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Abstract. Real-world electrical engineering problems can take advantage of the last Data Analysis methodologie
In this paper we will show that Genetic Fuzzy Rule-Based Systems and Genetic Programming techniques are g
choices for tackling with some practical modeling problems. We claim that both evolutionary processes ma
produce good numerical results while providing us with a model that can be interpreted by a human being. V
will analyze in detail the characteristics of these two methods and we will compare them to the some of the mc
popular classical statistical modeling methods and neural networks.
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1. Introduction energy bill that users pay is not completely received
by the companies, but the payments are redistributed
Spanish electrical market is evolving towards compe- according to some complex criteria (amount of power
tence, but it is not completely deregulated. There are generation of every company, number of customers,
four major agents (Iberdrola, Endesa, bmiFenosa, etc.) with the aim of equilibrating the spanish market.
Hidroelectrica del Caratbrico) that simultaneously Recently, some of these companies have asked to
own almost all power generation plants and distribu- revise these rules. We will discuss some models orig-
tion networks in Spain. Due to the characteristics of inated in the new proposals of redistribution of the
the Spanish market, any of these companies could havemaintenance costs of the network. Maintenance costs
a greatinfluence over the price of the electrical energy, depend (among other factors) on the total length of
which has an obvious strategic importance in the eco- electrical line each company owns, and on its kind
nomical development of the country. (high, medium, urban low and rural low voltage). To
Hence, the Spanish government decided some yeargustify the expenses of the companies, models of the
ago to nationalize high voltage lines and to separate length of line are used. This is so because, besides
distribution and generation markets, thus forcing the high voltage lines can be easily measured, a problem
mentioned companies to act as two different entities comes when trying to estimate the maintenance costs of
each. This way, generation plants sell the energy they medium and low voltage lines. Specially in the latter
produce in a partially regulated market and the dis- case, low voltage line is contained in cities and vil-
tribution companies buy the energy in this same mar- lages, and it is very difficult and expensive to measure
ket. (Bilateral contracts between suppliers of energy it. This kind of line uses to be very convoluted and
and consumers are also allowed in certain cases.) Thecompanies can serve as much as 10000 small nuclei.
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An indirect method for determining the length of line is  these two approaches to solve the mentioned problems
needed. and we will compare their performance with two other
Moreover, some of the modifications of the payment widely known techniques: classical regression (non-
structure were based on the optimal network and not on linear least squares model fitting to the set of data) and
the actual network. It is argued that low and medium neural methods.
voltage lines existing in a town have been installed in-  The paperis setup as follows. In Section 2, we intro-
crementally and thus the actual distribution is far from duce the use of the hybrid evolutionary techniques in
the optimal one. If lengthy networks are rewarded, thefield of DAand presentthe GA-P and Genetic Fuzzy
there are not incentives to modernize obsolete distribu- Rule-Based Systems (GFRBSs) [10]. Sections 3, 4,
tion networks. and 5 are devoted to present the two different ap-
The reasons that make models of the length of line proaches commented, the use of GA-P algorithms for
important in the spanish electrical market are clear. All symbolic regression problems and the use of GAs and
companies develop their own models and the govern- ESs to optimize and design FRBSs. In Section 6, the
ment also uses some of these models to decide the parelectrical distribution problems are tackled by means
of the payment that the companies receive. In this con- of the proposed techniques and their performance is
text, we were asked to solve two problems: to relate compared with other kind of techniques, classical re-
some characteristics of a certain village with the actual gression and neural methods. Finally, some concluding
length of low voltage line contained in it, and to relate remarks are pointed out in Section 7.
the maintenance cost of the network installed in certain
towns with some other characteristics of these towns 2. Preliminaries: Hybrid Evolutionary
[1, 2]. In both cases, it would be preferable that the so- Techniques for Data Analysis
lutions obtained verify another requirement: they have
not only to be numerically accurate in the problem- 2.1.
solving, but must be able to explain how a specific
value is computed for a certain village or town. That In DA, objects described by some attributes are consid-
is, itis interesting thathese solutions are interpretable  ered and the specific values of the attributes are the data
by human beings to some degree to be analyzed. Objects can be, for example, things,
In this paper, we propose different solutions to both time series, process states, and so on. The overall goal
distribution problems in the field of Data Analysis is to find a structure (information) about these data.
(DA). DA can be considered as a process in which, This leads to a complexity reduction in the considered
starting from some given data sets, information about application which allows us to obtain improved deci-
the respective application is generated. In this sense,sions based on the gained information.
DA can be defined as a search for structure in data. The application of DA has a wide range and occurs
Since in our problems there is a need to find relation- in diverse areas where different problem formulations
ships between some variables (the village characteris-exist.
tics and the length of low voltage line in it, in the first Different algorithmic methods for DA have been
case, and the town characteristics and its associatedsuggested in the literature, as Clustering algorithms
maintenance cost, in the second one) and these rela{11], regressiontechniques[12], Neural Networks [13],
tionships must be compatible with some known data, FRBSs [7], EAs [3], etc.

