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Abstra
tGeneti
 algorithms (GAs) represent a 
lass of adaptive sear
h te
hniquesinspired by natural evolution me
hanisms. The sear
h properties of GAsmake them suitable to be used in ma
hine learning pro
esses and for devel-oping fuzzy systems, the so-
alled geneti
 fuzzy systems (GFSs).In this 
ontribution, we dis
uss geneti
s-based ma
hine learning pro
essespresenting the iterative rule learning approa
h, and a spe
ial kind of GFS, amulti-stage GFS based on the iterative rule learning approa
h, by learningfrom examples.Keywords: Fuzzy logi
, fuzzy rules, geneti
 algorithms, ma
hine learning.1 Introdu
tionGeneti
 Algorithms (GAs) are sear
h algorithms that use operations found in nat-ural geneti
s to guide the trek through a sear
h spa
e. GAs are theoreti
ally andempiri
ally proven to provide robust sear
h 
apabilities in 
omplex spa
es, o�eringa valid approa
h to problems requiring eÆ
ient and e�e
tive sear
hing.Mu
h of the interest in GAs is due to the fa
t that they provide a set of ef-�
ient domain-independent sear
h heuristi
 whi
h are a signi�
ant improvementover traditional methods without the need for in
orporating highly domain-spe
i�
knowledge.Although GAs are not learning algorithms, they may o�er a powerful anddomain-independent sear
h method for a variety of learning tasks. In fa
t, therehas been a good deal of interest in using GAs for ma
hine learning problems [22, 14℄.Two alternative approa
hes, in whi
h GAs have been applied to learning pro-
esses, have been mainly used, the Mi
higan ([29℄) and the Pittsburgh ([38℄) ap-proa
hes. In the �rst one, the 
hromosomes 
orrespond to 
lassi�er rules whi
h�This work has been supported by the CICYT under Proje
ts TIC95-0453 and TIC96-0778233



234 A. Gonz�alez & F. Herreraare evolved as a whole, whereas in the Pittsburgh approa
h, ea
h 
hromosomeen
odes a 
omplete set of 
lassi�ers. A third way will be presented as an alterna-tive to these models, the iterative rule learning approa
h where ea
h 
hromosomesrepresents only one rule learning.On other hand, GAs have proven to be a powerful tool for automating the def-inition of the fuzzy systems knowledge base (KB), sin
e adaptive 
ontrol, learningand self-organization fuzzy systems 
an be 
onsidered in a lot of 
ases as optimiza-tion or sear
h pro
esses. Their advantages have extended the use of GA s in thedevelopment of a wide range of approa
hes for designing fuzzy systems in the lastfew years. These approa
hes re
eive the general name of Geneti
 Fuzzy Systems(GFSs) [8℄.The KB is 
omposed of two 
omponents, a Data Base (DB), 
ontaining themembership fun
tions of the fuzzy sets spe
ifying the meaning of the linguisti
terms, and a Rule Base (RB), 
onstituted by the 
olle
tion of fuzzy rules rep-resenting the expert knowledge. It is possible to distinguish di�erent groups ofGFSs a

ording to the KB 
omponents in
luded in the learning pro
ess: learningor tuning the DB with a �xed set of rules, learning the RB with �xed membershipfun
tion sets and learning the KB, that is, the fuzzy membership fun
tions andfuzzy rules.The geneti
 learning pro
esses belonging to the latter two last 
lasses 
an dothe learning simultaneously or in various stages. In the following we present amulti-stage GFS (MSGFS) for learning RBs or KBs based on the iterative rulelearning approa
h.In order to do so, the paper is organized as follows: The next Se
tion is devotedto presenting the GAs; in Se
tion 3, we introdu
e the geneti
 learning approa
heswith spe
ial attention to the iterative rule learning approa
h; in Se
tion 4 the GFSsand the MSGFS are presented; and in the �nal Se
tion, some 
on
luding remarksare made.2 Geneti
 AlgorithmsGAs are sear
h algorithms that use operations found in natural geneti
s to guidethe trek through a sear
h spa
e. GAs use a dire
t analogy of natural behaviour.They work with a population of 
hromosomes, ea
h one representing a possiblesolution to a given problem. Ea
h 
hromosome is assigned a �tness s
ore a

