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Abstract 

People give information about their personal preferences in many different ways, de- 
pending on their background. This paper deals with group decision making problems in 
which the solution depends on information of a different nature, i.e., assuming that the 
experts express their preferences with numerical or linguistic values. The aim of this pa- 
per is to present a proposal for this problem. We introduce a fusion operator for numer- 
ical and linguistic information. This operator combines linguistic values (assessed in the 
same label set) with numerical ones (assessed in the interval [0,1]). It is based on two 
transformation methods between numerical and linguistic values, which are defined 
using the concept of the characteristic values proposed in this paper. Its application 
to group decision making problems is illustrated by means of a particular fusion oper- 
ator guided by fuzzy majority. Considering that the experts express their opinions by 
means of fuzzy or linguistic preference relations, this operator is used to develop a 
choice process for the alternatives, allowing solutions to be obtained in line with the ma- 
jority of the experts' opinions. © 1998 Elsevier Science Inc. All rights reserved. 
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I. Introduction 

Combining large quantities of data is absolutely essential in many sciences 
(e.g., Biology, Decision Theory, Artificial Intelligence, Fuzzy Sets Theory). It 
consists of the treatment and the processing of a data set provided by different 
information sources with a view to obtaining a single elaborated one. In this pa- 
per, we address the problem of combining information in Fuzzy Sets Theory ap- 
plied to Decision Theory. Specifically, we are interested in the study of fusion 
operators of imprecise information of a different nature, numerical and linguis- 
tic, which allow us to solve some Group Decision Making (GDM) problems. 

A GDM problem is defined as a decision situation in which (i) there are two 
or more experts, each of them characterized by his own perceptions, attitudes, 
motivations . . . .  (ii) who recognize the existence of a common problem, and (iii) 
attempt to reach a collective decision. Due to the fact that the information pro- 
vided by the human beings is in fact often vague and imprecise, the modelling 
of these problems requires adequate representation models of imprecise infor- 
mation and fusion operators of imprecise information. 

In a fuzzy context, a GDM problem may be modelled as follows. There is a 
finite set of alternatives, X = {Xl,X2,... ,xn} (n ~> 2), as well as a finite set of 
experts E = {el, e2 , . . . ,  era} (m >~ 2). Each expert, ek E E, provides his prefer- 
ences on X by means of one of the two following preference relation models: 
• Using a fuzzy preference relation, pk, with a membership function, 

#p~ :X  × X ---, [0, 1], where ppk(xi,xj) = ~ denotes the preference degree of 
the alternative xi over xj [16]. 

• Using a linguistic preference relation assessed in a pre-established label set, 
S = {so, . . . ,  sT}, i.e., with a membership function, #e~ : X × X ~ S, where 

denotes the preference degree of the alternative Xg over xj linguistically ex- 
pressed [12,14]. 
Many GDM problems may require the use of both relation types. For exam- 

ple, when the experts come from different working areas, and depending on 
their specific knowledge, some prefer to give their preferences in a numerical 
domain, and others in a linguistic one. 

In this paper, we deal with such GDM problems. Some experts provide their 
preferences by means of fuzzy preference relations, and others, by means of lin- 
guistic preference relations. We introduce the following new developments to 
model this GDM problem type: 
1. Two transformation functions between numerical and linguistic domains 

based on the concept of characteristic values. 
2. A fusion operator of numerical and linguistic information defined using the 

transformation functions above. 
3. A particular fusion operator based on the Linguistic Ordered Weighted Av- 

eraging (LOWA) aggregation operator [11,14], which is guided by the con- 
cept of fuzzy majority. 
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4. And finally, a choice process for GDM problems based on a choice degree 
of alternatives and on the proposed fusion operator. Specifically, we use the 
quantifier guided non-dominance degree defined in [4]. 
The structure of  this paper is the following: Section 2 briefly reviews the lin- 

guistic approach considered, Section 3 defines the combination of  numerical 
and linguistic information by means of a fusion operator, Section 4 presents 
the choice process based on this fusion operator, Section 5 develops an exam- 
ple, and finally, some concluding remarks are made. 

2. Linguistic approach 

In this section, we present some basic assumptions about the linguistic ap- 
proach used to represent the linguistic information in decision making. 