Framework

it is clear that they may be solved by means of DA
techniques.

The problem-solving techniques considered will
make use of the Evolutionary Algorithms (EAs) [3] in
the field of DA. We will analyze different hybrid evo-
lutionary learning processes. Firstly, we will use Ge-
netic Algorithm-Programming (GA-P) [4] algorithms
for symbolic regression and later we will use Ge-
netic Algorithms (GAs) [5] and Evolution Strategies
(ESs) [6] to design Mamdani and TSK-type Fuzzy
Rule-Based Systems (FRBSs) [7—9]. We will consider

As regards DA in the light of EAs, a representation
of the information structure is considered and evolved
until having an abstraction and generalization of the
problem, reflected in the fitness function. For exam-
ple, in [14] different approaches for learning in the
framework of GAs are to be found.

Recently a lot of research efforts have been directed
towards the combination of different methods for DA.
In this way, EAs have been combined with different
techniques either to optimize their parameters acting as
evolutionary tuning processes or to obtain hybrid DA



methods, for example, evolutionary-neural processes
[15], evolutionary regression models [16] and evolu-
tionary fuzzy systems [17].

Next, we briefly introduce two specific evolutionary
hybrid approaches, the GA-P to perform symbolic re-
gressions and GFRBSs to optimize and design fuzzy
models. Different particular developmentsin each field
will be presented in Sections 3, 4 and 5.

2.2. GA-P for Symbolic Regression

Genetic Programming (GP) [16] has emerged as an
effective mean of automatically generating computer
programs to solve a variety of problems in many dif-
ferent problem domains, including the discovery of em-
pirical formulae from numerical data.

GP methods generate symbolic expressions and cal
perform symbolic regressions. However, the way in
which GP perform symbolic regressions is quite re-

strictive; the structure of an expression can be changed

by crossover and mutation operations, but the value of
the constants embedded in it—generated by the imple-
mentation program when the GP starts—can only be
altered by mutations.

The GA-P [4] performs symbolic regression by com-
bining the traditional GAs with the GP paradigm to
evolve complex mathematical expressions capable of
handling numeric and symbolic data. The GA-P com-
bines GAs and GP, with each population member con-
sisting of both a string and an expression as it is shown
in Fig. 1. The GP part of the GA-P evolves the expres-
sion. The GA part concurrently evolves the coefficients
used in the expressions. Most of the GA-P’s elements
are the same as in either of the traditional genetic tech-
niques.

The GA-P and GP make selection and child gen-
eration similarly, except that the GA-P’s structure re-

quires separate crossover and mutation operators for

the expression and coefficient string components. In
the GA-P, crossover and mutation take place indepen-
dently for the coefficient string and the expression com-
ponent. Mutation and crossover rates for the coefficient
string (using traditional GA methods) are independent
from the rates for the expression part (using standard
GP methods).

