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Abstract. Real-world electrical engineering problems can take advantage of the last Data Analysis methodologies.
In this paper we will show that Genetic Fuzzy Rule-Based Systems and Genetic Programming techniques are good
choices for tackling with some practical modeling problems. We claim that both evolutionary processes may
produce good numerical results while providing us with a model that can be interpreted by a human being. We
will analyze in detail the characteristics of these two methods and we will compare them to the some of the most
popular classical statistical modeling methods and neural networks.
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1. Introduction

Spanish electrical market is evolving towards compe-
tence, but it is not completely deregulated. There are
four major agents (Iberdrola, Endesa, Uni´on Fenosa,
Hidroeléctrica del Cant´abrico) that simultaneously
own almost all power generation plants and distribu-
tion networks in Spain. Due to the characteristics of
the Spanish market, any of these companies could have
a great influence over the price of the electrical energy,
which has an obvious strategic importance in the eco-
nomical development of the country.

Hence, the Spanish government decided some years
ago to nationalize high voltage lines and to separate
distribution and generation markets, thus forcing the
mentioned companies to act as two different entities
each. This way, generation plants sell the energy they
produce in a partially regulated market and the dis-
tribution companies buy the energy in this same mar-
ket. (Bilateral contracts between suppliers of energy
and consumers are also allowed in certain cases.) The

energy bill that users pay is not completely received
by the companies, but the payments are redistributed
according to some complex criteria (amount of power
generation of every company, number of customers,
etc.) with the aim of equilibrating the spanish market.

Recently, some of these companies have asked to
revise these rules. We will discuss some models orig-
inated in the new proposals of redistribution of the
maintenance costs of the network. Maintenance costs
depend (among other factors) on the total length of
electrical line each company owns, and on its kind
(high, medium, urban low and rural low voltage). To
justify the expenses of the companies, models of the
length of line are used. This is so because, besides
high voltage lines can be easily measured, a problem
comes when trying to estimate the maintenance costs of
medium and low voltage lines. Specially in the latter
case, low voltage line is contained in cities and vil-
lages, and it is very difficult and expensive to measure
it. This kind of line uses to be very convoluted and
companies can serve as much as 10000 small nuclei.
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An indirect method for determining the length of line is
needed.

Moreover, some of the modifications of the payment
structure were based on the optimal network and not on
the actual network. It is argued that low and medium
voltage lines existing in a town have been installed in-
crementally and thus the actual distribution is far from
the optimal one. If lengthy networks are rewarded,
there are not incentives to modernize obsolete distribu-
tion networks.

The reasons that make models of the length of line
important in the spanish electrical market are clear. All
companies develop their own models and the govern-
ment also uses some of these models to decide the part
of the payment that the companies receive. In this con-
text, we were asked to solve two problems: to relate
some characteristics of a certain village with the actual
length of low voltage line contained in it, and to relate
the maintenance cost of the network installed in certain
towns with some other characteristics of these towns
[1, 2]. In both cases, it would be preferable that the so-
lutions obtained verify another requirement: they have
not only to be numerically accurate in the problem-
solving, but must be able to explain how a specific
value is computed for a certain village or town. That
is, it is interesting thatthese solutions are interpretable
by human beings to some degree.

In this paper, we propose different solutions to both
distribution problems in the field of Data Analysis
(DA). DA can be considered as a process in which,
starting from some given data sets, information about
the respective application is generated. In this sense,
DA can be defined as a search for structure in data.
Since in our problems there is a need to find relation-
ships between some variables (the village characteris-
tics and the length of low voltage line in it, in the first
case, and the town characteristics and its associated
maintenance cost, in the second one) and these rela-
tionships must be compatible with some known data,
it is clear that they may be solved by means of DA
techniques.

The problem-solving techniques considered will
make use of the Evolutionary Algorithms (EAs) [3] in
the field of DA. We will analyze different hybrid evo-
lutionary learning processes. Firstly, we will use Ge-
netic Algorithm-Programming (GA-P) [4] algorithms
for symbolic regression and later we will use Ge-
netic Algorithms (GAs) [5] and Evolution Strategies
(ESs) [6] to design Mamdani and TSK-type Fuzzy
Rule-Based Systems (FRBSs) [7–9]. We will consider

these two approaches to solve the mentioned problems
and we will compare their performance with two other
widely known techniques: classical regression (non-
linear least squares model fitting to the set of data) and
neural methods.

The paper is set up as follows. In Section 2, we intro-
duce the use of the hybrid evolutionary techniques in
the field of DA and present the GA-P and Genetic Fuzzy
Rule-Based Systems (GFRBSs) [10]. Sections 3, 4,
and 5 are devoted to present the two different ap-
proaches commented, the use of GA-P algorithms for
symbolic regression problems and the use of GAs and
ESs to optimize and design FRBSs. In Section 6, the
electrical distribution problems are tackled by means
of the proposed techniques and their performance is
compared with other kind of techniques, classical re-
gression and neural methods. Finally, some concluding
remarks are pointed out in Section 7.

2. Preliminaries: Hybrid Evolutionary
Techniques for Data Analysis

2.1. Framework

In DA, objects described by some attributes are consid-
ered and the specific values of the attributes are the data
to be analyzed. Objects can be, for example, things,
time series, process states, and so on. The overall goal
is to find a structure (information) about these data.
This leads to a complexity reduction in the considered
application which allows us to obtain improved deci-
sions based on the gained information.

The application of DA has a wide range and occurs
in diverse areas where different problem formulations
exist.

Different algorithmic methods for DA have been
suggested in the literature, as Clustering algorithms
[11], regression techniques [12], Neural Networks [13],
FRBSs [7], EAs [3], etc.

As regards DA in the light of EAs, a representation
of the information structure is considered and evolved
until having an abstraction and generalization of the
problem, reflected in the fitness function. For exam-
ple, in [14] different approaches for learning in the
framework of GAs are to be found.

Recently a lot of research efforts have been directed
towards the combination of different methods for DA.
In this way, EAs have been combined with different
techniques either to optimize their parameters acting as
evolutionary tuning processes or to obtain hybrid DA
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methods, for example, evolutionary-neural processes
[15], evolutionary regression models [16] and evolu-
tionary fuzzy systems [17].

Next, we briefly introduce two specific evolutionary
hybrid approaches, the GA-P to perform symbolic re-
gressions and GFRBSs to optimize and design fuzzy
models. Different particular developments in each field
will be presented in Sections 3, 4 and 5.

2.2. GA-P for Symbolic Regression

Genetic Programming (GP) [16] has emerged as an
effective mean of automatically generating computer
programs to solve a variety of problems in many dif-
ferent problem domains, including the discovery of em-
pirical formulae from numerical data.

GP methods generate symbolic expressions and can
perform symbolic regressions. However, the way in
which GP perform symbolic regressions is quite re-
strictive; the structure of an expression can be changed
by crossover and mutation operations, but the value of
the constants embedded in it—generated by the imple-
mentation program when the GP starts—can only be
altered by mutations.

The GA-P [4] performs symbolic regression by com-
bining the traditional GAs with the GP paradigm to
evolve complex mathematical expressions capable of
handling numeric and symbolic data. The GA-P com-
bines GAs and GP, with each population member con-
sisting of both a string and an expression as it is shown
in Fig. 1. The GP part of the GA-P evolves the expres-
sion. The GA part concurrently evolves the coefficients
used in the expressions. Most of the GA-P’s elements
are the same as in either of the traditional genetic tech-
niques.