When we work with vague or imprecise knowledge, we cannot estimate with 
an exact numerical value. Then, a more realistic approach may be to use lin- 
guistic assessments instead of numerical values, that is, by assuming that the 
variables which participate in the problem are assessed by means of linguistic 
terms [21]. This approach is appropriate for a lot of problems, since it allows a 
representation of  the information in a more direct and adequate form if we are 
unable of expressing it with precision. The references [2,7,12,14,18,20] show 
some linguistic approaches in decision making. 

Usually, depending on the problem domain, an appropriate linguistic term 
set is chosen and used to describe the vague or imprecise knowledge. The ele- 
ments in the term set will determine the granularity of  the uncertainty, that is, 
the level of distinction among different countings of uncertainty. In [1] the use 
of term sets with an odd cardinal was studied, representing the mid term a as- 
sess of "approximately 0.5", with the rest of  the terms being placed symmetri- 
cally around it and the limit of granularity being 11 or not more than 13. 

The semantics of  the elements in the term set is given by fuzzy numbers de- 
fined in the [0,1] interval, which are described by membership functions. Be- 
cause the linguistic assessments are just approximate ones given by the 
individuals, we can consider that linear trapezoidal membership functions 
are good enough to capture the vagueness of those linguistic assessments, since 
it may be impossible or unnecessary to obtain more accurate values. This rep- 
resentation is achieved by the 4-tuple (x0, Xl, x2, x3), x l and x2 indicate the inter- 
val in which the membership function value is 1, and x0 and x3 are the left and 
right limits of  the definition domain of  trapezoidal membership function. 

The first priority ought to be to establish what kind of label set to use. Then, 
let S = {s/}, i E H = {0 , . . . ,  T}, be a finite and totally ordered term set in [0,1] 
in the usual sense [1]. Any label sz represents a possible value for a linguistic 
real variable, that is, a vague property or constraint in [0,1]. We consider a term 
set with odd cardinal, where the middle label represents an uncertainty of 
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"approximately 0.5" and the remaining terms are placed symmetrically around 
it. Moreover, the term set must have the following characteristics: 
1. The set presents a total order: si >~ sj if i >~ j. 
2. There is the negation operator: Neg(si) = sj such that j = T - i. 
3. Maximization operator: MAX(s/, sj) = si if si >t sj. 
4. Minimization operator: MIN(si, si) = si if si <~ sj. 
For  example, this is the case of the following set of the nine labels with its se- 
mantic associated [1]: 

C Certain (1, 1, 1, 1) 
EL Extremely_likely (0.93, 0.98, 0.99, 1) 
ML Most_likely (0.72, 0.78, 0.92, 0.97) 
MC Meaningful_chance (0.58, 0.63, 0.80, 0.86) 
IM It_may (0.32, 0.41, 0.58, 0.65) 
SC Smallchance (0.17, 0.22, 0.36, 0.42) 
VLC Very_lowchance (0.04, 0.1, 0.18, 0.23) 
EU Extremely unlikely (0, 0.01, 0.02, 0.07) 
I Impossible (0, O, O, O) 

Formally speaking, it seems difficult to accept that all experts should agree 
on the same membership function associated to linguistic terms, and therefore, 
there are no universality distribution concepts. On the other hand, we should 
point out that the experts cannot be ready to give the membership functions 
associated to labels. Therefore, in our context, we consider an environment 
where experts can discriminate perfectly the same term set under a similar con- 
ception, taking into account that the concept of  a linguistic variable serves the 
purpose of  providing a means of  approximated characterization of  imprecise 
preference information. We make the experts' activity easy by giving them 
some more used term sets, e.g., the aforementioned set of nine labels. 

3. Combining numerical and linguistic information 

We focus on the design of fusion operators of quantitative and qualitative 
information, i.e., we provide a method for combining numerical and linguistic 
information. We assume that the information is provided using absolute and 
compatible scales, i.e., all users use the same numerical domain (specifically 
the unit interval [0,1]) to provide the quantitative assessments and the same 
term set (labels and semantics) to provide the qualitative ones. The problem 
of combining information when different and incompatible scales are used is 
not addressed here. 