ordingto how good a solution to the problem it is. GAs are theoreti
ally and empiri
allyproven to provide robust sear
h in 
omplex spa
es, giving a valid approa
h toproblems requiring eÆ
ient and e�e
tive sear
hing [15℄.Any GA starts with a population of randomly generated solutions, 
hromo-somes, and advan
es toward better solutions by applying geneti
 operators, mod-eled on the geneti
 pro
esses o

urring in nature. In these algorithms we maintain apopulation of solutions for a given problem; this population undergoes evolution ina form of natural sele
tion. In ea
h generation, relatively good solutions reprodu
eto give o�spring that repla
e the relatively bad solutions whi
h die. An evaluationor �tness fun
tion plays the role of the environment to distinguish between good
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ess of going from the 
urrent population to the nextpopulation 
onstitutes one generation in the exe
ution of a GA.Although there are many possible variants of the basi
 GA, the fundamentalunderlying me
hanism operates on a population of 
hromosomes or individuals and
onsists of three operations:(1) evaluation of individual �tness,(2) formation of a gene pool (intermediate population) and(3) re
ombination and mutation.The next pro
edure shows the stru
ture of a simple GA.Pro
edure Geneti
 Algorithmbegin (1)t = 0;initialize P (t);evaluate P (t);While (Not termination-
ondition) dobegin (2)t = t+ 1;sele
t P (t) from P (t� 1);re
ombine P (t);evaluate P (t);end (2)end (1)A �tness fun
tion must be devised for ea
h problem to be solved. Given aparti
ular 
hromosome, a solution, the �tness fun
tion returns a single numeri
al�tness, whi
h is supposed to be proportional to the utility or adaptation of theindividual whi
h that 
hromosome represents.There are a number of ways of making this sele
tion. We might view the pop-ulation as mapping onto a roulette wheel, where ea
h 
hromosome is representedby a spa
e that proportionally 
orresponds to its �tness. By repeatedly spinningthe roulette wheel, 
hromosomes are 
hosen using "sto
hasti
 sampling with re-pla
ement" to �ll the intermediate population. The sele
tion pro
edure proposedin [1℄, and 
alled sto
hasti
 universal sampling is one of the most eÆ
ient, wherethe number of o�spring of any stru
ture is bound by the 
oor and 
eiling of theexpe
ted number of o�spring.After sele
tion has been 
arried out the 
onstru
tion of the intermediate popu-lation is 
omplete, then the geneti
 operators, 
rossover and mutation, 
an o

ur.A 
rossover operator 
ombines the features of two parent stru
tures to formtwo similar o�spring. It is applied at a random position with a probability ofperforman
e, the 
rossover probability, P
. A mutation operator arbitrarily altersone or more 
omponents of a sele
ted stru
ture so as to in
rease the stru
turalvariability of the population. Ea
h position of ea
h solution ve
tor in the population
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hange a

ording to a probability de�ned by a mutation rate,the mutation probability, Pm.It is generally a

epted that a GA to solve a problem must take into a

ountthe following �ve 
omponents:1. A geneti
 representation of solutions to the problem,2. a way to 
reate an initial population of solutions,3. an evaluation fun
tion whi
h gives the �tness of ea
h 
hromosome,4. geneti
 operators that alter the geneti
 