The GA-P and GP make selection and child gen-
eration similarly, except that the GA-P’s structure re-
quires separate crossover and mutation operators for
the expression and coefficient string components. In
the GA-P, crossover and mutation take place indepen-
dently for the coefficient string and the expression com-
ponent. Mutation and crossover rates for the coefficient
string (using traditional GA methods) are independent
from the rates for the expression part (using standard
GP methods).

By fusing the GA’s capability of value optimization
and the GP’s capability of creating mathematical equa-
tions, it improves the ability to describe the data. There-
fore, the GA-P is a powerful DA tool.

A complete description of GA-P can be found in [4].

Figure 1. Member of population, GA-P algorithms.

2.3. Genetic Fuzzy Rule-Based Systems

Nowadays, one of the most important applications of
the Fuzzy Set Theory suggested by Zadeh in 1965 [18]
is the FRBSs. These kinds of systems constitute an
extension of the classical Rule-Based Systems because
they deal with fuzzy rules instead of classical logic
rules. Thanks to this, they have been successfully ap-
plied to a wide range of problems presenting uncer-
tainty and vagueness in different ways [7, 19–21].

An FRBS presents two main components: (1) the
Inference System, which puts into effect the fuzzy in-
ference process needed to obtain an output from the
FRBS when an input is specified, and (2) the Knowl-
edge Base (KB) representing the known knowledge
about the problem being solved, composed of the Rule
Base (RB) constituted by the collection of fuzzy rules,
and of the Data Base (DB) containing the membership
functions defining their semantics.

There exist two different kinds of fuzzy rules in
the literature according to the expression of the con-
sequent:

1. Mamdani-type fuzzy rules consider a linguistic vari-
able in the consequent [8]:

IF X1 is A1 and. . . andXn is An

THEN Y is B
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with X1, . . . , Xn andY being the input and output
linguistic variables, respectively, andA1, . . . , An

andB being linguistic labels, each one of them hav-
ing associated a fuzzy set defining its meaning.

2. TSK fuzzy rules are based on representing the con-
sequent as a polynomial function of the inputs [9]:

IF X1 is A1 and. . . andXn is An

THEN Y = p1 · X1+ · · · + pn · Xn + p0

with X1, . . . , Xn being the input linguistic variables,
Y being the output variable, andp0, p1, . . . , pn be-
ing real-valued weights.

Knowledge-based methods are suitable for fuzzy
DA. In this approach, fuzzy If-Then rules are for-
mulated and a process of fuzzification, inference and
defuzzification leads to the final decision. Different
efforts have been made to obtain an improvement on
system performance by incorporating learning mecha-
nisms to modify the rules and/or membership functions
in the KB.

With the aim of solving this problem, in the last few
years, many different approaches have been presented
taking EAs, usually GAs, as a base, to automatically
derive the KB, constituting the so called GFRBSs [10]
(see Fig. 2). GFRBSs are considered nowadays as an
important branch of the Soft Computing area [22]. The
promising results obtained by the EAs in the learning
or tuning of the KB have extended the use of these
algorithms in the last few years, see [23, 24].

It is possible to distinguish among three different
groups of GFRBSs depending on the KB components
included in the learning process: DB, RB, or both, i.e.,

Figure 2. Genetic fuzzy rule-based systems.

KB [10]. The third group may be divided in two differ-
ent subgroups depending on whether the KB learning
is performed in a single process or in different stages.
For a wider description of each GFRBS group see
[10, 25], and for an extensive bibliography see [23],
Section 3.13. Different approaches may be found in
[10, 17].

On the other hand, GFRBSs included in the first
group are usually calledevolutionary tuning processes,
while the ones belonging to the second and third
ones are calledevolutionary learning processes. In
Sections 4 and 5, we will present some specific ap-
proaches belonging to the first and third families, re-
spectively.

3. Interval-Valued GA-P for Symbolic
Regression

In this Section we will introduce a modified version of
the GA-P method, which we will callInterval GA-P.
This approach—initially developed to solve an specific
symbolic regression problem, [26]—is characterized
by using interval values, instead of punctual ones, and
by combining GA-P with local optimization techniques
as well.

Regression analysis is concerned with the approx-
imation of observed data by a function, when some
variables (outputs) depend on other (inputs). We will
adopt from here some usual conventions in statistical
regression, and we will say that the two variablesY
and X—whereY is the output we want to model and
X = (X1, . . . , Xn) is the input—are random variables.
We will also understand that the regression analysis
involves finding a functiong, such thatg(X) is an ad-
missible estimation ofE(Y | X). If the structure ofg is
unknown, the problem is namedsymbolic regression.

Symbolic regression produces a punctual estima-
tion; anyway, sometimes it is necessary to obtain the
margins in which we expect the outputY is, when
the input variablesXi are known. Now, we should
not look for a functiong, but a multivalued mapping
0α : Im(X) → I (R), where I (R) is the set formed
by all closed intervals inR, such that the random set
0α ◦ X :Ä→ I (R) verifies

P{ω ∈ Ä | Y(ω) ∈ 0α ◦ X(ω)} ≥ 1− α

for a given value ofα.
We can assess this interval prediction in some differ-

ent ways. We think that it is reasonable to admit that,



Solving Electrical Distribution Problems 9

Figure 3. Linear and interval estimation.

given a value forα, the shorter0α is, the better it is.
So, if we define

0α ◦ X = [g− ◦ X, g+ ◦ X]

for two continuous functionsg+ andg− (see Fig. 3)
the margin of validity will be better when

E(g+ ◦ X − g− ◦ X)

is as low as possible, constrained by

P{ω ∈ Ä | g− ◦ X(ω) < Y(ω) < g+ ◦ X(ω))}
≥ 1− α.

In other words, given a region

R(g+,g−) = {(x, y) ∈ Rd+1 | g−(x) < y < g+(x)}
it must be true that

P{ω ∈ Ä | (X,Y)(ω) ∈ R(g+,g−)} ≥ 1− α.

Let us suppose now thatg+ andg− also depend on
a functionhθ : Rd → R in the following way:

[g−(x), g+(x)] = {t ∈ R | t = hθ (x), θ ∈ [θ−1 , θ
+
1 ]

× · · · × [θ−m , θ
+
m ]}

where the expression ofhθ is known except for the
value ofm parametersθi , andhθ is continuous with
respect toθ andx (sog+ andg−will also be continuous
functions, as we had proposed). Then, for a random
sample of sizeN, obtained from the random vector
(X,Y),

((X1,Y1), . . . , (XN,YN))

we defineθ−i andθ+i to be the values that minimize

1

N

N∑
i=1

(g+(Xi )− g−(Xi ))

constrained by

1− ε ≤ 1

N

N∑
i=1

I R(g+ ,g−) (Xi ,Yi )

for a given value ofε. Notice thatα 6= ε; once chosen
a value forε, we can only estimateα by means of a
second sample

((X′1,Y
′
1), . . . , (X

′
M ,Y

′
M)),

independent from the first one, by means of

α̂M = 1− 1

M

M∑
i=1

I R(g+ ,g−) (X
′
i ,Y
′
i ).

The random variablêαM follows a binomial distribu-
tion with parametersM andα and, by the strong law
of the large numbers, it converges almost surely to the
valueα whenM →∞.

In any case, to minimizeE(g+ ◦ X − g− ◦ X) with
respect to the imposed constraints we should apply non
linear constrained optimization techniques (say, for in-
stance, non linear programming). And we cannot for-
get that the calculus is based in the knowledge ofhθ .
Both problems (the search of the analytic expression
of h and the values forθ+i and θ−i ) can be simulta-
neously solved by applying (with some modifications)
the GA-P technique.