We define a fusion operator which acts as follows: it transforms all numer- 
ical and linguistic input information given by different users to an intermediate 
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expression domain, aggregates the information in that domain, and finally, 
transforms the elaborated information into output information depending on 
the user's initial domain. Therefore, to define this fusion operator type, we have 
to answer the following three questions: 
• how does it transform the information among different domains? 
• what is the intermediate expression domain? and 
• how does it combine the information in the intermediate domain? 
These three questions are analyzed in the following subsections. After that we 
present the fusion operator. 

3.1. Transformation methods 

In this subsection, we shall characterize some transformation functions be- 
tween the linguistic and numerical expression domains. As was mentioned ear- 
lier, any linguistic label has its associated fuzzy number, and thus, before 
defining these transformation functions, we introduce the concept of the char- 
acteristic values associated to a fuzzy number. 

Let F ( ~ )  be the set of fuzzy numbers defined on ~ .  Each fuzzy number, 
Yi E F(JI), has associated a membership function, lay: F(~) ~ [0, 1]. Let us 
consider that for each fuzzy number, yi, we know a set of characteristic values, 

= ( c ] ,  c 2 , ~ , . . . ,  CT}, which are crisp values that summarize the information 
given by yi, i.e., they support its meaning. We shall assume that, 
C',4 E Supp(yi) = {re~lkty, (r) > 0}. Without loss of generality, we can define 
a set of functions CF -- {J~, j = 1 , . . . ,z} ,  in such a way that each function 
f j  associates a characteristic value to each fuzzy number yi, i.e., 

f / :  F ( ~ )  ~ ~ ,  

Cv, l ---- c / .  

Therefore, each set of characteristic values, {C{, Vi}, symbolizes a particular 
characteristic function, j), for a set of fuzzy numbers, {yi, Vi}. Some examples 
of this function type are: the deffuzification methods applied in fuzzy control [5], 
the ranking functions [3,23], and the value of a fuzzy number defined in [8]. 

3.1.1. Transformation function from linguistic domain to numerical domain 
Here, we define a Linguistic-Numerical Transformation Function, which ob- 

tains a numerical value from a given label. 
Let si be a linguistic label, si E S, and suppose that it has associated a set of 

characteristic values, CVs, = {C], C2, . . . ,  CT}, obtained by means of a set of 
characteristic functions, acting on its associated fuzzy number, y~, E F(~) ,  
i.e., C/1 -----fl(Ys~), C2 =fz(Ys~),..., Ci z =f~(Ys,). In the following, we denote 
the characteristic value of a label si, J)(Ys,), as Gj(si). 
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Function, oN, is 

Example 1. Let us consider the set of  nine labels introduced in Section 2. 
Because we have trapezoidal membership functions for representing the labels, 
we define the characteristic values according to the four parameters used to 

i i i i represent the trapezoidal membership function of a label, si (xo,x l,x2,x3). We 
consider the following methods: the value of a fuzzy number [8], the maximum 
value and the center o f  gravity [5]. 

(1) Value. The characteristic value of a label si, GI (si), is: 
1 

(Si) = / s(r)(L~, i (r) + R~,, (r) ) G1 dr 

0 

where L~, (.) and Ry,, (.) are the r-cut representations ofys, and s(r) is a reducing 
function [8]. Gl (sl) may be seen as a central value that represents, from a global 
point of  view, the value of the (ill-defined) magnitude that the fuzzy number 
(associated to the label) represents [8]. Its expression using the trapezoidal 
membership functions and s(r) = r is: 

• i 
__ __ -{-- 2 X  2 -~- X 3 Jr- X 0 G1 (si) - (x~ +2 Xe) ~- [(x~ x~) 6 (x~ - x~)] _- 2x'1 ~6 

(2) Maximum value. Given a label, si, with a membership function, 
/ay,~ (v), v e V = [0, 1], its height is defined as 

height(si) = Sup{#ys,(v), Vv}. 

Therefore, this method may obtain a representative value of  a label in different 
ways [5]. We assume two of these ways, obtaining two characteristic values, 
G2(s~) and G3(si), according to the following expressions: 

Definition 1. The Linguistic-Numerical Transformation 
defined according to the following expression: 

~,N: S ~ [0, 1] 

~bN(s,) -= g( G, (si), . . . , az(si) ), 

where g is any aggregation operator verifying: 

min{vl , . . . ,  Vz} <~ g(v l , . . . ,  vz) ~< max{v1, . . . ,  vz}. 