omposition of o�spring during repro-du
tion, and5. values for the parameters that the GA uses (population size, probabilities ofapplying geneti
 operators, et
.).The basi
 prin
iples of GAs were �rst laid down rigorously by Holland [28℄, andare well des
ribed in many books su
h as [15, 35℄.3 Geneti
 Learning Approa
hesSin
e the beginning of the 80s there has been growing interest in applying methodsbased on GAs to automati
 learning problems, espe
ially the learning of produ
tionrules on the basis of attribute-evaluated example sets. The main problem in theseappli
ations 
onsists of �nding a "
omfortable" representation in the sense that itmight be 
apable both of gathering the problem's 
hara
teristi
s and representingthe potential solutions.Classi
ally, two geneti
 learning approa
hes have been proposed:The Mi
higan approa
h: The 
hromosomes are individual rules and arules set is represented by the entire population. The 
olle
tion of rulesare modi�ed over time via intera
tion with the environment. This modelmaintains the population of 
lassi�ers with 
redit assignment, rule dis
overyand geneti
 operations applied at the level of the individual rule.There is a 
onsiderable variety in the stru
tural and fun
tional details of thismodel. The prototype organization is 
omposed of three parts:1. the performan
e system that intera
ts with the environment,2. the 
redit assignment system developing learning by the modi�
ationand adjustment of 
on
i
t-resolution parameters of the 
lassi�er set,their strengths; Holland's Bu
ket Brigade is one example of it [30℄, and3. the 
lassi�er dis
overy pro
ess that generates new 
lassi�ers from a 
las-si�er set by means of GAs.A 
omplete des
ription is to be found in [3℄.
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h: Ea
h 
hromosome en
odes a whole 
lassi�erset. Credit is assigned to the 
omplete set of rules via intera
tion with theenvironment. Crossover serves to provide a new 
ombination of rules andmutation provides new rules. In some 
ases, variable-length 
lassi�er sets areused, employing modi�ed geneti
 operators for dealing with these variable-length and position independent genomes.This model was initially proposed by Smith in 1980 [38℄. Re
ent instan
es ofthis approa
h are the GABIL [13℄ and GIL [31℄ systems.As mentioned in [12℄, the Mi
higan approa
h will prove to be most useful inan on-line, real-time environment in whi
h radi
al 
hanges in behaviour 
annot betolerated, whereas the Pittsburgh approa
h will be more useful for o�-line environ-ments in whi
h more leisurely exploration and more radi
al behavioral 
hanges area

eptable.As 
ommented in [4℄, the roles of the GAs in the Pittsburgh and Mi
higanapproa
hes are rather di�erent, and the distin
tion arises from the di�eren
e inthe level at whi
h the GAs are applied. Both approa
hes, at least in their simplestforms, su�er from distin
t known problems whi
h arise from the di�erent way inwhi
h the GA is applied.The major problem in the Mi
higan approa
h is that of resolving the 
on
i
tbetween the individual and 
olle
tive interests of 
lassi�ers within the system. Theultimate aim of a learning 
lassi�er system is to evolve a set of 
o-adapted ruleswhi
h a
t together in solving some problem. In a Mi
higan style system, withsele
tion and repla
ement at the level of the individual rule, rules whi
h 
ooperateto e�e
t good a
tions and re
eive payo� also 
ompete with ea
h other under thea
tion of the GA. Su
h a 
on
i
t between individual and 
olle
tive interests ofindividual 
lassi�ers does not arise with Pittsburgh-style 
lassi�er systems, sin
ereprodu
tive 
ompetition o

urs between 
omplete rule sets rather than individualrules. However, maintenan
e and evaluation of a population of 
omplete rule-sets inPittsburgh-style systems 
an often lead to a mu
h greater 
omputational burden(in terms of both memory and pro
essing time). Therefore, problems with thePittsburgh approa
h have proven to be, at least, equally as 
hallenging. Althoughthe approa
h avoids the problem of expli
it 
ompetition between 
lassi�ers, largeamounts of 
omputing resour
es are required to evaluate a 
omplete population ofrule-sets.As 
ompared to the two 
lassi
 models (the Mi
higan and Pittsburgh ones), inre
ent literature we may �nd di�erent algorithms that use a new learning modelbased on GAs, the iterative rule learning approa
h. In the latter model, as in theMi
higan one, ea
h 
hromosome in the population represents a single rule, but 
on-trary to the latter, only the best individual is 
onsidered as the solution, dis
ardingthe remaining 
hromosomes in the population. Therefore, in the iterative model,the GA provides a partial solution to the problem of learning. This model has beenused in papers su
h as [42, 16, 18, 19, 24, 25, 9℄ and attempts to redu
e the sear
hspa
e for the possible solutions.In order to obtain a set of rules, whi
h will be a true solution to the problem,the GA has to be pla
ed within an iterative s
heme similar to the following:



238 A. Gonz�alez & F. Herrera1. Use a GA to obtain a rule for the system.2. In
orporate the rule into the �nal set of rules.3. Penalize this rule.4. If the set of rules obtained is adequate to represent the examples in thetraining set, the system ends up returning the set of rules as the solution.Otherwise return to step 1.A very easy way to penalize the rules already obtained, and thus be able tolearn new rules, 
onsists of eliminating from the training set all those examplesthat are 
overed by the set of rules obtained previously. Some learning algorithmsnot based on GAs, su
h as those in the AQ family or the CN2 algorithm [5℄, usethis way of penalizing rules.This learning way is to allow "ni
hes" and "spe
ies" formation. Spe
ies forma-tion seems parti
ularly appealing for 
on
ept learning, 
onsidering the pro
ess asthe learning of multimodal 
on
epts.The main di�eren
e with respe
t to the Mi
higan approa
h is that the �tnessof ea
h 
hromosome is 
omputed individually, without taking into a

ount 
ooper-ation with other ones. This redu
es substantially the sear
h spa
e, be
ause in ea
hsequen
e of iterations only one rule is sear
hed.In the literature we 
an �nd some geneti
 learning pro
esses that use this modelsu
h as SLAVE [18℄, SIA [42℄ and the geneti
 generation pro
ess proposed in [24℄.These three geneti
 learning pro
esses use the iterative rule learning approa
h withlight di�eren
e:� SLAVE laun
hes a new GA to �nd a new rule after having eliminated theexamples 
overed by the last rule obtained. SLAVE was designed to workwith or without linguisti
 information.� SIA uses a single GA that goes on dete
ting rules and eliminating the exam-ples 
overed by the latter. SIA 
an only work with 
risp data.� The geneti
 generation pro
ess runs a GA for obtaining the best rule a

ordingto di�erent features, assigns a relative 
overing value to every example, andremoves the examples with a 
overing value greater than a 
onstant.From the des
ription above, we may see that in order to implement a learningalgorithm based on GAs using the iterative rule learning approa
h, we need, atleast, the following:1. a 
riterion for sele
ting the best rule in ea
h iteration,2. a penalization 
riterion, and3. a 
riterion for determining when enough rules are available to represent theexamples in the training set.
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riterion is normally asso
iated with one or several 
hara
teristi
s thatare desirable so as to determine good rules. Usually 
riteria about the rule strengthhave been proposed (number of examples 
overed), 
riteria of 
onsisten
y of therule or 
riteria of simpli
ity.The se
ond 
riterion is often asso
iated, although it is not ne
essary, with theelimination of the examples 
overed by the previous rules.Finally, the third 
riterion is asso
iated with the 
ompleteness of the set ofrules and must be taken into a

ount when we 
an say that all the examples inthe training set are suÆ
iently 
overed and no more rules are needed to representthem.4 Geneti
 Fuzzy SystemsIn this Se
tion we brie
y introdu
e the GFSs and present a fuzzy rule geneti
learning pro
ess, the MSGFS for learning either RBs or KBs in di�erent stages,generating the fuzzy rules using the iterative rule learning approa
h.4.1 Regarding Geneti
 Fuzzy SystemsThe GAs' properties make them suitable to be used in order to design and optimizefuzzy systems. The automati
 de�nition of the KBmay be 
onsidered in many 
asesas optimization or sear
h pro
esses. The appli
ation to the learning and/or tuningof KB has provided fairly promising results.As mentioned in the introdu
tion, GAs are applied to modify/learning the DBand/or the RB, and it is possible to distinguish three di�erent groups of GFSsdepending on the KB 
omponents in
luded in the geneti
 learning pro
ess.Geneti
 de�nition of the DB. The tuning of the fuzzy rule membership fun
-tions is an important task in the design of fuzzy systems. The tuning method usingGAs �ts the membership fun
tions of the fuzzy rules dealing with their parametersa

