

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 241

SLAVE is a learning system developed in [16, 18], that uses induction and
fuzzy rules for representing knowledge. This learning algorithm obtains a set of
rules for describing the consequent variable. The selection of the best rule in each
iteration is done by a GA and the goal of this GA is finding the rule that covers
the maximum number of positive examples and it satisfies the weak consistency
condition.

Given the concept of the best rule, the learning algorithm will use it for selecting
the set of rules that best describe the examples. Thus, once a class is selected,
we obtain the best rule for this class and eliminate the examples covered by this
rule and this process is repeated. Two important elements in this cycle must be
clarified: the concept of covering when the examples and rules are fuzzy, and the
criterion of termination of this cycle, i.e., how we know when the current rule set
is sufficient for describing a class. In the first problem, SLAVE uses a concept of
partial covering based on a A parameter and for the second problem it uses the
definition of weak completeness condition proposed in [18]. The GA is used for
selecting the best rule in each iteration of the learning process and this GA and
its parameters are described in [17]. The goal of the GA is to return the rule
with the maximum number of positive examples satisfying the weak consistency
condition. Two different definitions have been proposed on this condition in [18],
the k-consistency condition and the ki ks-consistency condition.

The genetic generating process proposed in [24, 25] generates fuzzy rules
with a free semantic, without any initial referential set of fuzzy sets in the universes
of discourse, learning the fuzzy rules and the associated fuzzy sets. It is developed
by means of a real coded GA (RCGA), where a chromosome represents a fuzzy
rule, and it is evaluated by means of a frequency method. The RCGA finds the
best rule in every running from the set of examples according to different features
that are included in the fitness function of the GA: High frequency value, High
average covering degree over positive examples, Small negative examples set, Small
membership functions width, and High symmetrical membership functions.

The covering method is developed as an iterative process that permits a set
of fuzzy rules to be obtained covering the set of examples. In each iteration, it
runs the RCGA choosing the best chromosome, assigns the relative covering value
to every example and removes the examples with a covering value greater than a
value e. It finishes when the set of examples is empty.

An additional condition, the High niche condition rate, has been included in
[10] for maintaining a suitable interaction between neighbour rules by sharing their
fitness payoff. In [9, 11] other versions of the method are presented where the rules
have their semantic within performance intervals established by a fuzzy partition
membership functions.

The advantage of this approximative representation (free semantic) is its ex-
pressive power for learning rules which present its own specificity in terms of the
fuzzy sets involved in it.

242 A. Gonzdlez & F. Herrera

4.2.2 Postprocessing stage: selection and refinement

As we mentioned earlier, the iterative rule learning approach does not analyze any
relationship between the rules that it is obtaining. That is why, once the rule base
has been obtained, it may be improved either because there are rules that may
be refined or redundant rules if high degrees of coverage are used. Two possible
post-processing methods are briefly introduced below, a refinement algorithm and
a selection or simplification algorithm.

A Refinement algorithm

This algorithm, proposed in [20], is basically composed by a heuristic process
of generation, specification, addition and elimination of rules. The module is com-
posed of the following tasks: The first one, consists of improving the correctness
of each rule. For this purpose, a specification process is used, trying to make
each rule cover the highest number of well-classified examples from the original
rule without covering its badly-classified examples. After this task, it is possible
that some badly-classified examples covered by some rules turn into unclassified
examples. The next task tries to cover these unclassified examples using a general
ization process over the existent rules or adding new rules. The last task in the
refinement process uses a special generalization process for determining each rule,
the antecedent variables that are relevant for representing the objects from a class.
The previous tasks are repeated on the rule set until a termination condition is
satisfied.