The adequacy of functionh to a set of points is de-
fined by the separation betweeng+ andg−, and both
were defined in terms ofh:

[g−(x), g+(x)] = {t ∈R | t = hθ (x), θ ∈ [θ−1 , θ
+
1 ]

× · · ·× [θ−m , θ
+
m ]}

that is, to find the value ofg+(x) we should find the
maximum ofh inside the allowed range for its param-
eters,

g+(x) = max
R
{hθ (x), θ ∈ [θ−1 , θ

+
1 ] × · · · × [θ−m , θ

+
m ]}.

The same result could be applied tog−. Fortunately,
numerical calculus of this minimum and this maximum
can be avoided if we choose an adequate representation
for the expression part of the GA-P algorithm.

The proposed representation is based in the use of
interval arithmetic to perform all operations involved
in the expression part (see Fig. 4). That is, we codify
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Figure 4. Interval arithmetic GA-P algorithms.

the function in a tree, whose terminal nodes represent
intervals [θ−i , θ

+
i ] (that will contain the unknown val-

ues of the parameters). The internal nodes represent
unary interval operations

Ou(A) = {x ∈ R | x = ou(t) ∧ t ∈ A}

or binary operations

Ob(A, B) = {x ∈ R | x = ob(t, u) ∧ t ∈ A, u ∈ B}

whereA, B ∈ I (R), oa :R→R andob :R×R→ R.
Then, the evaluation of the expression part in an input
value (point or interval) will be an interval.

A description on the unary and binary operators and
the remaining characteristics of the algorithm are to be
found in [26].

4. A Genetic Fuzzy Rule-Based System
for Defining the Data Base

4.1. Framework

In this section, we deal with the case in which EAs are
considered to define the DB. Thus, we refer to GFRBSs
belonging to the first group mentioned in Section 2,
which are commonly known asevolutionary tuning
processes. Many of these processes are to be found
in the specialized literature (see [23], Section 3.13, and

[24], Section 13). They all deal with the problem of re-
fining a preliminary KB obtained from the linguistic in-
formation given by human experts, from an automatic
learning process based on the numerical information
available, or from a method combining both types of
information [20].

These kinds of GFRBSs may work over different
DB components and adjust its previous definition
by adapting it. The components that may be in-
volved in the evolutionary tuning process are the follo-
wing:

• The definitions of the fuzzy rule membership func-
tions collected in the DB.
• The scaling factors.
• The gain of the different fuzzy partitions considered.

We will briefly introduce two different evolution-
ary tuning processes in the the following two subsec-
tions. The aim of the first method is to adjust the fuzzy
membership functions of the different fuzzy partitions
considered in a preliminary Mamdani-type KB. On the
other hand, the second one works over TSK KBs and
refines both the membership functions used in the rule
antecedent and the real parameters defining the rule
consequent.

Both processes may be used in combination with
any generation process capable to obtain a preliminary
definition of a KB of the corresponding type, Mamdani
or TSK, respectively. In the experiments that will be
carried out in Section 6, the Mamdani-type one will be
combined with a very known inductive algorithm for
deriving Mamdani-type KBs, the Wang and Mendel’s
(WM) one [27] (see Appendix), and with one of the
evolutionary learning processes that will be presented
in Section 5. On the other hand, the TSK evolutionary
tuning process is used in the TSK GFRBS that will be
presented in Section 5 as well.

4.2. A Genetic Tuning Process for Adjusting
the Fuzzy Membership Functions
in a Mamdani-type Data Base

As all GFRBSs in the same family, the genetic tuning
process presented in [25, 28] is based on the existence
of a previous definition of the whole KB, i.e., an initial
DB and an RB composed ofT Mamdani-type fuzzy
rules, calledR.

Each chromosome forming the genetic population
will encode a different DB definition that will be
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Figure 5. Graphical representation of a possible fuzzy par-
tition.

combined with the existing RB to evaluate the indi-
vidual adaption.

The GA designed for the tuning process presents
real coding issue, uses the stochastic universal sam-
pling [29] as a selection procedure and Michalewicz’s
non-uniform mutation operator [30]. As regards the
crossover operator, the max-min-arithmetical one [31,
32], which makes use of fuzzy tools in order to improve
the GA behaviour, is employed.

The primary fuzzy sets considered in the initial lin-
guistic variables fuzzy partitions are triangular-shaped
(see Fig. 5). Thus, each one of the membership func-
tions has an associated parametric representation based
on a 3-tuple of real values and a primary fuzzy parti-
tion can be represented by an array composed of 3· N
real values, withN being the number of terms forming
the linguistic variable term set. The complete DB for
a problem in whichm linguistic variables are involved
is encoded into a fixed length real coded chromosome
Cr built by joining the partial representations of each
one of the variable fuzzy partitions as it is shown in the
following:

Cri = (ai 1, bi 1, ci 1, . . . ,ai Ni , bi Ni , ci Ni ),

Cr = Cr 1 Cr 2 · · ·Crm

The initial gene pool is created making use of the
initial DB definition. This one is encoded directly into
a chromosome, denoted asC1. The remaining indi-
viduals are generated by associating an interval of
performance [cl

h, c
r
h] to every genech in C1, h =

1 · · ·∑m
i=1 Ni ·3. Each interval of performance will be

the interval of adjustment for the corresponding gene,
ch ∈ [cl

h, c
r
h].

If (t mod 3) = 1 thenct is the left value of the sup-
port of a fuzzy number. The fuzzy number is defined by
the three parameters(ct , ct+1, ct+2), and the intervals

Figure 6. Intervals of performance.

of performance are the following:

ct ∈
[
cl

t , c
r
t

]= [ct − ct+1− ct

2
, ct + ct+1− ct

2

]
,

ct+1 ∈
[
cl

t+1, c
r
t+1

]
=
[
ct+1− ct+1− ct

2
, ct+1+ ct+2− ct+1

2

]
,

ct+2 ∈
[
cl

t+2, c
r
t+2

]
=
[
ct+2− ct+2− ct+1

2
, ct+2+ ct+2− ct+1

2

]
Figure 6 shows these intervals.
Therefore we create a population of chromosomes

containingC1 as its first individual and the remaining
ones initiated randomly, with each gene being in its
respective interval of performance.

As regards the fitness function, two different defini-
tions for it may be considered. Both of them are based
on an application specific measure usually employed
in the design of GFRBSs, the mean square error (SE)
over a training data set,ETDS, composed of a number
of input-output data pairs,(exi

1, . . . ,exi
n, eyi ). The

first definition is constituted directly by this criterion.
Therefore, it is represented by the following expres-
sion:

E(Cj ) = 1

2|ETDS|
∑

el∈ETDS

(eyl − S(exl ))2

with S(exl ) being the output value obtained from
the FRBS using the KBR(Cj ), comprising the ini-
tial RB definition, R, and the DB encoded in the
chromosomeCj , when the input variable values are
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exl = (exl
1, . . . ,exl

n), andeyl is the known desired
value.

The second fitness function definition is based on
considering thecompleteness property, an important
property of KBs [8, 33]. This condition is ensured by
forcing every example contained in the training set to
be covered by the considered KB to a degree greater
than or equal toτ ,

CR(Cj )
(el ) =

⋃
j=1,...,T

Rj (el ) ≥ τ,

∀el ∈ ETDS and Rj ∈ R(Cj )

whereτ ∈ [0, 1] is the minimal training set complete-
ness degree, a value provided by the system designer.

Therefore, we define atraining set completeness
degreeof R(Cj ) over the set of examplesETDS as

TSCD(R(Cj ), ETDS) =
⋂

el∈ETDS

CR(Cj )
(el )

and the final fitness function penalizing the lack of the
completeness property is:

F(Cj )

=


E(Cj ), if TSCD(R(Cj ), ETDS)≥ τ
1

2

∑
el∈ETDS

(eyl )2, otherwise.