Therefore, this function, ~,N, obtains the real value of  a label by means of  
the aggregation of its respective characteristic values. Clearly, 
I ~ ¢ N ( s / )  e Supp(y,i). 

We must denote that there are no scientific bases for the choice of character- 
istic values (i.e., no defuzzifier is derived for a theoretical principle, such as max- 
imization of  fuzzy information or entropy). Because we are interested in the 
aggregation of  some of them, one criterion for the choice of a characteristic value 
may be the computation simplicity. For an additional discussion on these values, 
see [3,5,8,23]. Below, we give an example of 0 N with four characteristic values. 
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G2(s,) = min{v ]G~, (v) = height(s i )} ,  

G3(s,) = max{v [/~y,, (v) = height(s,)}. 

Therefore ,  their representations,  based on the trapezoidal  notat ion,  are: 

G2(s,) = x' 1 and G3(s,) = x~. 

(3) Center o f  gravity.  This method  summarizes the meaning o f  a label, si, 
into a numerical  value as: 

G4(si) fvVl~Y~'(v)dv 
- f v  (v) dv 

For  trapezoidal  fuzzy numbers,  we obtain: 

i if Xio = Xil X 0 

i i 
~ -  X 2 ~ X3~ 

c4(s , )  = + (x )2 ( 4 ) 2  (4 )2  , , 
- - - X°Xl otherwise. 

i 3(x~ + x 2 - x~ - x6) 

I f  a decision maker  uses as aggregation function, g, the mean funct ion ,  then, the 
t ransformat ion  function, called ~ ,  is: 

~IN(si ) __ GI(Si)  q- G 2 ( s i )  q -  G3(si)  -Jy G4(si) 
4 

and thus, 

i if 4 = Xil X 0 

X~ - -  i __ X3,  

~ ( s , )  -- 8(x] + xi2)H + (x' 3 + X~o)H + 8(H +x2x 3 ,  , _ X,Xo ) ,  i otherwise, 
24H 

i i " i with H = x 3 + x 2 - x'l - x 0. 
I f  we consider the labels, {C, EL, IM, SC}, then: 

~ptN(c) = 1, ~blN(EL) : 0.9783 + 0.98 + 0.99 + 0.9725 = 0.98, 
4 

~b~(IM) = 0.4916 + 0.41 + 0.58 + 0.4894 = 0.49, 
4 

~b~(SC) = 0.29167 + 0.22 + 0.36 + 0.2927 = 0.29. 
4 

We should point  out  that  the results o f  ~,~ depend on three factors: (i) the 
numerical  meaning or semantic o f  the linguistic terms, (ii) the aggregation 
function g, and (iii) the chosen set of  functions, CF. Therefore,  the sensitivity 
o f  g,N is condi t ioned by the decisions made in each factor. 



184 M. Delgado et al. I Journal of lnformation Sciences 107 (1998) 177-194 

3.1.2. Transformation function from numerical domain to linguistic domain 
Here, using the aforementioned characteristic values, we define a Numerical- 

Linguistic Transformation Function, which gives a representative label for a giv- 
en numerical value. 

Definition 2. Let r E [0, 1] be a numerical value. Let si be a label verifying that 

h(r, si) = min{h(r, st)IVst E S}, 

with 

{ zj  i f  r S u p p I s , / ,  

h(r, st) = (r - Gj(st)) 2 if r E Supp(st), 

where z is the cardinal of the characteristic function set, CF. Then the Numer- 
ical-Linguistic Transformation Function, called q;L, is defined according to the 
following expression: 

~ L : [ 0 , 1 ] ~ S  

q ,L( r )  = si .  

Example 2. Working in the same context as Example 1, if the considered 
numerical value is r = 0.73, then ~,L(0.73) = MC, since 

min{h(0.73, C), h(0.73, EL), h(0.73, ML), h(0.73, MC), h(0.73, IM), 

h(0.73, SC), h(0.73, VLC), h(0.73, EU), h(0.73, I)} 

= rain{4, 4, 0.48, 0.2, 4, 4, 4, 4, 4) = 0.2 

= h(0.73, MC). 