ording to a �tness fun
tion. Several methods have been proposed in order tode�ne the DB using GAs, based on the existen
e of a previously de�ned RB. Ea
h
hromosome involved in the evolution pro
ess represents di�erent DB de�nitions,that is, ea
h 
hromosome 
ontains a 
oding of the whole membership fun
tionsgiving meaning to the linguisti
 terms. Two possibilities 
an be 
onsidered de-pending on whether the fuzzy model nature is des
riptive or approximative, eitherto 
ode the fuzzy partition maintaining a linguisti
 des
ription of the system, orto 
ode the rule membership fun
tions tuning the parameters of a label lo
ally forevery rule, thereby obtaining a fuzzy approximative model. Di�erent approa
hesare presented in [32, 39, 2, 23℄.Geneti
 derivation of the RB. All the methods belonging to this family aresuppose the existen
e a 
olle
tion of fuzzy set membership fun
tions giving meaningto the labels, a DB, and learning a rule base. Some approa
hes are presented in[33, 40, 36, 18, 19℄.
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 learning of the KB. There are many approa
hes for the geneti
 learn-ing pro
esses of a 
omplete KB, fuzzy rules and membership fun
tions. We �ndapproa
hes presenting variable 
hromosome length, others 
oding a �xed number ofrules and their membership fun
tions, several working with 
hromosomes en
odingsingle 
ontrol rules instead of a 
omplete KBs, et
. Some approa
hes are presentedin [6, 34, 37, 25, 41, 4, 9℄.For a more detailed des
ription see [8℄, for an extensive bibliography see [7℄(se
tion 3.13), and some approa
hes may be found in [27℄.In the following, we present the MSGFS for learning RB or KB based on theiterative rule learning approa
h.4.2 A Multi-Stage Geneti
 Fuzzy SystemLearning algorithms that use the iterative rule learning approa
h do not envisageany relationship between them in the pro
ess for obtaining rules. Therefore, the�nal set of rules usually needs an a posteriori pro
ess that will modify and/or �tthe said set. The methodology that is presently applied in
ludes di�erent pro
essesthat are not ne
essarily applied simultaneously. This methodology, whi
h we 
allmulti-stage geneti
 fuzzy systems and has been abbreviated as MSGFS, 
onsists ofthree 
omponent parts:I A geneti
 generation stage for generating fuzzy rules using the iterative rulelearning approa
h.II A postpro
essing stage working on the rule set obtained in the previous stagein order to either to re�ne rules or eliminate redundant rules.III A geneti
 tuning stage that tunes the membership fun
tions of the fuzzy rules.We des
ribe these shortly below.4.2.1 Geneti
 generation stageIn this stage the iterative rule learning approa
h is used for learning fuzzy rules
apable of in
luding the 
omplete knowledge from the set of examples.A 
hromosome represents a fuzzy rule, the generation method sele
ts the bestrule a

ording to di�erent features in
luded in the �tness fun
tion of the GA,features that in
lude general properties of the KB and parti
ular requirements tothe fuzzy rule. This features lead to the de�nition of the 
overing degree between arule and an example and the use of the 
on
ept of positive and negative examples.The iterative rule learning approa
h uses a 
overing method of the set of exam-ples. This 
overing method assigns a relative 
overing value to every example, andremoves the examples with an adequate 
overing value, a

ording to a 
overing
riterion.As we have indi
ated, this model may be used for learning RB as SLAVE [16, 18℄and for learning KB as the geneti
 generation pro
ess proposed in [24, 25℄. In thefollowing we shortly show how both learning algorithms use this approa
h.
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 Fuzzy Systems Based on the Iterative Rule... 241SLAVE is a learning system developed in [16, 18℄, that uses indu
tion andfuzzy rules for representing knowledge. This learning algorithm obtains a set ofrules for des
ribing the 
onsequent variable. The sele
tion of the best rule in ea
hiteration is done by a GA and the goal of this GA is �nding the rule that 
oversthe maximum number of positive examples and it satis�es the weak 
onsisten
y
ondition.Given the 
on
ept of the best rule, the learning algorithm will use it for sele
tingthe set of rules that best des
ribe the examples. Thus, on
e a 
lass is sele
ted,we obtain the best rule for this 
lass and eliminate the examples 
overed by thisrule and this pro
ess is repeated. Two important elements in this 
y
le must be
lari�ed: the 
on
ept of 
overing when the examples and rules are fuzzy, and the
riterion of termination of this 
y
le, i.e., how we know when the 
urrent rule setis suÆ
ient for des
ribing a 
lass. In the �rst problem, SLAVE uses a 
on
ept ofpartial 
overing based on a � parameter and for the se
ond problem it uses thede�nition of weak 
ompleteness 
ondition proposed in [18℄. The GA is used forsele
ting the best rule in ea
h iteration of the learning pro
ess and this GA andits parameters are des
ribed in [17℄. The goal of the GA is to return the rulewith the maximum number of positive examples satisfying the weak 
onsisten
y
ondition. Two di�erent de�nitions have been proposed on this 
ondition in [18℄,the k-
onsisten
y 
ondition and the k1k2-
onsisten
y 
ondition.The geneti
 generating pro
ess proposed in [24, 25℄ generates fuzzy ruleswith a free semanti
, without any initial referential set of fuzzy sets in the universesof dis
ourse, learning the fuzzy rules and the asso
iated fuzzy sets. It is developedby means of a real 
oded GA (RCGA), where a 
hromosome represents a fuzzyrule, and it is evaluated by means of a frequen
y method. The RCGA �nds thebest rule in every running from the set of examples a