4.3. An Evolutionary Refinement Process for Tuning
the Membership Function and Consequent
Definitions in a TSK-type Knowledge Base

The evolutionary refinement process [34] is a tuning
process that takes a TSK KB as input and adjusts the
preliminary definitions of the antecedent membership
functions and consequent parameters according to the
global behavior of the KB evolved in the problem be-
ing solved, represented as a training data set. It is
composed of a special real-coded GA including an
(1+ 1)-ES as another genetic operator to improve the
search process (agenetic local search algorithm[35,
36]), guided by a global error measure over the train-
ing data set. We describe the hybrid EA components
below.

A chromosomeC encoding a TSK KB definition is
composed of two different parts,C1 andC2, the former
corresponding to the definition of the fuzzy member-
ship functions considered in the antecedent part of the
different fuzzy rules in the KB, and the latter to the
consequent parameters.

The antecedent fuzzy partitions are encoded in the
first part of the chromosomes working in the way shown
in the previous section. In this case, each one of the tri-
angular fuzzy setsDi j = (ai j , bi j , ci j ), i = 1, . . . , i v
(i v =number of input variables),j = 1, . . . , Ni (Ni =
number of fuzzy sets in the ith fuzzy partition), defining
these preliminary fuzzy partitions are allowed to vary
freely in any meaningful way in an interval of perfor-
mance [Dmin

i j , Dmax
i j ]. The extremes of these intervals

are computed before running the refinement process ac-
cording to the preliminary fuzzy partition definitions
provided by the FRBS designer, in the following way:

[
Dmin

i j , Dmax
i j

] = [ai j − bi j − ai j

2
, ci j + ci j − bi j

2

]
Therefore, the interval of performance of each gene

in C1 will depend on the fuzzy membership function
to which it is associated. Each one of these intervals
of performance will be the interval of adjustment for
the corresponding gene,ct ∈ [cl

t , c
r
t ]. If (t mod 3) = 1

thenct is the left value of the support of a fuzzy set,
which is defined by the three parameters(ct , ct+1, ct+2)

and the intervals of performance are the following:

ct ∈
[
cl

t , c
r
t

] = [Dmin, ct+1]

ct+1 ∈
[
cl

t+1, c
r
t+1

] = [ct , ct+2]

ct+2 ∈
[
cl

t+2, c
r
t+2

] = [ct+1, Dmax]

with Dmin andDmax being the extremes of the interval
of performance in the fuzzy set defined by the 3-tuple
(ct , ct+1, ct+2). These values are the only ones defining
the intervals of adjustment of thect ’s that remain con-
stant during the GA run. Figure 7 shows an example
of these intervals.

Figure 7. Example of triangular membership function and intervals
of performance for the refinement process.
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As regards the second part of the chromosome,C2, it
encodes the consequent parameters of each fuzzy rule
in the preliminary definition of the TSK KB. Thus, it is
composed ofm· (i v+1) genes, wherem stands for the
number of rules in the KB andi v + 1 for the number
of consequent parameters for TSK fuzzy rule:

C2
i = (pi 0, pi 1, . . . , pi i v), i = 1, . . . ,m,

C2 = C2
1 C2

2 · · ·C2
m

The parameters inC2 are encoded using theangu-
lar coding [37], a coding scheme specially designed
for TSK rule consequent parameters. It is based on
encoding the angle value associated to the TSK rule
consequent parameters instead of the tangent one by
means of the function

C : R→
(
−π

2
,
π

2

)
, C(y) = arctan(y)

Therefore, the interval of performance of all genes
in C2 is the same,(−π

2 ,
π
2 ).

The available knowledge in the form of the prelim-
inary definition of the KB being optimized is used to
initialize the first population by performing the follow-
ing three steps:

1. The preliminary definition of the KB taken as pro-
cess input is encoded directly into a chromosome,
denoted asC1.

2. The following M
2 − 1 chromosomes are initiated by

generating, at random, the first part,C1, with each
gene being in its respective interval of performance,
and by encoding the preliminary definition of the
rule consequent parameters inC2.

3. The remainingM
2 are set up by generatingC1 in the

same way followed in the previous step, and by gen-
erating the values forC2 by adding a random value
distributed following a normal distributionN(0, d)
to the values in theC2 part of the previous chromo-
somes.

The fitness function based on the SE measure,E,
presented in the previous Section, is considered. On
the other hand, the selection mechanism and the genetic
operators are the same ones used in the Mamdani-type
genetic tuning process: Baker’s stochastic universal
sampling, Michalewicz’s non-uniform mutation and
max-min-arithmetical crossover.

Finally, the last genetic operator to be applied con-
sists of an (1+ 1)-ES, which plays the role of local

search algorithm in the hybrid approach built. In this
case, the genetic local search performed is selective:
each time a GA generation is performed, the ES is
applied over a percentageδ of the best different popu-
lation individuals existing in the current genetic popu-
lation.

The coding scheme and the fitness function consid-
ered in the(1+ 1)-ES are the same as those used in
the GA. Thus, the only changes to be performed have
to be done in the generic ES mutation scheme when
working on the genes inC1. This is due to the fact that
(1+ 1)-ESs, usually work over individuals in which
the genes are independent and all of them are adapted
using the same step sizeσ . Both assumptions are not
right in this case because of two reasons: each three
consecutive parameters inC1 are defined in a different
universe thus requiring different order mutations (a step
sizeσi = σ · si is going to be used for each gene) and
are related among them (they three define a triangular
fuzzy set), thus requiring to be adapted incrementally
for not obtaining non-meaningful fuzzy sets.

The next algorithm summarizes the application of
the adaptation process on a membership function en-
coded in the parent. WithCi j = (x0, x1, x2) being the
fuzzy set currently adapted, the steps to follow are:

1. Compute the step size of the central point, s(x1)←
Min{x1−x0,x2−x1}

2 .
2. Generate z1∼ N(0, σ 2

1 ) and compute x′1 in the fol-
lowing way:

x′1←


x1+ z1, if x1+ z1 ∈ [x0, x2]

x0, if x1+ z1 < x0

x2, if x1+ z1 > x2

3. Adapt the remaining two points:

(a) s(x0)← Min{x0−Cmin
i j ,x′1−x0}
2

Generate z0 ∼ N(0, σ 2
0 )

x′0←


x0+ z0, if x0+ z0 ∈

[
Cl

i , x′1
]

Cl
i , if x0+ z0 < Cl

i

x′1, if x0+ z0 > x′1

(b) s(x2)← Min{x2−x′1,C
max
i j −x2}

2
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Generate z2 ∼ N(0, σ 2
2 )

x′2←


x2+ z2, if x2+ z2 ∈

[
x′1,C

r
i

]
x′1, if x2+ z2 < x′1
Cr

i , if x2+ z2 > Cr
i

When working with the second part of the chromo-
some,C2, the latter problem does not appear. In this
case, the different components are not related and the
mutation can be performed in its usual way. The only
change that has to be made is to adapt the step size to the
components inC2. Since all of them are defined over
the same interval of performance,(−π

2 ,
π
2 ), they all will

use the same step sizeσi = σ · si with si = 0.00001.

5. Two Genetic Fuzzy Rule-Based Systems
for Learning Mamdani and TSK-type
Knowledge Bases

In this section, we will consider two GFRBSs that be-
long to the third mentioned group, the ones learning the
complete KB. The following subsections are devoted to
present two evolutionary learning processes capable of
generating a whole definition of a Mamdani-type and
TSK-type KB from examples, respectively.