The refinement uses a heuristic function and a hill climbing strategy for selecting
the most promising action in each step of the algorithm toward a good solution. A
function is considered that measures the global precision of the current rule set on
the training set. Thus, in order to define this function it is necessary to describe
the predictive module used. The inference process begins with an ordered rule set
and the classification of an example is done in the following way: the adaptation
between the example and the antecedent part of each rule is evaluated and the class
of the rule with the best adaptation is returned. If there are some rules with the
best adaptation (conflict problem), the class from the rule with the lowest order
in the rule set is returned. Thus, it is necessary to establish a priori criterion
of relevance between the rules for sorting them. The refinement algorithm uses
the same order returned by SLAVE. Basically, this criterion is the following: the
most relevant rules are those that removed the highest number of examples in the
learning process. In this sense, the most relevant rules are in the first positions and
the least relevant rules are in the last positions. The heuristic component of the
refinement algorithm selects rules through the order previously described for the
rule set. However, no special ordering is considered for variables or values. They
are taken by considering the default order.

In [20] each one of the steps of the refinement algorithm are described.

This refinement algorithm has been successfully applied together with SLAVE
and it improved the rule set obtained from SLAVE and simplified the problem of
choosing parameters in the learning algorithm [20]. The refinement algorithm has
been also successfully applied to other learning algorithms [21].

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 243

A Selection algorithm

Due to the iterative nature of the genetic generation process, redundant rules
may appear. This occurs when some examples are covered to a higher degree than
the desired one and it makes the RB obtained perform worse due to the existence
of redundant rules. In order to solve this problem and improve its accuracy, it is
necessary to simplify the rule set obtained from the previous process for deriving
the final RB.

The simplification process was proposed in [25]. It is based on a binary coded
GA, where the coding scheme maintains fixed-length chromosomes. Considering
the rules contained in the RB counted from 1 to m, an m-bit string C = (ey, ..., Cm)
represents a subset of candidate rules to form the RB finally obtained as this stage’s
output, B*, such that,

If ¢; =1 then R; € B® else R; & B .

The initial population is generated by introducing a chromosome representing
the complete previously obtained rule set R, that is, with all ¢; = 1. The remaining
chromosomes are selected at random.

Regarding the fitness function, E(-), it is based on an application specific mea-
sure usually employed in the design of GFSs, either the medium square error (SE)
over a training data set, Erpg, in control problems or the percentage of classified
examples in classification problems.

For example, in the case of designing fuzzy logic controllers (FLC), it may be
represented by the following expression:

_ 1 Qo))
- 2|ETDS| Z (ey S(ea:)) 9

ei€ETps

E(Cy)

where S(ex!) is the output value obtained from the FLC using the RB coded in
Cj, R(Cj), when the state variables values are ex!, and ey’ is the known desired
value.

Anyway, there is a need to keep the rule completeness property considered in
a previous stage. An FLC must always be able to infer a proper control action for
every process state. This condition is ensured by forcing every example contained
in the training set to be covered by the encoded RB to a degree greater than or
equal to T,

GR(CJ-)(el) = U Rj(el) >71, Ve € Erps and R; € R(C]’) ,
j=1..T

where R;(e;) is the compatibility degree between the rule and the example, and
T is the minimal training set completeness degree accepted in the simplification
process.

Therefore, a training set completeness degree of R(C;) over the set of examples
Erps is defined as

244 A. Gonzdlez & F. Herrera

TSCD(R(C;),Erps) = m Gr(o;ler) -

ei€ETps

The final fitness function penalizing the lack of the completeness property is:

r(c;) =4 EG) if TSCD(R(C)), Erps) > 7
7 %Ze,eETDS(eyl)2 otherwise.

This selection algorithm has been applied together with the aforementioned
genetic generation process and improves the rule set obtained from it [25, 9].

4.2.3 Genetic tuning stage

At this stage the genetic tuning process is applied over the KB for obtaining a more
accurate one.
We can consider two possibilities, depending on the fuzzy model’s nature:

a) an approximative model based on a KB composed of a collection of fuzzy
rules without a fixed relationship between the fuzzy rules and some primary
fuzzy partitions giving meaning to them, or

b) a descriptive model based on a linguistic description of the system with a
fuzzy partition that assigns a membership function to every linguistic label.