ording to di�erent featuresthat are in
luded in the �tness fun
tion of the GA: High frequen
y value, Highaverage 
overing degree over positive examples, Small negative examples set, Smallmembership fun
tions width, and High symmetri
al membership fun
tions.The 
overing method is developed as an iterative pro
ess that permits a setof fuzzy rules to be obtained 
overing the set of examples. In ea
h iteration, itruns the RCGA 
hoosing the best 
hromosome, assigns the relative 
overing valueto every example and removes the examples with a 
overing value greater than avalue �. It �nishes when the set of examples is empty.An additional 
ondition, the High ni
he 
ondition rate, has been in
luded in[10℄ for maintaining a suitable intera
tion between neighbour rules by sharing their�tness payo�. In [9, 11℄ other versions of the method are presented where the ruleshave their semanti
 within performan
e intervals established by a fuzzy partitionmembership fun
tions.The advantage of this approximative representation (free semanti
) is its ex-pressive power for learning rules whi
h present its own spe
i�
ity in terms of thefuzzy sets involved in it.
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essing stage: sele
tion and re�nementAs we mentioned earlier, the iterative rule learning approa
h does not analyze anyrelationship between the rules that it is obtaining. That is why, on
e the rule basehas been obtained, it may be improved either be
ause there are rules that maybe re�ned or redundant rules if high degrees of 
overage are used. Two possiblepost-pro
essing methods are brie
y introdu
ed below, a re�nement algorithm anda sele
tion or simpli�
ation algorithm.A Re�nement algorithmThis algorithm, proposed in [20℄, is basi
ally 
omposed by a heuristi
 pro
essof generation, spe
i�
ation, addition and elimination of rules. The module is 
om-posed of the following tasks: The �rst one, 
onsists of improving the 
orre
tnessof ea
h rule. For this purpose, a spe
i�
ation pro
ess is used, trying to makeea
h rule 
over the highest number of well-
lassi�ed examples from the originalrule without 
overing its badly-
lassi�ed examples. After this task, it is possiblethat some badly-
lassi�ed examples 
overed by some rules turn into un
lassi�edexamples. The next task tries to 
over these un
lassi�ed examples using a generalization pro
ess over the existent rules or adding new rules. The last task in there�nement pro
ess uses a spe
ial generalization pro
ess for determining ea
h rule,the ante
edent variables that are relevant for representing the obje
ts from a 
lass.The previous tasks are repeated on the rule set until a termination 
ondition issatis�ed.The re�nement uses a heuristi
 fun
tion and a hill 
limbing strategy for sele
tingthe most promising a
tion in ea
h step of the algorithm toward a good solution. Afun
tion is 
onsidered that measures the global pre
ision of the 
urrent rule set onthe training set. Thus, in order to de�ne this fun
tion it is ne
essary to des
ribethe predi
tive module used. The inferen
e pro
ess begins with an ordered rule setand the 
lassi�
ation of an example is done in the following way: the adaptationbetween the example and the ante
edent part of ea
h rule is evaluated and the 
lassof the rule with the best adaptation is returned. If there are some rules with thebest adaptation (
on
i
t problem), the 
lass from the rule with the lowest orderin the rule set is returned. Thus, it is ne
essary to establish a priori 
riterionof relevan
e between the rules for sorting them. The re�nement algorithm usesthe same order returned by SLAVE. Basi
ally, this 
riterion is the following: themost relevant rules are those that removed the highest number of examples in thelearning pro
ess. In this sense, the most relevant rules are in the �rst positions andthe least relevant rules are in the last positions. The heuristi
 