3.2. On the intermediate expression domain 

As we said at the beginning, the numerical expression domain is the unit in- 
terval [0,1] and the linguistic one is a label set S. Therefore, the intermediate 
expression domain could be any one of them. We propose using the linguistic 
nature intermediate domain. We find it reasonable to work on the more general 
expression level, and later, to express the results in the specific expression levels 
on the basis of the following reasons: 
• There is a loss of information in both transformations. But, we find the lin- 

guistic-numerical transformations to be less appropriate than the numerical- 
linguistic ones, because the first ones try to determine exactly a numerical 
value from a linguistic preference given by an expert incapable of providing 
his preference with the numerical value. 

• For an expert who uses a numerical expression domain to provide his pref- 
erences, to use a linguistic one should not be (theoretically) a difficult task. 
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However, for an expert who uses a linguistic expression domain, using a nu- 
merical one is not easy, because he may have a vague knowledge about his 
preference and very often is not able to estimate it with an exact numerical 
value (from the range of  possible numerical values that support the meaning 
of  a label). 

3.3. Combining information in the intermediate domain 

Since we use a linguistic nature intermediate domain, the information will be 
combined by means of  the aggregation operators of  linguistic information 
[6,11,14,18,20]. We could use any aggregation operator, but here, we propose 
using quantifier guided aggregation operators [11,14,20], representing the con- 
cept of  fuzzy majority in its computation. In this way, and since our appli- 
cation is developed in G D M  problems, we find that the final decisions reflect 
what the majority of  experts prefer, as for instance what was done in [10-15]. 

Specifically, we propose using an operator with direct computation, the 
LO WA operator [11,14], which is based on the O WA operator defined by Yager 
[19], and on the convex combination of linguistic labels defined by Delgado et al. 
[6]. 

Definition 3 ([11,14]). Let A = {a l , . . .  ,am} be a set of labels to be aggregated, 
then the LOWA operator, q~, is defined as 

qS[al,...,am] = W. B T = Cm{wk, bk,k = 1 , . . . ,m}  

= Wl @ b,  @ (1 - w , )  @ cm-l{f lh,bh,h = 2 , . . .  ,m},  

where W = [wl , . . . ,  Wm] is a weighting vector, such that, (i) wi E [0, 1], and (ii) 
Y~iwi= 1; and B = { b l , . . . , b m }  is a vector associated to A, such that, 
B = a(A) = {a,/~),. . . ,  a,(,/}, where, a,ol ~< aoli / V i ~<j, with a being a permuta- 
tion over the set of  values A./~h = wh/Z~wk, h = 2 , . . . ,  m; and C m is the convex 
combination operator of  m labels [6]. If m = 2, then it is defined as 

C2{wi, b ~ , i = l , 2 } = w , @ s j @ ( 1 - w , ) @ s ~ = s k ,  sj, s~ E S (j>~i) 

such that, 

k = MIN{T, i + round(wl • (j - i))}, 

where " round"  is the usual round operation, and b~ = sj, b2 = si. Ifwj = 1 and 
w~ = 0 with i • j gi, then the convex combination is defined as 

Cm{wi, bi, i = 1 , . . .  , m }  = by. 

Several arguments (axioms and properties) for its rational aggregation way 
were given in [14]. 

Given that we are interested in the area of  quantifier guided aggregations, 
following Yager's method [19], we may calculate weights of  the OWA operator 
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using fuzzy linguistic quantifiers [22], representing the fuzzy majority. For a 
non-decreasing relative quantifier, Q, the weights are obtained as 

w i = Q ( i / m ) - Q ( ( i - 1 ) / m ) ,  i =  1 , . . . ,m.  

where the non-decreasing relative quantifier, Q, is defined as [22] 

Q ( y ) =  - a ) / ( b - a )  if a<~y<~b, 

if y >  b, 

with a, b,y E [0, 1], and Q(y) indicating the degree to which the proportion y is 
compatible with the meaning of  the quantifier it represents. Some examples of  
relative quantifiers are "most"  (0.3, 0.8), "at least half" (0, 0.5) and "as many 
as possible" (0.5, 1). In the following, ~bQ denotes the LOWA operator whose 
weights are computed using a linguistic quantifier, {2. 