5.1. A GFRBS for Learning Mamdani KBs

This genetic learning process is composed of the fol-
lowing three stages [25, 28]:

1. An inductive generation processfor generating
Mamdani-type fuzzy rules from examples, with two
components: afuzzy rule generating methodbased
on a non-evolutionary inductive algorithm, and an
iterative covering methodof the example set.

2. A genetic multisimplification processfor selecting
rules, based on a binary coded GA with a genotypic
sharing function and a measure of the FRBS perfor-
mance. It will remove the redundant rules generated
by the previous component with the aim of obtaining
different simplified KBs presenting the best possi-
ble cooperation among the fuzzy rules composing
them.

3. The genetic tuning process introduced in
Section 4.2. It will give the final KB as output
by tuning the membership functions in each pos-
sible KB derived from the genetic multisimplifica-
tion process. The most accurate one obtained in this

stage will constitute the final output of the whole ge-
netic learning process.

Next subsections will briefly describe the first two
learning stages.

5.1.1. The Inductive Generation Process.The gen-
eration process is based on a previously defined DB,
composed of different fuzzy partitions of the variable
spaces, as the one shown in Fig. 5.

The covering method is developed as an iterative pro-
cess that allows us to obtain a set of fuzzy rules covering
the example set. In each iteration, it runs the generating
method, obtaining the best fuzzy rule according to the
current state of the training set, considers the relative
covering value this rule provokes over it, and removes
from it the examples with a covering value greater than
ε, provided by the system designer. It ends up when
the training set becomes empty.

Each time the generating method is run, it produces a
set of candidate fuzzy rules by generating the fuzzy rule
best covering every example from the training set. The
accuracy of the candidates is measured by using a mul-
ticriteria fitness function, composed of three different
criteria measuring the covering that each rule provokes
over the training set, which allows us to ensure that the
final set of rules generated verify the completeness and
consistency properties [8, 33]. Finally, the best fuzzy
rule is selected from the set of candidates and given as
method output.

The last criteria can be described by means of the
following expressions:

(a) High frequency value: The frequency of a fuzzy
rule,Ri , through the set of examples,Ep, is defined
as:

9Ep(Ri ) =
∑p

l=1 Ri (el )

p

(b) High average covering degree over positive exam-
ples: The set of positive examples toRi with a
compatibility degree greater than or equal toω is
defined as:

E+ω (Ri ) = {el ∈ Ep/Ri (el ) ≥ ω}

with n+ω (Ri ) being equal to|E+ω (Ri )|. Theaverage
covering degreeon E+ω (Ri ) can be defined as:

Gω(Ri ) =
∑

el∈E+ω (Ri )

Ri (el )/n+ω (Ri )
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(c) Penalization associated to the non satisfaction of
the k-consistency property: The set of the negative
examples forRi is defined as:

E−(Ri ) = {el ∈ Ep/Ri (el ) = 0 andAi (exl ) > 0}

An example is considered negative for a rule when
it best matches some other rule that has the same
antecedent but a different consequent. The negative
examples are always considered over the complete
training set.

This last criterion penalizes those fuzzy rules with
many negative examples with respect to the number of
positive examples with a compatibility degree greater
than or equal toω. In this way, it penalizes the non
satisfaction of thek-consistency property [33]. The
penalty function on the negative examples set of the
rule Ri will be:

gn(Ri
−)

=


1, if n−Ri

≤ k · n+ω (Ri )

1

n−Ri
− kn+ω (Ri )+ exp(1)

, otherwise

with n−Ri
= |E−(Ri )| being the number of negative

examples.
These three criteria are combined into a fitness func-

tion using any aggregation function increasing in the
three variables. In this paper we work with the product
in the following way:

F(Ri ) = 9Ep(Ri ) · Gω(Ri ) · gn(Ri
−)

5.1.2. The Genetic Multisimplification Process.
Since the generation process works in an iterative way,
it may obtain a KB containing redundant rules that do
not properly cooperate between them. The aim of this
second stage is to simplify the previously generated
KB, removing from it the rules not cooperating well.

The main idea of the genetic multisimplification pro-
cess is that it does not only generate one simplified
definition of the previous fuzzy rule set, but several
different ones. To do so, it runs the genetic simplifica-
tion process proposed in [38]. This process is based on
a binary-coded GA which encodes the set of rules ob-
tained from the generation process into a fixed-length
chromosome. The value 1 means that the rule belongs
to the final KB, and the 0 means that it does not. Two-
point crossover and uniform mutation operators are
used to alter the individuals and the stochastic univer-
sal sampling procedure, along with an elitist selection

scheme, to perform selection. The fitness function is
the F one shown in Section 4.2, which combines an
error measure, the SE, and a term penalizing the lack
of the encoded KB completeness property.

Each time the genetic simplification process obtains
a simplified KB definition, the multisimplification one
penalizes the search space zone where it is located, so
it will not be generated in future runs. A genotypic
sharing scheme [39] is used to penalize individuals ac-
cording to its space proximity to the previous solutions
found. To do so, there is a need to define adistance
metricwhich, given two individuals, returns a value of
how close they are. We use the Hamming distance due
to the fact that this measure is defined to work on a bi-
nary space and it is very simple to compute, thus being
suitable for our purpose. WithA = (a1, . . . ,am) and
B = (b1, . . . ,bm)being two individuals, the Hamming
distance is defined as follows:

H(A, B) =
m∑

i=1

ai · bi

Making use of this metric, themodified fitness func-
tion guiding the search on the multisimplification pro-
cess is based on modifying the value associated to an in-
dividual by the basic algorithm fitness function, multi-
plying it by aderating functionpenalizing the closeness
of this individual to the solutions previously obtained.
Hence, the modified fitness function used by the mul-
tisimplification process is the following:

F ′(Cj ) = F(Cj ) · G(Cj , S)

whereF is the basic genetic simplification process fit-
ness function,S = {s1, . . . , sk} is the set containing
thek solutions already found, andG is a kind ofder-
ating function. We consider the following taking into
account the fact that the problem we deal with is a
minimization one:

G(Cj , S) =


∞, if d = 0

2−
(

d

r

)β
, if d < r andd 6= 0

1, if d ≥ r

whered is the minimum value of the Hamming distance
betweenCj and the solutionssi included inS, i.e.,d =
Min i {H(Cj , si )}, and the penalization is considered
over the most close solution,r is theniche radius, and
β is thepower factordetermining how concave (β > 1)
or convex (β < 1) the derating curve is. Therefore, the
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penalization given by the derating function takes its
maximum value when the individualCj encodes one
of the solutions already found. There is no penalization
whenCj is far away fromS in a value greater than or
equal to the niche radiusr .

The algorithm of the genetic multisimplification pro-
cess is shown below:

1. Initialization: Equate the multisimplification mod-
ified fitness function to the basic simplification fit-
ness function:F ′(Cj )← F(Cj ).

2. Run the basic genetic simplification process, using
the modified fitness function, keeping a record of
the best individual found in the run.

3. Update the modified fitness function to give a de-
pression in the region near the best individual, pro-
ducing a new modified fitness function.

4. If all simplified KBs desired have not been obtained,
return to step 2.

Hence, the number of runs of the sequential algo-
rithm performed is the number of solutions that we
desire to obtain, i.e., the number of simplified KBs we
will generate. We allow the FRBS designer to decide
this number as well as the values of the parametersr
andβ.