omponent of there�nement algorithm sele
ts rules through the order previously des
ribed for therule set. However, no spe
ial ordering is 
onsidered for variables or values. Theyare taken by 
onsidering the default order.In [20℄ ea
h one of the steps of the re�nement algorithm are des
ribed.This re�nement algorithm has been su

essfully applied together with SLAVEand it improved the rule set obtained from SLAVE and simpli�ed the problem of
hoosing parameters in the learning algorithm [20℄. The re�nement algorithm hasbeen also su

essfully applied to other learning algorithms [21℄.
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tion algorithmDue to the iterative nature of the geneti
 generation pro
ess, redundant rulesmay appear. This o

urs when some examples are 
overed to a higher degree thanthe desired one and it makes the RB obtained perform worse due to the existen
eof redundant rules. In order to solve this problem and improve its a

ura
y, it isne
essary to simplify the rule set obtained from the previous pro
ess for derivingthe �nal RB.The simpli�
ation pro
ess was proposed in [25℄. It is based on a binary 
odedGA, where the 
oding s
heme maintains �xed-length 
hromosomes. Consideringthe rules 
ontained in the RB 
ounted from 1 to m, an m-bit string C = (
1; :::; 
m)represents a subset of 
andidate rules to form the RB �nally obtained as this stage'soutput, Bs, su
h that,If 
i = 1 then Ri 2 Bs else Ri 62 Bs :The initial population is generated by introdu
ing a 
hromosome representingthe 
omplete previously obtained rule set R, that is, with all 
i = 1. The remaining
hromosomes are sele
ted at random.Regarding the �tness fun
tion, E(�), it is based on an appli
ation spe
i�
 mea-sure usually employed in the design of GFSs, either the medium square error (SE)over a training data set, ETDS , in 
ontrol problems or the per
entage of 
lassi�edexamples in 
lassi�
ation problems.For example, in the 
ase of designing fuzzy logi
 
ontrollers (FLC), it may berepresented by the following expression:E(Cj) = 12jETDS j Xel2ETDS(eyl � S(exl))2 ;where S(exl) is the output value obtained from the FLC using the RB 
oded inCj , R(Cj), when the state variables values are exl, and eyl is the known desiredvalue.Anyway, there is a need to keep the rule 
ompleteness property 
onsidered ina previous stage. An FLC must always be able to infer a proper 
ontrol a
tion forevery pro
ess state. This 
ondition is ensured by for
ing every example 
ontainedin the training set to be 
overed by the en
oded RB to a degree greater than orequal to � ,GR(Cj)(el) = [j=1::T Rj(el) � � , 8el 2 ETDS and Rj 2 R(Cj) ;where Rj(el) is the 
ompatibility degree between the rule and the example, and� is the minimal training set 
ompleteness degree a

epted in the simpli�
ationpro
ess.Therefore, a training set 
ompleteness degree of R(Cj) over the set of examplesETDS is de�ned as



244 A. Gonz�alez & F. HerreraTSCD(R(Cj); ETDS) = \el2ETDS GR(Cj )(el) :The �nal �tness fun
tion penalizing the la
k of the 
ompleteness property is:F (Cj) = � E(Cj) if TSCD(R(Cj); ETDS) � �12Pel2ETDS (eyl)2 otherwise.This sele
tion algorithm has been applied together with the aforementionedgeneti
 generation pro
ess and improves the rule set obtained from it [25, 9℄.4.2.3 Geneti
 tuning stageAt this stage the geneti
 tuning pro
ess is applied over the KB for obtaining a morea