3.4. Fusion operator of  numerical and linguistic information 

This operator acts on three steps: 
1. It transforms all inputs into a usual linguistic intermediate domain by means 

of a particular numerical-linguistic transformation function, 
2. the transformed information is aggregated by means of a concrete linguistic 

aggregation operator, and finally, 
3. the output information is expressed in each user's expression domain, using 

an appropriate linguistic-numerical transformation function. 
This idea is shown in Fig. 1, and characterized in the following definition. 

Definition 4. Let E =  {el, i=  1 , . . . ,m}  be a group of  experts, and let 
A = { (a i , c i ) , i  = 1 , . . .  ,m} be their respective opinions to be combined, such 
that, ci E {0, 1}, and ifci = 1 then ai E S and ifci = 0 then ai E [0, 1]. A fusion 
operator of linguistic and numerical information, ~o, is defined according to: 

(J): (([0, l] U S) x {0, 1}) m ----+ (S x [0, 1]) 

go[(al ,Cl) , (a2,c2) , . . . , (am,Cm)]  = (hi,b2),  

such that, b~ E S is a linguistic output given by 

b~ = rL[).(a~, c~), 2(a2, c2),. • •, ,~(am, c,,)], 

f aj if cj = 1, 
2(a j, c j) 

q/e(aj) otherwise, 

with/-L an aggregation operator of  linguistic information, and b2 G [0, 1] is a 
numerical output obtained as b2 = fiN(b1). 
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As we mentioned above, regarding the application of fusion operators in 
GDM problems, we use a particular fusion operator based on the LOWA op- 
erator guided by fuzzy majority (i.e., F L = ~bQ), symbolized by co~ °wA. 

4. A GDM process under numerical and linguistic assessments 

Here, we present a direct choice process developed from the fuzzy and lin- 
guistic preference relations provided by the experts, called Non-Dominance 
Based Choice Process. It is based on a quantifier guided choice degree of alter- 
natives, i.e., the non-dominance property guided by a fuzzy linguistic quantifier, 
as in [41. 

A direct process is developed along three steps, as it is shown in Fig. 2 [15]. 
1. Exploitation State. The goal of this state is to calculate the non-dominance 

degree of each alternative according to each individual preference relation. 
2. Aggregation State. The goal of this state is to aggregate individual non-dom- 

inance degrees obtained in the above step with view to calculate the non- 
dominance degree of each alternative according to the global opinion of 
group of experts. To do that, we apply the proposed fusion operator based 
on the LOWA operator, (D~ OWA 

3. Selection State. The goal of this state is to find the solution. We choose those 
alternatives with global maximum non-dominance degree. 
We should point out that in the exploitation state, as well as in the aggrega- 

tion state, the concept of fuzzy majority is used, but with a different meaning. In 
the first one because the individual degrees are calculated, the fuzzy majority of 
alternatives (of non-dominance) is used [14]. In the second one, since individual 
degrees of different experts are aggregated, the fuzzy majority of experts is used 
[14]. Therefore, we can use different fuzzy linguistic quantifiers in each state. 

Assuming that we have a label set, S, two transformation functions 
{~/N ~L} with their characteristic functions CF = {J), j = 1,.. .  ,z}, and the 

[Step I] [Step 2] 

f EXPLOITAltON ~ IAGGI~GAliON 
STAll ~ - ~  STA11E 

~ndi[idual 
Llng ulstlc 
or l-uz.zy Preference 
Relations 
pk 

(Step 3] 

Global 
Degrees , SE Lr:GglON 

STAI~ 

Fig. 2. Three steps of  a direct choice process. 

SOLUTION 
ALTERNATIVE(S) 
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concepts of  fuzzy majority of non-dominance and fuzzy majority of experts 
represented by means of the two fuzzy linguistic quantifiers, QI and Q2, respec- 
tively, the choice process is described in the following steps. 

4.1. Exploitation state 

In this state we have to calculate the quantifier guided non-dominance de- 
gree of each alternative according to the preference relation of  each expert. 
pk, called individual quantifier guided non-dominance degree. It quantifies the de- 
gree to which each alternative is not dominated by the fuzzy majority of the 
remaining ones. It is calculated on the basis of concept of non-dominated alter- 
natives defined by Orlovski [17] as follows. 