By fusing the GA's capability of value optimization
and the GP’s capability of creating mathematical equa-
tions, itimproves the ability to describe the data. There-
fore, the GA-P is a powerful DA tool.

A complete description of GA-P can be found in [4].
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Figure L Member of population, GA-P algorithms.

2.3. Genetic Fuzzy Rule-Based Systems

Nowadays, one of the most important applications of
the Fuzzy Set Theory suggested by Zadeh in 1965 [18]
is the FRBSs. These kinds of systems constitute an
extension of the classical Rule-Based Systems because
they deal with fuzzy rules instead of classical logic
rules. Thanks to this, they have been successfully ap-
plied to a wide range of problems presenting uncer-
tainty and vagueness in different ways [7, 19-21].

An FRBS presents two main components: (1) the
Inference System, which puts into effect the fuzzy in-
ference process needed to obtain an output from the
FRBS when an input is specified, and (2) the Knowl-
edge Base (KB) representing the known knowledge
about the problem being solved, composed of the Rule
Base (RB) constituted by the collection of fuzzy rules,
and of the Data Base (DB) containing the membership
functions defining their semantics.

There exist two different kinds of fuzzy rules in
the literature according to the expression of the con-
sequent:

1. Mamdani-type fuzzy rules consider alinguistic vari-
able in the consequent [8]:

IF X1is Ajand...andX, is A,
THENY is B
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with Xy, ..., X, andY being the input and output KB [10]. The third group may be divided in two differ-

linguistic variables, respectively, andl, ..., A, ent subgroups depending on whether the KB learning
andB being linguistic labels, each one of them hav- is performed in a single process or in different stages.
ing associated a fuzzy set defining its meaning. For a wider description of each GFRBS group see

2. TSK fuzzy rules are based on representing the con-[10, 25], and for an extensive bibliography see [23],
sequent as a polynomial function of the inputs [9]: Section 3.13. Different approaches may be found in

[10, 17].
IF X1 is A; and. .. andX, is A, On the other hand, GFRBSs included in the first
group are usually calleglolutionary tuning processes
THENY =p1- Xg 4+ Pn- Xa+ Po while the ones belonging to the second and third
ones are calle@volutionary learning processesin
with X1, ..., X, beingthe inputlinguistic variables, ~ Sections 4 and 5, we will present some specific ap-
Y being the output variable, an, ps, ..., pn be- proaches belonging to the first and third families, re-
ing real-valued weights. spectively.

Knowledge-based methods are suitable for fuzzy 3. Interval-Valued GA-P for Symbolic
DA. In this approach, fuzzy If-Then rules are for- Regression
mulated and a process of fuzzification, inference and
defuzzification leads to the final decision. Different In this Section we will introduce a modified version of
efforts have been made to obtain an improvement on the GA-P method, which we will calhterval GA-P.
system performance by incorporating learning mecha- This approach—initially developed to solve an specific
nisms to modify the rules and/or membership functions symbolic regression problem, [26]—is characterized
in the KB. by using interval values, instead of punctual ones, and
With the aim of solving this problem, in the last few by combining GA-P with local optimization techniques
years, many different approaches have been presenteds well.
taking EAs, usually GAs, as a base, to automatically  Regression analysis is concerned with the approx-
derive the KB, constituting the so called GFRBSs [10] imation of observed data by a function, when some
(see Fig. 2). GFRBSs are considered nowadays as arvariables (outputs) depend on other (inputs). We will
important branch of the Soft Computing area [22]. The adopt from here some usual conventions in statistical
promising results obtained by the EAs in the learning regression, and we will say that the two variables
or tuning of the KB have extended the use of these and X—whereY is the output we want to model and
algorithms in the last few years, see [23, 24]. X = (Xq, ..., Xy) isthe input—are random variables.
It is possible to distinguish among three different We will also understand that the regression analysis
groups of GFRBSs depending on the KB components involves finding a functiomy, such thag(X) is an ad-
included in the learning process: DB, RB, or both, i.e., missible estimation oE(Y | X). If the structure ofjis
unknown, the problem is namagmbolic regressian
Symbolic regression produces a punctual estima-
tion; anyway, sometimes it is necessary to obtain the
margins in which we expect the outpMt is, when
the input variablesX; are known. Now, we should
not look for a functiong, but a multivalued mapping
Iy :Im(X) — I (R), wherel (R) is the set formed
by all closed intervals ifR, such that the random set
[y o X:Q — | (R) verifies