urate one.We 
an 
onsider two possibilities, depending on the fuzzy model's nature:a) an approximative model based on a KB 
omposed of a 
olle
tion of fuzzyrules without a �xed relationship between the fuzzy rules and some primaryfuzzy partitions giving meaning to them, orb) a des
riptive model based on a linguisti
 des
ription of the system with afuzzy partition that assigns a membership fun
tion to every linguisti
 label.In both 
ases, ea
h 
hromosome forming the geneti
 population will en
ode a
omplete DB, but in the �rst 
ase ea
h pie
e of 
hromosome 
odes the membershipfun
tions asso
iated to one rule and in the se
ond one ea
h pie
e of 
hromosome
odes the fuzzy partition of a variable.We 
an use RCGAs where every variable value is a gene, this GA and its
omponents are des
ribed in [23, 26℄. The main di�eren
e between both pro
essesis the 
oding s
heme. They are des
ribed below.Approximative s
hemeEa
h 
hromosome forming the geneti
 population en
odes a 
omplete KB,ea
h one of them 
ontains the RB with a di�erent DB asso
iated [23℄.If we 
onsider an MISO 
ontrol system where the KB 
onsists of a 
olle
tionof fuzzy rules des
ribing the a
tion with the form:Ri : IF x1 is Ai1 and ... and xn is Ain THEN y is B,where x1; :::; xn and y are the pro
ess state variables and the 
ontrol variable,respe
tively; and Ai1; :::; Ain, B are fuzzy sets in the universes of dis
ourseU1; :::; Un, V .We 
an 
onsider every fuzzy set asso
iated with a normalized triangularmembership fun
tion. A 
omputational way to 
hara
terize it is by using
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 representation a
hieved by means of the 3-tuple (aij ; bij ; 
ij),(ai; bi; 
i), j = 1; :::; n.Ea
h one of the rules will be en
oded in pie
es of 
hromosome Cri, i =1; : : : ;m, in the following way:Cri = (ai1; bi1; 
i1; : : : ; ain; bin; 
in; ai; bi; 
i):Therefore the KB is represented by a 
omplete 
hromosome Cr:Cr = Cr1 Cr2 ::: Crm:In [23℄ a 
omplete des
ription of this approximative geneti
 tuning pro
ess isto be found.Des
riptive s
hemeA modi�ed version of the geneti
 tuning method presented in [23℄ is applied.Ea
h 
hromosome forming the geneti
 population en
odes a 
omplete fuzzypartition of the variables.As we have, already stated, the primary fuzzy sets 
onsidered in the ini-tial linguisti
 fuzzy partitions are triangle-shaped. Thus, ea
h one of themembership fun
tions has asso
iated a parametri
 representation based ona 3-tuple of real values and a primary fuzzy partition 
an be represented byan array 
omposed by 3N real values, with N being the number of termsforming the linguisti
 variable term set. The 
omplete DB for a problem inwhi
h n linguisti
 variables are involved is en
oded into a �xed length real
oded 
hromosome Cr, built by joining the representation of ea
h one of thevariable fuzzy partitions as is shown in the following:Cri = (ai1; bi1; 
i1; : : : ; aiNi ; biNi ; 
iNi):Cr = Cr1 Cr2 ::: Crn:In [11℄ the appli
ation of both geneti
 tuning pro
esses is to be found.5 Con
luding RemarksIn this paper, we have presented the iterative rule learning approa
h as an alterna-tive model to the 
lassi
al Mi
higan and Pittsburgh approa
hes for the design ofgeneti
 learning pro
esses, and we have des
ribed how it 
an be applied within amulti-stage learning pro
ess.We have introdu
ed the GFSs, and presented the possible steps of an MSGFSfor learning RBs or KBs based on the iterative rule learning approa
h. It is ageneral geneti
 learning 
ontext for fuzzy systems where di�erent GFS pro
esses
an be de signed. The advantage of this general 
ontext is that in the �rst stage
onsiderably redu
es the spa
e of sear
h be
ause it look for only one fuzzy rule in



246 A. Gonz�alez & F. Herreraea
h sequen
e of iterations, and in stages two and three provides tools that 
animprove the RB and DB, respe
tively.We 
an 
on
lude pointing out that we have presented a general working method-ology in the geneti
 learning of fuzzy rules that attempts to generalize and pla
einto a 
ommon 
ontext the di�erent learning pro
esses that have been developedtill now.Referen
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