Definition 5 ([19]). Let A = { a l , . . . , a m } ,  be a set of numerical values to be 
aggregated, then the OWA operator, F, is defined as 

m 

f[al , . . . ,am] = W . B  T=  E w i . b i ,  
i=l 

where W and B are as in Definition 3. 

Definition 6. Given an alternative, xi E X, the Individual quantifier guided 
Non-Dominance Degree of  xi, INDD~, is defined: 

(a) from a fuzzy preference relation, pk (pk c [0, 1]), provided by the expert, jt 
e,, according to the following expression [4]: 

INDD~ FQ, [(1 "~ = - P j i ) ,  J =  1, . . . ,n , jT~i] ,  

where Fo~ is the OWA operator guided by fuzzy majority, and p~;~ represents 
the degree to which xi is strictly dominated by XJ, and it is obtained as 

~"~ max{p~,-/~0.,0}, Vi,j; l)i i = 
(b) from a linguistic preference relation, P* (~i E S), according to the fol- 

lowing expression [15]: 

INDD~ ~b0~ .,..k = [NegCoii ), j = 1 , . . . , n , j  • i], 

where q~0, is the LOWA operator guided by fuzzy majority and 
s,k ~/ p/i = so  i fp  >p/k,, 

o r  

~k if p~ i >. k Pii = Sh E S ~ p q ,  

with p~, = st, p~. = s, and l = t + h. 

More specifically, INDD~ expresses the degree to which an alternative, xi, is 
not dominated by the fuzzy majority of the remaining alternatives according to 
one expert's opinions, e,. 
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4.2. Aggregation state 

From the sets of  individual quantifier guided non-dominance degrees ob- 
tained for each alternative, xi, {INDD/k, Vk}, and by means of the fusion oper- 
ator, (D LOWA Q2 , we calculate the Global quantifier guided Non-Dominance Degrees 
for each alternative. It is formed by two components, the first one, GNND~,  
has a linguistic nature, whereas the second one, GNND~,  is purely numerical. 
In this way, we obtain the degree to which an alternative, xi, is not dominated 
by the fuzzy majority of the remaining alternatives according to all the experts' 
opinions. It is defined as follows: 

(GNDD~, GNDD/N) = c@°WA[(INDD~, ck), k = 1 , . . . ,  m]. 

4.3. Selection state 

Finally, when the choice degrees of alternatives, (GNDD~, GNDD~) ,  are 
calculated we obtain the set of solution alternatives, xnd x, as follows: 

Xmn~x = {x, E X / G N D D ~  = MAXj{GNDD~,  j = 1 , . . . ,  n}}, 

which is formed by the alternatives with maximum linguistic global quantifier 
guided non-dominance degree. Then, the solution is shown to each expert in his 
respective expression domain using the linguistic or numerical component. 

We should point out that if all the alternatives have the same maximum non- 
dominated degree or this maximum is zero, we need either that the experts pro- 
vide more information to decide among them, or the development of  a negoti- 
ation and consensus process among the experts, which allows them to exchange 
information to update their preferences [2,13]. On the other hand, if the choice 
procedure leads to an undesired solution we need either a method to include 
the experts' undesired degrees in the choice process or a negotiation process. 

5. Example 

Let us suppose an investment company, which has an amount of money to 
invest. There are four possible options to invest an amount of money, 
{xl,x2,x3,x4}: a car factory, a food company, an atomic weapons factory, 
and a computer company, respectively. In the company, all the decisions are 
made according to the opinions provided by the managers of  four departments, 
{el, e2, e3, e4}: business department, social-policy department, risk analysis de- 
partment and the environment department. Given that these experts come 
from different areas of  knowledge such as economics, biology, law . . . .  some 
may have more facility to express their opinions with numbers, while others 
may prefer to express their opinions by means of  linguistic assessments. 
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Assume that  the experts,  {el, e3}, use the numerical  domain ,  [0, 1], and the re- 
main ing  ones the linguistic domain ,  S, given in Section 2, i.e., a set o f  nine la- 
bels. 