DESIGN PROCESS
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for a given value ofv.
We can assess this interval prediction in some differ-
Figure 2 Genetic fuzzy rule-based systems. ent ways. We think that it is reasonable to admit that,

Environment Computation with Fuzzy Systems Environment
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Figure 3 Linear and interval estimation.

given a value for, the shorte,, is, the better it is.
So, if we define
IyoX=[g oX,gtoX]

for two continuous functiong™ andg~ (see Fig. 3)
the margin of validity will be better when

E(groX =g o X)
is as low as possible, constrained by

PlweQ]g oX(w) < Y() <g"oX(w))}

>1—a.
In other words, given a region
Rgr.g) = {(x. y) e R g7 (0) < y < g7 ()}
it must be true that
Ploe Q| (X, Y)(w) € Rgt gy} =1—a.

Let us suppose now thagt" andg™~ also depend on
a functionhy : RY — R in the following way:

[97(), g (0] = {t e R |t =hy(x),6 € [0, 6]
X [0 61}

where the expression df; is known except for the
value ofm parameter®;, andhy is continuous with
respectt® andx (sog™ andg~ will also be continuous
functions, as we had proposed). Then, for a random
sample of sizeN, obtained from the random vector
(X, Y),

((Xls Yl)a s (st YN))

we defined,” andd;" to be the values that minimize

1 N
N 2970 =g %)

i=1
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constrained by
1 N
TSN Zl

for a given value ot. Notice thaix # ¢; once chosen
a value fore, we can only estimate by means of a
second sample

(leYI

(XL YD, - (X i),

independent from the first one, by means of

M
ZlR«ﬁg >(Xl’ l
i=1

The random variabléy, follows a binomial distribu-
tion with parameter$! anda and, by the strong law
of the large numbers, it converges almost surely to the
valueax whenM — oo.

In any case, to minimiz&(g* o X — g~ o X) with
respect to the imposed constraints we should apply non
linear constrained optimization techniques (say, for in-
stance, non linear programming). And we cannot for-
get that the calculus is based in the knowledgéof
Both problems (the search of the analytic expression
of h and the values fo6," and6,”) can be simulta-
neously solved by applying (with some modifications)
the GA-P technique.

The adequacy of functioh to a set of points is de-
fined by the separation betwegr andg~, and both
were defined in terms df:

Q)

{teR|t=hs(x),0 €[], 6]]
x [0y, 041}

[07(), g" ()] =

that is, to find the value of™(x) we should find the
maximum ofh inside the allowed range for its param-
eters,
gr(x) = mﬂ§1><{h9(x),«9 el6;. Gf] X+ X [0, 9;]’]}.

The same result could be appliedyo. Fortunately,
numerical calculus of this minimum and this maximum
can be avoided if we choose an adequate representation
for the expression part of the GA-P algorithm.

The proposed representation is based in the use of
interval arithmetic to perform all operations involved
in the expression part (see Fig. 4). That is, we codify
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[24], Section 13). They all deal with the problem of re-
fining a preliminary KB obtained from the linguistic in-
formation given by human experts, from an automatic
learning process based on the numerical information
available, or from a method combining both types of
information [20].

These kinds of GFRBSs may work over different
DB components and adjust its previous definition
by adapting it. The components that may be in-
volved in the evolutionary tuning process are the follo-
wing:

e The definitions of the fuzzy rule membership func-
tions collected in the DB.
k1- k1+ k2- k2+ k3- k3+ k4- kd+ e The scaling factors.
GA Part e The gain of the different fuzzy partitions considered.