In both cases, each chromosome forming the genetic population will encode a
complete DB, but in the first case each piece of chromosome codes the membership
functions associated to one rule and in the second one each piece of chromosome
codes the fuzzy partition of a variable.

We can use RCGAs where every variable value is a gene, this GA and its
components are described in [23, 26]. The main difference between both processes
is the coding scheme. They are described below.

Approximative scheme

Each chromosome forming the genetic population encodes a complete KB,
each one of them contains the RB with a different DB associated [23].

If we consider an MISO control system where the KB consists of a collection
of fuzzy rules describing the action with the form:

R; : TF xy is A;; and ... and x, is A;;, THEN y is B,

where 1, ..., 2, and y are the process state variables and the control variable,
respectively; and A;1, ..., Ain, B are fuzzy sets in the universes of discourse
Uy,...,Up, V.

We can consider every fuzzy set associated with a normalized triangular
membership function. A computational way to characterize it is by using

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 245

a parametric representation achieved by means of the 3-tuple (aij;, bsj,cij),
(ai, bi,Ci),] = 1, e, N

Each one of the rules will be encoded in pieces of chromosome C,;, i =
1,...,m, in the following way:

Cri = (@i1,bi1,¢i1, - - -, Qins bin, Cin, a4, by, ;).
Therefore the KB is represented by a complete chromosome C,.:

Cr=Cr1 Cra ... Crpyy.

In [23] a complete description of this approximative genetic tuning process is
to be found.

Descriptive scheme

A modified version of the genetic tuning method presented in [23] is applied.
Each chromosome forming the genetic population encodes a complete fuzzy
partition of the variables.

As we have, already stated, the primary fuzzy sets considered in the ini-
tial linguistic fuzzy partitions are triangle-shaped. Thus, each one of the
membership functions has associated a parametric representation based on
a 3-tuple of real values and a primary fuzzy partition can be represented by
an array composed by 3N real values, with N being the number of terms
forming the linguistic variable term set. The complete DB for a problem in
which n linguistic variables are involved is encoded into a fixed length real
coded chromosome C., built by joining the representation of each one of the
variable fuzzy partitions as is shown in the following:

Cri = (a1, bi1, ¢y - -, ain,, biny, CiNg)-
Cr=0Cp1 Cpa ... Cpp.

In [11] the application of both genetic tuning processes is to be found.

5 Concluding Remarks

In this paper, we have presented the iterative rule learning approach as an alterna-
tive model to the classical Michigan and Pittsburgh approaches for the design of
genetic learning processes, and we have described how it can be applied within a
multi-stage learning process.

We have introduced the GFSs, and presented the possible steps of an MSGFS
for learning RBs or KBs based on the iterative rule learning approach. It is a
general genetic learning context for fuzzy systems where different GFS processes
can be de signed. The advantage of this general context is that in the first stage
considerably reduces the space of search because it look for only one fuzzy rule in

246 A. Gonzdlez & F. Herrera

each sequence of iterations, and in stages two and three provides tools that can
improve the RB and DB, respectively.

We can conclude pointing out that we have presented a general working method-
ology in the genetic learning of fuzzy rules that attempts to generalize and place
into a common context the different learning processes that have been developed
till now.

References

[1] Baker, J.E., Reducing Bias and Inefficiency in the Selection Algorithm.
Proceedings of the Second International Conference on Genetic Algorithms,
Lawrence Erlbaum, Hillsdale, NJ, 1987, 14-21.

[2] Bolata, F., Nowe, A., From Fuzzy Linguistic Specifications to Fuzzy Con-
trollers using Evolution Strategies. Proc. Fourth IEEE Int. Conference on
Fuzzy Systems, Yokohama, 1995, 1089-1094.

[3] Booker, L.B., Goldberg, D.E., Holland, J.H., Classifier Systems and Genetic
Algorithms. Artificial Intelligence 40 (1989) 235-282.

[4] Carse, B., Fogarty, T.C., Munro, A., Evolving Fuzzy Rule Based Controllers
Using Genetic Algorithms. Fuzzy Sets and Systems 80 (1996) 273-293.