Wi thou t  loss o f  generality,  let us assume that  we work  with reciprocal  pref- 
erence relations, which, in the case o f  fuzzy preference relations, implies (i) 
Pk,j + ~ i  = 1, and p/i = u n d e f i n e d ( - ) ;  and,  in the case o f  linguistic preference 
relations, implies (i)/~0 = Neg(p~ji), and (ii) pii = unde f ined ( - ) .  Consider  that  
preference relat ions provided by the experts  are 

_ _  

pj = 0.7 p2 

0.3 

0.9 

0.5 

0.3 

1 

p 3  

030 o] 
- 0.6 0.6 I - 

0 . 4  - 0.2 EL 

0.4 0.8 - EEL I 

o: ] - 0 . 8  0 . 4  p 4 =  I M  - 

0.2 - C 

0.6 0.8 E U  

1 E U  

- VLC [ ' 

J M L  - 

EL  I 

I EL 

- V L C  

M L  - 

Consider ing tha t  bo th  Ql and Q2 are the fuzzy linguistic quantifier  "as many as 
possible" with the pair,  (0.5, 1), assuming the t r ans fo rmat ion  functions 
{~lN, Ol L) presented in Examples  1 and 2, and using the fusion opera tor ,  
( .O L O W A  Oe , the choice process is applied as follows. 

5.1. Exploitation state 

F r o m  the a fo rement ioned  preference relations, {p1,p2 p3,p4},  we obta in  
the respective strict preference relations: i4o04!2] i] - 0 . 2  . - I 

ps' , l  = p~'2 = , 

0 - M L  - 

[_0.8 0 0.6 M L  I I M  

li °°4!1 [i MLi p~,3 = 0 - 0.6 p~.4 = I - I L 

0 - C - 

0.2 0.6 I I M  - 
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We calculate the individual quantifier guided dominance degrees, INDD~, 
by means of the OWA and LOWA operators, FQ, and ~bQl, with the weighting 
vector, W = [0, 0.334, 0.666]. The result is shown in Table 1. 

5.2. Aggregation state 

Assuming that the linguistic intermediate domain is the label set, S, and ag- 
gregating the said individual degrees by means of the fusion operator, co~ °wA, 
but now with the weighting vector, W = [0, 0, 0.5, 0.5], we obtain the global 
quantifier guided non-dominance degrees for each alternative, (GNDD~, 
GNDD/Y), as shown in Table 2. 

5.3. Selection state 

Finally, we find the set of solution alternatives Xmndax = {X2,X4}, since 
GNDD2 L = GNDD4 L = IM and IM = MAXj{GNDD~}. 

Therefore, according to the different experts' opinions, the food and com- 
puter companies are the best options to invest the money. Then, the experts re- 
ceive that information in the following way: 
• experts el and e3: {(x2~, 0.49), (x4, 0.49)}, and 
• experts e2 and e4: {(x2,IM), (x4,IM)}. 

6. Concluding remarks 

Depending on their background, people give information about their per- 
sonal preferences in many different ways. Particularly, we have shown that it 

Table 1 
Individual quantifier guided non-dominance degrees 

INDD/k el e: e3 e4 
Xl 0.336 MC 0.336 SC 
xz 1 MC 0.8668 SC 
x3 0.4668 EU 0.4 SC 
x4 0.8668 SC 1 MC 

Table 2 
Global quantifier guided non-dominance degrees 

X 1 X2 X3 X4 

(GNDD~, GNDD~) (SC, 0.29) (IM, 0.49) (VLC, 0.138) (IM, 0.49) 
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is possible to combine linguistic and numerical information. We have studied 
the case in which experts provide their opinions by means of numerical or lin- 
guistic assessments. We have proposed a fusion operator of  numerical and lin- 
guistic information, which allows us to combine numerical values assessed in 
[0,1] and linguistic values assessed in a label set S. To build this fusion operator 
we have designed two transformation methods between the numerical and lin- 
guistic domains based on the concept of characteristic values. Later, we have 
shown the application of this fusion operator in a G D M  problem in which 
the experts provide their preferences by means of fuzzy and linguistic prefer- 
ence relations. 

In future, we plan to study the case in which the experts provide their opin- 
ions by means of  linguistic assessments with multi-granularity term sets. 
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