_ ' _ ' We will briefly introduce two different evolution-
Figure 4 Interval arithmetic GA-P algorithms. ary tuning processes in the the following two subsec-
tions. The aim of the first method is to adjust the fuzzy
L . membership functions of the different fuzzy partitions
the function in a tree, whose terminal nodes represent . : o .

. _ . . considered in a preliminary Mamdani-type KB. On the
intervals P, 6] (that will contain the unknown val-
P : other hand, the second one works over TSK KBs and
ues of the parameters). The internal nodes represent . ) . ;
. . refines both the membership functions used in the rule
unary interval operations e
antecedent and the real parameters defining the rule
consequent.
Both processes may be used in combination with
any generation process capable to obtain a preliminary

Ou(A) ={xeR|x=04) At e A}

or binary operations definition of a KB of the corresponding type, Mamdani
or TSK, respectively. In the experiments that will be
Op(A,B)={xeR|[X=0pt,u)At € Ajue B} carried out in Section 6, the Mamdani-type one will be

combined with a very known inductive algorithm for

whereA, B € | (R), 0a:R—Randoy:R xR — R. deriving Mamdani-type KBs, the Wang and Mendel’s

Then, the evaluation of the expression part in an input (WM) one [27] (see Appendix), and with one of the
value (point or interval) will be an interval. evolutionary learning processes that will be presented
A description on the unary and binary operators and in Section 5. On the other hand, the TSK evolutionary
the remaining characteristics of the algorithm are to be tuning process is used in the TSK GFRBS that will be

found in [26]. presented in Section 5 as well.
4. A Genetic Fuzzy Rule-Based System 4.2. A Genetic Tuning Process for Adjusting
for Defining the Data Base the Fuzzy Membership Functions

in a Mamdani-type Data Base

4.1. Framework

As all GFRBSs in the same family, the genetic tuning
In this section, we deal with the case in which EAs are process presented in [25, 28] is based on the existence
considered to define the DB. Thus, we referto GFRBSs of a previous definition of the whole KB, i.e., an initial
belonging to the first group mentioned in Section 2, DB and an RB composed df Mamdani-type fuzzy
which are commonly known asvolutionary tuning rules, calledr.
processes Many of these processes are to be found Each chromosome forming the genetic population
in the specialized literature (see [23], Section 3.13, and will encode a different DB definition that will be
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Figure 5 Graphical representation of a possible fuzzy par-
tition.

combined with the existing RB to evaluate the indi-
vidual adaption.
The GA designed for the tuning process presents

real coding issue, uses the stochastic universal sam-

pling [29] as a selection procedure and Michalewicz’s
non-uniform mutation operator [30]. As regards the
crossover operator, the max-min-arithmetical one [31,
32], which makes use of fuzzy tools in order to improve
the GA behaviour, is employed.

The primary fuzzy sets considered in the initial lin-
guistic variables fuzzy partitions are triangular-shaped
(see Fig. 5). Thus, each one of the membership func-

tions has an associated parametric representation basedc, 2

on a 3-tuple of real values and a primary fuzzy parti-
tion can be represented by an array composed & 3
real values, witiN being the number of terms forming
the linguistic variable term set. The complete DB for
a problem in whichm linguistic variables are involved

is encoded into a fixed length real coded chromosome

C; built by joining the partial representations of each
one of the variable fuzzy partitions as it is shown in the
following:

Cii = (@1, b1, G1, ..., @, bing, Cing)s

Cr = Crl Cr2"‘crm

The initial gene pool is created making use of the
initial DB definition. This one is encoded directly into
a chromosome, denoted &5. The remaining indi-
viduals are generated by associating an interval of
performance ¢, ¢.] to every genec, in C;, h =
1---3" N;-3. Eachinterval of performance will be
the interval of adjustment for the corresponding gene,
ch € [d, -

If (t mod 3 = 1 thenc is the left value of the sup-
port of afuzzy number. The fuzzy number is defined by
the three parameters;, ¢, 1, Ci12), and the intervals
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c,

Figure 6

Intervals of performance.

of performance are the following:

C — G C — G
| t+1— Ct t+1— Gt
G € [CI’C{]:|:CI_ 2 , Gt + 2 i|’
I r
C+1 € [Ct+1v Ct+1]
_ C+1— G Ci+2 — G421
= CHl_T’ TS |
I r
€ [ai2 G2
Ct+2 — Cty1 Ct+2 — Ct+1
= |:Ct+2 -5 Ci2 + — %

Figure 6 shows these intervals.