[5] Clark P., Niblett T., Learning If Then Rules in Noisy Domains. TIRM 86-019,
The Turing Institute, Glasgow, 1986.

[6] Cooper, M., Vidal, J.J., Genetic Design of Fuzzy Controllers: the Cart and
Jointed Pole Problem. Proc. Third IEEE Int. Conf. on Fuzzy Systems, Or-
lando, 1994, 1332-1337.

[7] Cordén, O., Herrera, F., Lozano, M., A Classified Review on the Combination
Fuzzy Logic-Genetic Algorithms Bibliography. Tech. Report #DECSAI —
95129, Dept. of Computer Science and A.l., University of Granada, 1995.
Available at the URL address: http://decsai.ugr.es/ herrera/fl-ga.html

[8] Cordén, O., Herrera, F., A General Study on Genetic Fuzzy Systems. In:
G. Winter, J. Periaux, M. Galan, P. Cuesta (Eds.), Genetic Algorithms in
Engineering and Computer Science, Wiley and Sons, 1995, 33-57.

[9] Cordén, O., Herrera, F., A Hybrid Genetic Algorithm-Evolution Strategy Pro-
cess for Learning Fuzzy Logic Controller Knowledge Bases. In: F. Herrera, J.L.
Verdegay (Eds.), Genetic Algorithms and Soft Computing, Physica-Verlag,
1996, 251-278.

[10] Cordén, O., Herrera, F., Fuzzy Identification by Means of Genetic Algorithms.
In: H. Hellendoorn, D. Driankov (Eds.). Fuzzy Model Identification, Springer-
Verlag, 1997.

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 247

[11] Cordén, O., Herrera, F., A Three-Stage Evolutionary Process for Learning
Descriptive and Approximative Fuzzy Logic Controller Knowledge Bases from
Examples. International Journal of Approximate Reasoning, 17:4, 1997.

[12] De Jong, K.A., Learning with Genetic Algorithms: An Overview. Machine
Learning 3 (1988) 121-138.

[13] De Jong, K.A., Spears, W.M., Gordon, F.D., Using Genetic Algorithms for
Concept Learning. Machine Learning 13 (1993) 161-188.

[14] Giordana, A., Neri, F., Genetic Algorithms in Machine Learning. AT Commu-
nications 9 (1996) 21-26.

[15] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[16] Gonzélez, A., Pérez, R., Verdegay, J.L., Learning the Structure of a Fuzzy
Rule: a Genetic Approach. Fuzzy System and Artificial Intelligence 3 (1994)
57-70.

[17] Gonzélez, A., Pérez, R., Structural Learning of Fuzzy Rules from Noisy Ex-
amples. Proc. FUZZ-IEEE/IFES’95, Yokohama, vol.ITI, (1995), 1323-1330.

[18] Gonzélez, A., Pérez, R., Completeness and Consistency Conditions for Learn-
ing Fuzzy Rules. Fuzzy Sets and Systems, 1997. To appear.

[19] Gonzélez, A., Pérez, R., A Learning System of Fuzzy Control Rules. In: F. Her-
rera, J.L. Verdegay (Eds.), Genetic Algorithms and Soft Computing, Physica-
Verlag, 1996, 202-225.

[20] Gonzélez, A., Pérez, R., A Refinement Algorithm of Fuzzy Rules for Classifi-
cation Problems. Proc. of the Sixth Int. Conference on Information Procesing
and Management of Uncertainty in Knowledge Based Systems, Granada, 1996,
533-538.

[21] Gonzélez, A., Pérez, R., Aplicacién de un Sistema de Refinamiento de Reglas
a Problemas de Clasificacién. Proceedings of IBERAMIA’96, Mexico, 1996,
20-29.

[22] Grefenstette, J.J. (Ed.), Genetic Algorithms for Machine Learning. Kluwer
Academic, 1994.

[23] Herrera, F., Lozano, M., Verdegay, J.L., Tuning Fuzzy Logic Controllers
by Genetic Algorithms. International Journal of Approximate Reasoning 12
(1995) 299-315.