5.2. A GFRBS for Learning TSK KBs

This second GFRBS is based on performing the learn-
ing of the KB in different steps as the previous one
presented. In this case, it comprises the following two
stages [34]:

1. An evolutionary generation processfor learning a
preliminary TSK KB from examples. This first pro-
cess is based on an iterative algorithm that studies
the existence of data in the different fuzzy input sub-
spaces. Each time data are located in one of them,
the process applies aTSK rule consequent learning
methodto determine the existing partial linear input-
output relation, taking the data located in this input
subspace, a subset of the global data set, as a base.
The latter method is based on a (µ, λ)-ES using the
angular coding proposed in the previous section and
a local measure of error, and takes into account the
knowledge contained in this training data subset to
improve the search process.

2. Theevolutionary refinement processintroduced in
Section 4.3 for adjusting both the consequent and

the antecedent parts of the fuzzy rules in the preli-
minary KB obtained from the first stage.

Next subsections will present the different compo-
nents of the first learning stage. First of all, the TSK
rule consequent learning method is introduced. Then
we propose the use of the knowledge contained in the
training data set to improve the search process. Finally,
we present the algorithm of the whole generation pro-
cess, which makes use of the two previous aspects.

5.2.1. The TSK Rule Consequent Learning Method.
In this method, a (µ, λ)-ES is considered to define TSK
rule consequent parameters. The dimensionn of the
object variable vectorEx is determined by the number
of input variables in the problem being solved. When
there arei v input variables, there aren = i v + 1 pa-
rameters to learn in the TSK rule consequent. TheEx
part of the individuals forming the (µ, λ)-ES popula-
tion is built by encoding the possible values using the
angular codingin Section 4.3.

EA evolution is guided by a fitness function com-
posed of a local measure of error. The expression of
the measure used is the following one:

∑
el∈E

hl · (eyl − S(exl ))2

where E is the set of input-output data pairs
el = (exl

1, . . . ,exl
i v, eyl ) located in the fuzzy in-

put subspace defined by the rule antecedent,hl =
T(A1(exl

1), . . . , Ai v(exl
i v)) is the matching between

the antecedent part of the rule and the input part of
the current data pair,exl , andS(exl ) is the output pro-
vided by the TSK fuzzy rule when it receivesexl as
input.

The object variables of the individuals in the first
population are generated in the way shown in the next
subsection, taking into account the knowledge con-
tained in the input-output data set. As regards the
composition of the remaining vectors, the components
of Eσ are initiated to 0.001, and the ones inEα, when
considered, are set toarctan(1).

5.2.2. Using Available Knowledge in the Design Pro-
cess. To develop the knowledge-based generation of
the initial population, we compute the following in-
dices and obtain the following set from the input-output
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data setE:

ymed=
∑

el∈E eyl

|E| , ymin = min
el∈E
{eyl }

ymax= max
el∈E
{eyl }, hmax= max

el∈E
{hl }

Eθ = {el ∈ E/hl ≥ θ · hmax}

Therefore, we generate the initial ES population in
three steps as follows:

1. Generate theEx part of the first individual,Ex1, ini-
tiating parametersxi , i = 1, . . . , i v, to zero, and
parameterx0 to the angular coding ofymed.

2. Generate theEx part of the followingγ individu-
als, Ex2, . . . , Exγ+1, with γ ∈ {0, . . . , µ− 1} defined
by the GFRBS designer, initiating parametersxi ,
i = 1, . . . , i v, to zero, andx0 to the angular cod-
ing of a value computed at random in the interval
[ymin, ymax].

3. Generate theEx part of the remainingµ − (γ + 1)
individuals,Exγ+2, . . . , Exµ, initiating parametersxi ,
i = 1, . . . , i v, to the angular coding of values com-
puted at random in the interval(−π

2 ,
π
2 ), and x0

to the angular coding of a value computed from a
randomly selected elemente in Eθ (θ ∈ [0.5, 1] is
provided by the GFRBS designer as well) in such a
way thatebelongs to the hyperplane defined by the
TSK rule consequent generated. Thus, we shall en-
sure that this hyperplane intersects with the swarm
of points contained inEθ , the most significant ones
from E.

Since with small angular values, large search
space zones are covered, it seems interesting to gen-
erate small values for the parametersxi in this third
step. To do this, we make use of a modifier func-
tion that assigns greater probability of appearance
to the smaller angles according to a parameterq,
also provided by the GFRBS designer. We use the
following function:

f : [0, 1]× {−1, 1} →
(
− π

2
,
π

2

)
f (x, z) = z · π

2
· xq

Hence, the individual generation is performed as
follows in this third step:

For j = γ + 2, . . . , µ do

(a) Fori = 1, . . . , i v do

(a1) Generatey at random in [0, 1].
(a2) Generatez at random in{−1, 1}.
(a3) Setxi to f (y, z).

(b) Generate the value ofx0:

(b1) Selecte at random fromEθ .
(b2) Setx0 to ey−∑i v

k=1 C−1(xk) · exk, where
C−1(β) = tan(β) is the inverse ofC.

5.2.3. Algorithm of the Evolutionary Generation Pro-
cess. The generation process proposed is developed
by means of the following steps:

1. Consider a fuzzy partition of the input variable
spaces obtained from the expert information (if it
is available) or by a normalization process. If the
latter is the case, perform a fuzzy partition of the
input variable spaces dividing each universe of dis-
course into a number of equal or unequal partitions,
select a kind of membership function and assign one
fuzzy set to each subspace. In this paper, we will
work with symmetrical fuzzy partitions of triangu-
lar membership functions (see Fig. 5).

2. For each multidimensional fuzzy subspace obtained
by combining the individual input variable sub-
spaces using theandconjunction do:

(a) Build the setE′ composed of the input-output
data pairse ∈ E that are located in this sub-
space.

(b) If |E′| 6= 0, i.e., if there is any data in this space
zone, apply the TSK rule consequent learning
method over the data setE′ to determine the
partial linear input-output relation existing in
this subspace. Therefore, no rules are consid-
ered in the fuzzy subspaces in which no data
are located.

(c) Add the generated rule to the KB.

6. Modeling Electrical Distribution Networks
by Means of the Proposed Hybrid
Evolutionary Data Analysis Techniques

6.1. Computing the Length of Low Voltage Lines

The first of the problems we will show is that of find-
ing a model that relates the total length of low voltage
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Table 1. Notation considered for the low voltage
line estimation problem variables.

Symbol Meaning

Ai Number of clients in populationi

Ri Radius ofi population in the sample

n Number of populations in the sample

l i Line length, populationi

l̃ i Estimation ofl i

si Number of sectors in towni

line installed in a rural town with the number of in-
habitants in the town and the mean of the distances
from the center of the town to the three furthest clients
in it. This model will be used to estimate the total
length of line being maintained by one of the compa-
nies. We were provided with a sample of 495 towns
in which the length of line was actually measured
and the company used the model to extrapolate this
length over more than 10,000 towns with these pro-
perties.

We will limit ourselves to the estimation of the length
of line in a town, given the inputs mentioned before.
Hence, our objective is to relate the first variable (line
length) with the other two ones (population, radius of
village), first by classical methods, later by applying
the hybrid evolutionary DA techniques presented in
this paper. Numerical results will be compared in a
next subsection.

Our variables are named as shown in Table 1.

Figure 8. Models of some kind of nuclei.

6.1.1. Application of Classical Methods: Classical
Regression Adjust. In order to apply classical meth-
ods, we needed to make some hypothesis [2]. In the
populations that are being studied, electrical networks
are star-shaped and arranged in sectors. A main line
passes near all clients inside them, and clients are
connected to these main lines by small segments (see
Fig. 8).

To build a theoretical simplified model we have ad-
mitted that:

• Village i comprisessi sectors. All sectors in the
same village cover the same angle 2θi . Main lines
depart from the centre of the village.
• The density of clients is constant inside every sector.
• All sectors in a village have the same radius,Ri

and contain a main line of lengthRi and as many
branches as customers.