Therefore we create a population of chromosomes
containingC; as its first individual and the remaining
ones initiated randomly, with each gene being in its
respective interval of performance.

As regards the fitness function, two different defini-
tions for it may be considered. Both of them are based
on an application specific measure usually employed
in the design of GFRBSs, the mean square error (SE)
over a training data seErps, composed of a number
of input-output data pairsiex,, ..., ex,, ey). The
first definition is constituted directly by this criterion.
Therefore, it is represented by the following expres-
sion:;

EC) =
©) 2|Erps|

Y (&Y —Sex))?

8 €Erps

with S(exX) being the output value obtained from
the FRBS using the KBR(C;), comprising the ini-

tial RB definition, R, and the DB encoded in the
chromosomeC;, when the input variable values are
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eX = (ex,...,ex), andey is the known desired
value.

The second fitness function definition is based on
considering thecompleteness propertan important
property of KBs [8, 33]. This condition is ensured by
forcing every example contained in the training set to

The antecedent fuzzy partitions are encoded in the
first part of the chromosomes working in the way shown
in the previous section. In this case, each one of the tri-
angular fuzzy set®;; = (aj, bij,Gj), i =1,...,iv
(iv =number of inputvariables),=1,..., Nj (N; =
number of fuzzy sets in the ith fuzzy partition), defining

be covered by the considered KB to a degree greaterthese preliminary fuzzy partitions are allowed to vary

than or equal ta,

Cre,@) = |J Ri@=1,

Vg € Erps  and Rj S R(Cj)

wheret € [0, 1] is the minimal training set complete-

ness degree, a value provided by the system designer.

Therefore, we define #&aining set completeness
degreeof R(Cj) over the set of exampleSrps as

TSCOR(C)), Eros) = (] Cre,, (@)

8 €Emps

and the final fitness function penalizing the lack of the
completeness property is:

F(C)
E(Cj), if TSCHR(CJ), Emps)>1
= % Z (ey)?, otherwise.

8 €Emps

4.3. An Evolutionary Refinement Process for Tuning
the Membership Function and Consequent
Definitions in a TSK-type Knowledge Base

The evolutionary refinement process [34] is a tuning

freely in any meaningful way in an interval of perfor-
mance D{JT“”, D;®]. The extremes of these intervals
are computed before running the refinement process ac-
cording to the preliminary fuzzy partition definitions
provided by the FRBS designer, in the following way:

-

Therefore, the interval of performance of each gene
in C* will depend on the fuzzy membership function
to which it is associated. Each one of these intervals
of performance will be the interval of adjustment for
the corresponding gene, € [c}, ¢]. If (tmod 3 =1
thenc; is the left value of the support of a fuzzy set,
whichis defined by the three parametexsc;. 1, Ci12)
and the intervals of performance are the following:

bij — aij
2

[Dirjnin, Dirjnax]

Gj — by

G € [Clt Ctr] =[D™", ¢i14]
Cty1 € [C|t+1’ C{+1] = [Ct, Ci42]
Ct+2 € [CI[+21 C[+2:| = [Ct+1’ Dmax]
with D™" and D™ peing the extremes of the interval

of performance in the fuzzy set defined by the 3-tuple
(Ct, Cty1, Cy2). These values are the only ones defining

process that takes a TSK KB as input and adjusts the the intervals of adjustment of theg's that remain con-

preliminary definitions of the antecedent membership

stant during the GA run. Figure 7 shows an example

functions and consequent parameters according to thegf these intervals.

global behavior of the KB evolved in the problem be-
ing solved, represented as a training data set. It is
composed of a special real-coded GA including an
(1 + 1)-ES as another genetic operator to improve the
search process @enetic local search algorithr{85,
36]), guided by a global error measure over the train-
ing data set. We describe the hybrid EA components
below.