[24] Herrera, F., Lozano, M., Verdegay, J.L. Generating Rules from Examples using
Genetic Algorithms. In: B. Bouchon, R. Yager, L. Zadeh (Eds.), Fuzzy Logic
and Soft Computing, Word Scientific, 1995, 11-20.

248 A. Gonzdlez & F. Herrera

[25] Herrera, F., Lozano, M., Verdegay, J.L., A Learning Process for Fuzzy Control
Rules using Genetic Algorithms. Fuzzy Sets and Systems 1997. To appear.

[26] Herrera, F., Lozano, M., Verdegay, J.L., Fuzzy Connectives based Crossover
Operators to Model Genetic Algorithms Population Diversity. Fuzzy Sets and
Systems, 92 (1997) 21-30.

[27] F. Herrera, J.L. Verdegay (Eds.), Genetic Algorithms and Soft Computing.
Physica-Verlag, 1996.

[28] Holland, J.H, Adaptation in Natural and Artificial Systems. Ann Arbor,
1975.(MIT Press, 1992).

[29] Holland, J.H., Reitman, J.S., Cognitive Systems Based on Adaptive Algo-
rithms. In D.A. Waterman, F. Hayes-Roth (Eds.), Pattern-Directed Inference
Systems Academic Press, New York, 1978.

[30] Holland, J.H., Escaping Britleness: The Possibilities of General Purpose
Learning Algorithms Applied to Parallel rule-Based Systems. In: R. Michal-
ski, J. Carbonell, T. Michel (Eds.), Machine Learning: An AI Approach, Vol.
IT, Morgan-Kaufmann, 1986, 593-623.

[31] Janikow, C.Z., A Knowledge Intensive Genetic Algorithm for Supervised
Learning. Machine Learning 13 (1993) 198-228.

[32] Karr, C., Genetic Algorithms for Fuzzy Controllers. AT Expert 6 (1991) 26-33.

[33] Karr, C., Applying Genetic Algorithms to Fuzzy Logic. AT Expert 6 (1991)
38-43.

[34] Lee, M.A., Takagi, H., Embedding Apriori Knowledge into an Integrated Fuzzy
System Design Method Based on Genetic Algorithms. Proc. Fifth Int. Fuzzy
Systems Association World Congress, Seoul, 1993, 1293-1296.

[35] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Pro-
grams. Springer-Verlag, 1992.

[36] Pham, D.T., Karoboga, D., Optimum Design of Fuzzy Logic Controllers using
Genetic Algorithms. J. Systems Engineering 1 (1991) 114-118.

[37] Satyadas, A., Krishanakumar, K., GA-Optimized Fuzzy Controller for Space-
craft Attitude Control. Proc. Third IEEE International Conference on Fuzzy
Systems, Orlando, 1994, 1979-1984.

[38] Smith, S.F., A Learning System Based on Genetic Adaptive Algorithms. Ph.
D. Thesis, University of Pittsburgh, 1980.

[39] Surmann, H., Kanstein, A., Goser, K., Self-Organizing and Genetic Algorithms
for an Automatic Design of Fuzzy Control and Decision Systems. Proc. First
Europen Congress on Fuzzy and Intelligent Technologies, Aachen, 1993, 1097-
1104.

Multi-stage Genetic Fuzzy Systems Based on the Iterative Rule... 249

[40] Thriff, P., Fuzzy Logic Synthesis with Genetic Algorithms. Proc. Fourth In-
ternational Conference on Genetic Algorithms, San Diego, 1991, 509-513.

[41] Velasco, J.R., Magdalena, L., Genetic Learning Applied to Fuzzy Rules and
Fuzzy Knowledge Bases. Proc. Sixth Int. Fuzzy Systems Association World
Congress, Sao Paulo, 1995, 257-260.

[42] Venturini, G., SIA: a Supervised Inductive Algorithm with Genetic Search for
Learning Attribute Based Concepts. Proc. European Conference on Machine
Learning, Vienna, 1993, 280-296.