If we admit that customers are uniformly distributed,
we can approximate the total length by multiplying the
mean distance between one of them and the nerve by the
number of inhabitants. Let us name this mean distance
di for populationi , and let the sector be 2θi wide. Then

di = 2(1− cosθi )

3θi
Ri

so cable length will be

l̃ i = si

(
Ri + Ai

si
di

)
= si Ri + Ai

2(1− cosθi )

3θi
Ri
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If the anglesθi and the numberssi were similar
enough between them, we could regard them as con-
stants and estimate them by the parametersθ̄i = θ and
s̄i = s of a least squares linear regression

l̃ i /Ri = s+ k(θ)Ai .

to a set of pairs(x, y) = (Ai , l i /Ri ).
We can get a better adjust by allowing a certain de-

pendence between the number of sectors, their angles
and the number of inhabitants. This can be done by di-
viding the sample into classes or by mean of a change
of variables. Both cases were studied, and the best
adjust was obtained with the model

l̃ i
Ri
= k1Ak2

i

6.1.2. GA-P and Interval GA-P Adjust. Let us apply
GA-P algorithms to check whether we can obtain a
formula that is comparable in complexity with the last
one, while getting better adjust to the real data. We
will define “simple expression” as a formula that can
be codified in a tree with no more than 20 nodes and
depending on no more than 10 parameters. Binary
operations will be sum, difference, product, ratio and
power. The unary operation will be the square root.
Other decisions (whose meaning is well known, see
for instance [4, 30, 40]) are shown in the Table 2.

We randomly select three individuals every genera-
tion. The worst one of them is replaced with the best
descendent of the crossover of the remaining ones. Ob-
serve that this strategy is elitist and steady state.

6.1.3. GFRBS Fuzzy Modeling. We have considered
three different fuzzy models to solve the problem, two
Mamdani-type and one TSK-type ones. They have
been generated from a two-stage GFRBS composed
of the WM RB learning process (see Appendix) and
the Mamdani-type genetic tuning process presented in
Section 4.2 and from the Mamdani and TSK GFRBSs
presented in Sections 5.1 and 5.2. The parameter values
considered are shown in Tables 3, 4 and 5, respectively.
In all cases, the initial DB considered is constituted
by some primary equally partitioned fuzzy partitions
formed byfive linguistic termswith triangular-shaped
fuzzy sets giving meaning to them (as shown in Fig. 5),
and the adequate scaling factors to translate the generic
universe of discourse into the one associated with each
problem variable.

Table 2. Parameter values considered for the GA-P process.

Parameter Decision

Population size 100

Maximum number of generations 1000 (steady state)

Parent selection (See text)

GA Part encoding Real

GA Crossover operator Two points

GP Crossover operation Standard

GA Cross. probability 0.9

GP Cross. prob. internal nodes 0.9

GP Cross. prob. leaves 0.1

GA Mutation probability 0.01

GP Mutation probability 0.01

Expression part limited to 20 nodes

Complexity individuals initial pop. 20 nodes

Maximum number of parameters 10

Enrichment initial population 1000 individuals

Edition probability 0

Encapsulation probability 0

Permutation probability 0

Decimation No

ADFs maximum 0

Local GA optimization Nelder and Mead’s simplex

6.1.4. Comparison Between Methods.To compare
classical methods, GA-P technique and GFRBS fuzzy
modeling we have divided the sample into two sets
comprising 396 and 99 samples. SE values over these
two sets are labeledtraining andtest. In this case, we
define SE as

1

2 · N
N∑

i=1

(l̃ i − l i )
2

Table 3. Parameter values considered for the Mamdani-
type genetic tuning process.

Parameter Decision

Population size 61

Maximum number of generations 1000

Non-uniform mutation parameterb 5

Max-min-arithmetical parametera 0.35

Crossover probability 0.6

Mutation probability 0.1

Fitness function WM tuning E

Fitness function Mamdani GFRBS tuning F

Completeness property parameterτ 0.1
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Table 4. Parameter values considered for the Mamdani
GFRBS.

Parameter Decision

Generation
Example covering valueε 1.5

Positive example degreeω 0.05

k-consistency property parameter 0.1

Multisimplification
Population size 61

Maximum number of generations 500

Crossover probability 0.6

Mutation probability 0.1

Completeness property parameterτ 0.1

Number of simplified KBs to generate 3

Niche radiusr 10% of initial
KB rule number

Power factorβ 0.5

and the columncomplexitycontains the number of pa-
rameters and the number of nodes in the parse tree of
the expression, as well as the number of rules in the
KB of every generated fuzzy model (see Table 6).

Table 5. Parameter values considered for the TSK GFRBS.

Parameter Decision

Generation
Number of parentsµ 15

Number of descendentsλ 100

Maximum number of generations 500

Parameterγ 0.2 · µ = 3

Parameterθ 0.7

Parameterq 5

Recombination operators consideredEr (3, 2, 0)

Number of parents considered

for recombinationEζ (µ,µ,1)

Refinement
Population size 61

Maximum number of generations 1000

Non-uniform mutation parameterb 5

Max-min-arithmetical parametera 0.35

Crossover probability 0.6

Mutation probability 0.1

Selective local search parameterδ {0, 0.2}
Maximum number of generations

for the(1+ 1)-ES 25

Standard deviationd considered in the
generation of the initial population 0.001

Table 6. Results obtained in the low voltage line estimation problem.

Method Training Test Complexity

Linear 287775 209656 7 nodes, 2 par.

Exponential 232743 197004 7 nodes, 2 par.

Second-order polynomial 235948 203232 25 nodes, 6 par.

Third-order polynomial 235934 202991 49 nodes, 10 par.

Three layer perceptron 2-25-1 169399 167092 102 par.

GA-P 183693 159837 20 nodes, 3 par.

Interval GA-P 192908 158737 16 nodes, 3 par.

WM fuzzy model 175337 180102 13 rules

Mamdani fuzzy model 150559 166669 19 rules

TSK fuzzy model
(without refinement) 162609148514 20 rules

The parameters of the polynomial models were fit-
ted by nonlinear least squares (Levenberg-Marquardt
method); exponential and linear models were fitted by
linear least squares and the multilayer perceptron error
was minimized with the Conjugate Gradient algorithm.
The number of neurons in the hidden layer was chosen
to minimize the test error.

We can observe that fuzzy models and GA-P tech-
niques clearly outperform classical non linear re-
gression methods, being equal or superior to Neu-
ral Networks. This result has great significance, be-
cause it means that Neural Network performance can
be achieved with a model with a high descriptive power.
WM fuzzy model and the other Mamdani-type one gen-
erated from our GFRBS provide the most comprehen-
sive explanation of their functioning, and should be
used when a human-readable, rule based, description
of the problem is needed. In this case, the genetic-based
methods have found very simple structures, compris-
ing only 13 and 19 rules, respectively, and, as may be
observed, the fuzzy model obtained from our GFRBS
is more accurate to a high degree than the one gener-
ated from the WM-based one in the approximation of
both data sets.

When a mathematical formula is preferred to the
rule bank, GA-P methods provide a suitable expres-
sion where the user can select the balance between
complexity and precision. We observed that usually
Interval GA-P finds a simpler expression than punctual
GA-P, besides its convergence is somewhat slower. Ob-
serve that Interval GA-P isnot intended to provide an
estimation but a range of values in which the output is,
with a probability higher than a preselected value. The
number collected in the table is the scoring achieved
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by a punctual model formed when every interval of
parameters is replaced by its mean point in the final
model.