A chromosomeC encoding a TSK KB definition is
composed of two different part§! andC?, the former
corresponding to the definition of the fuzzy member-
ship functions considered in the antecedent part of the
different fuzzy rules in the KB, and the latter to the
consequent parameters.

min

D

1 1 T 1 r
t Cir1

max

r
€y

Figure 7. Example of triangular membership function and intervals
of performance for the refinement process.



As regards the second part of the chromosddeit
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search algorithm in the hybrid approach built. In this

encodes the consequent parameters of each fuzzy rulecase, the genetic local search performed is selective:

in the preliminary definition of the TSK KB. Thus, itis
composed ofn- (iv + 1) genes, where stands for the
number of rules in the KB anib + 1 for the number
of consequent parameters for TSK fuzzy rule:

| =

C|2 = (pl()’ pl17 MR pllv)7

C*=C{Cj---C}

The parameters i€? are encoded using trengu-
lar coding [37], a coding scheme specially designed
for TSK rule consequent parameters. It is based on
encoding the angle value associated to the TSK rule

consequent parameters instead of the tangent one by

means of the function

T

C:R— <——, z), C(y) = arctarty)
2°2

Therefore, the interval of performance of all genes
in C? is the same(—%, %).

The available knowledge in the form of the prelim-
inary definition of the KB being optimized is used to
initialize the first population by performing the follow-

ing three steps:

1. The preliminary definition of the KB taken as pro-
cess input is encoded directly into a chromosome,
denoted a€;.

. The following% — 1 chromosomes are initiated by
generating, at random, the first patt, with each
gene being in its respective interval of performance,
and by encoding the preliminary definition of the
rule consequent parametersGA.

. The remainindg— are set up by generatit@' in the
same way followed in the previous step, and by gen-
erating the values fa€? by adding a random value
distributed following a normal distributioN (0, d)
to the values in th€? part of the previous chromo-
somes.

The fitness function based on the SE meastkre,
presented in the previous Section, is considered. On

the other hand, the selection mechanism and the genetic
operators are the same ones used in the Mamdani-type

genetic tuning process: Baker’s stochastic universal
sampling, Michalewicz’s non-uniform mutation and
max-min-arithmetical crossover.

Finally, the last genetic operator to be applied con-
sists of an (14 1)-ES, which plays the role of local

each time a GA generation is performed, the ES is
applied over a percentagef the best different popu-
lation individuals existing in the current genetic popu-
lation.

The coding scheme and the fitness function consid-
ered in the(1 + 1)-ES are the same as those used in
the GA. Thus, the only changes to be performed have
to be done in the generic ES mutation scheme when
working on the genes i@'. This is due to the fact that
(1 + 1)-ESs, usually work over individuals in which
the genes are independent and all of them are adapted
using the same step size Both assumptions are not
right in this case because of two reasons: each three
consecutive parameters@t are defined in a different
universe thus requiring different order mutations (a step
sizeo; = o - § is going to be used for each gene) and
are related among them (they three define a triangular
fuzzy set), thus requiring to be adapted incrementally
for not obtaining non-meaningful fuzzy sets.