By last, observe that the best precision can only be
obtained if we choose the less descriptive of the fuzzy
models, TSK. We have to note that the result shown
in the table has been obtained after the first learning
stage due to the refinement one presents an undesir-
able overlearning, improving the abstraction capabil-
ity of the fuzzy model to a high degree but making the
generalization one worse. This fuzzy model is only a
little more complex than the other two ones (20 rules)
and definitely it is the selection that should be made
when the precision is more important than the easiness
of explanation. Anyway, this fuzzy model has associ-
ated a higher level of description than Neural Network
models, because of the possibility of interpreting the
antecedent part of the fuzzy rules.

6.2. Computing the Maintenance Costs of Medium
Voltage Line

The second problem has a different nature, since we
will not deal with real data but with estimations of min-
imum maintenance costs which are based on a model
of the optimal electrical network for a town. These
values are somewhat lower than real ones, but com-
panies are interested in an estimation of the minimum
costs. Obviously, real maintenance costs are exactly
accounted and hence a model that relates these costs
to any characteristics of towns would not be of a great
practical significance.

We were provided with data concerning four differ-
ent characteristics of the towns (see Table 7) and their
minimum maintenance costs in a sample of 1059 sim-
ulated towns. In this case, our objective was to relate
the last variable (maintenance costs) with the other four
ones by applying the DA techniques presented in this
paper. Numerical results will be compared next.

As regards classical methods, we have considered
again linear, polynomial and Neural Network mod-
els. The parameters of the polynomial models were
fitted using the same method, Levenberg-Marquardt,
and the neural model (a three layer perceptron) was
trained again with the Conjugate Gradient algorithm.
The number of neurons in the hidden layer was chosen
to minimize the test error; note that the training error
could be made much lower than the shown, but not
without making the test error higher. In this case, we
used 4 input nodes, 5 hidden nodes, and 1 output node.

Table 7. Notation considered for the medium voltage line
maintenance cost estimation problem variables.

Symbol Meaning

x1 Sum of the lengths of all streets in the town

x2 Total area of the town

x3 Area that is occupied by buildings

x4 Energy supply to the town

y Maintenance costs of medium voltage line

Table 8. Results obtained in the medium voltage line maintenance
cost estimation problem.

Method Training Test Complexity

Linear 164662 36819 17 nodes, 5 par.

Second-order polynomial 103032 45332 77 nodes, 15 par.

Three-layer perceptron 4-5-1 86469 33105 35 par.

GA-P 18168 21884 50 nodes, 5 par.

Interval GA-P 16263 18325 15 nodes, 4 par.

WM fuzzy model 20318 27615 66 rules

Mamdani fuzzy model 19679 22591 63 rules

TSK fuzzy model (α = 0) 25579 26450 268 rules

TSK fuzzy model (α = 0.2) 11074 11836 268 rules

GA-P algorithms have been applied with the same
parameter values used in the solving of the previous
problem. Since the problem tackled now is more com-
plex (four input variables instead of two), in this case
we will define “simple expression” as a formula that can
be codified in a tree with no more than 50 nodes and de-
pending on no more than 10 parameters. The GFRBSs
use the same parameters as well, excepting the example
covering value parameterε in the Mamdani GFRBS,
that now takes 2.0 as a value.

To compare the mentioned techniques, we have di-
vided the sample into two sets comprising 847 and
212 samples, 80 and 20 percent of the whole data set,
respectively. Results obtained in the different experi-
ments developed are shown in Table 8, where column
names stand for the same aspects that in the previous
section.

In view of them, we can draw similar conclu-
sions to the ones in the previous problem. GA-P tech-
niques and fuzzy models outperform again classical
non linear regression methods and Neural Networks.
In this case, the WM-based design process has found
a structure comprising 66 rules, a little more com-
plex than the one obtained by the Mamdani GFRBS
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(63 rules), being more accurate the latter descriptive
fuzzy model.

Punctual GA-P found a mathematical expression that
can be codified in 50 nodes (note that a second order
polynomial needs 77 nodes and that a linear model uses
17) and that explains the data almost identically than
the fuzzy model generated from the Mamdani GFRBS.
Interval GA-P results reflect the ability of the method to
eliminate outliers. The results shown in Interval GA-P
row were calculated over the subset of examples that
were in the confidence interval (97.9% of total) and
therefore it found the simplest expression (15 nodes
and it does not use the inputx2, the total area of the
town). Interval GA-P can only be used when we are
allowed to discard some elements of the sample. If we
cannot do that, we should apply punctual GA-P or fuzzy
models. For example, if we apply the obtained Interval
GA-P model to the whole dataset, without discarding
outliers, we obtain roughly the same test error, but a
much higher training error (202385) that may not be
admissible.

Finally, the TSK fuzzy model has obtained again the
best results but its interpretation capability has been
very reduced due to the high number of rules in the
KB, 268. Anyway, it is the right choice when the main
requirement is the model accuracy, performing really
better than the neural model. It has to be noted that, in
this case, the refinement process has shown very good
performance, improving the preliminary TSK fuzzy
model obtained from the generation stage to a high de-
gree. It may be observed, as well, the good behaviour
of the genetic local search strategy since the best results
are obtained when a 20% (δ = 0.2) of the population
individuals in each GA generation are refined using the
(1+ 1)-ES.

7. Concluding Remarks

In this paper, we have solved two real-world mod-
els of electrical energy distribution, namely the com-
putation of the low voltage line installed in rural
towns and the estimation of the minimum mainte-
nance costs (for medium voltage lines) by means of
different DA techniques. We presented two new hy-
brid evolutionary DA techniques, GA-P algorithms
for performing symbolic regressions and GFRBSs
for designing and optimizing fuzzy models. We
compared these methods with better known DA
methods such as classical regression and Neural
Networks.

Both hybrid evolutionary techniques have proven to
be powerful DA tools capable of making abstraction on
the data with good generalization properties in view of
the results obtained. The first one allows us to obtain
expressions with algebraic operators while the second
one is able to generate KBs that are interpretable to
a different degree: Mamdani-type fuzzy models give
a complete description of the problem-solving, whilst
TSK ones give a local linguistic description of it.

Appendix: The Wang and Mendel’s Rule Base
Generation Process

The inductive KB generation process proposed by
Wang and Mendel in [27] has been widely known be-
cause of its simplicity and good performance. It is
based on working with an input-output data set repre-
senting the behaviour of the problem being solved and
with a previous definition of the DB composed of the
input and output primary fuzzy partitions used. The
fuzzy rule structure considered is the usual Mamdani-
type rule withn input variables and one output variable
presented in Section 2.

The generation of the fuzzy rules of this kind is per-
formed by putting into effect the three following steps:

1. To generate a preliminary linguistic rule set: This
set will be composed of the fuzzy rule best covering
each example (input-output data pair) existing in
the input-output data set. The composition of these
rules is obtained by taking a specific example, i.e., a
(n+1)-dimensional real array (n values for the input
variables and one for the output one), and setting
each one of the rule variables to the linguistic label
associated to the fuzzy set best covering every array
component.

2. To give an importance degree to each rule: Let
R= If X1 is A andX2 is B thenY is C be the lin-
guistic rule generated from the example(x1, x2, y)
in a problem in which three variables (two input
variables and one output variable) are involved. The
importance degree associated to it will be obtained
as follows:

G(R) = µA(x1) · µB(x2) · µC(y)

3. To obtain a final RB by using the preliminary rule
set: If all rules presenting the same antecedent val-
ues have associated the same consequent one in the
preliminary set, this linguistic rule is automatically
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put (only once) into the final RB. On the other hand,
if there are conflictive rules, i.e., rules with the same
antecedent and different consequent values, the rule
considered for the final RB will be the one with
higher importance degree.
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