The next algorithm summarizes the application of
the adaptation process on a membership function en-
coded in the parent. WitB;; = (xo, X1, X2) being the
fuzzy set currently adapted, the steps to follow are:

1. Compute the step size of the central pogik;) <«

Min {X1—Xo,X2—X1}

2
2. Generate z~ N(O, 012) and compute Xin the fol-
lowing way

X1+ 2z, if X+ 21 € [Xo, X2]
X1 < 4 Xo, if Xe+21 < Xo
Xo, if Xg+21 > X

3. Adapt the remaining two points
(a) S(Xo) < Min{xo—Ciz'JT“”,x’l—xo}
Generate g~ N(0, o)

Xo+ 2o, if Xo + 2o € [C, x{]

X4 < Cil, ion+Zo<CiI
X1, if Xo+ 20 > X;
(b) S(Xg) - Mln{ngxlz,cij —X2}
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Generate Z~ N(0, 02) stage will constitute the final output of the whole ge-

netic learning process.

X2+ 22, if Xo+ 25 € [x(, C[]
. Next subsections will briefly describe the first two
X5 < 1 X} if Xo+ 2 < X] ;
2 1 2Tesn learning stages.
Cir, isz—I—Zz>Cir

5.1.1. The Inductive Generation ProcessThe gen-
When working with the second part of the chromo-  eration process is based on a previously defined DB,
some,C?, the latter problem does not appear. In this composed of different fuzzy partitions of the variable
case, the different components are not related and thespaces, as the one shown in Fig. 5.

mutation can be performed in its usual way. The only

The covering method is developed as aniterative pro-

change that has to be made is to adapt the step size to theess that allows us to obtain a set of fuzzy rules covering

components irC2. Since all of them are defined over
the same interval of performance; 3, %), they allwill
use the same step size=o -5 with 5 =0.00001.

5. Two Genetic Fuzzy Rule-Based Systems
for Learning Mamdani and TSK-type
Knowledge Bases

In this section, we will consider two GFRBSs that be-
long to the third mentioned group, the ones learning the
complete KB. The following subsections are devoted to

present two evolutionary learning processes capable of

generating a whole definition of a Mamdani-type and
TSK-type KB from examples, respectively.

5.1. A GFRBS for Learning Mamdani KBs

This genetic learning process is composed of the fol-

lowing three stages [25, 28]:

1. An inductive generation procestor generating

Mamdani-type fuzzy rules from examples, with two

components: &zzy rule generating methdhsed

on a non-evolutionary inductive algorithm, and an

iterative covering methodf the example set.

. A genetic multisimplification procegsr selecting
rules, based on a binary coded GA with a genotypic
sharing function and a measure of the FRBS perfor-
mance. Itwillremove the redundantrules generated
by the previous component with the aim of obtaining
different simplified KBs presenting the best possi-
ble cooperation among the fuzzy rules composing
them.

. The genetic tuning processintroduced in
Section 4.2. It will give the final KB as output
by tuning the membership functions in each pos-
sible KB derived from the genetic multisimplifica-
tion process. The most accurate one obtained in this

the example set. In each iteration, it runs the generating
method, obtaining the best fuzzy rule according to the

current state of the training set, considers the relative
covering value this rule provokes over it, and removes

from it the examples with a covering value greater than

€, provided by the system designer. It ends up when

the training set becomes empty.

Each time the generating method is run, it produces a
set of candidate fuzzy rules by generating the fuzzy rule
best covering every example from the training set. The
accuracy of the candidates is measured by using a mul-
ticriteria fithess function, composed of three different
criteria measuring the covering that each rule provokes
over the training set, which allows us to ensure that the
final set of rules generated verify the completeness and
consistency properties [8, 33]. Finally, the best fuzzy
rule is selected from the set of candidates and given as
method output.

The last criteria can be described by means of the
following expressions:

(a) High frequency valueThe frequency of a fuzzy
rule, R;, through the set of examples,, is defined
as:

SPiR@)
p

(b) High average covering degree over positive exam-
ples The set of positive examples tg with a
compatibility degree greater than or equaltds
defined as:

Ve, (R) =

ES(R) = {a € Ep/R(8) > v}

with nf (R)) being equal t§E} (R))|. Theaverage
covering degreen E; (R) can be defined as:

G,(R)= Y  R(@)/nj(R)

acEf(R)
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(c) Penalization associated to the non satisfaction of scheme, to perform selection. The fitness function is
the k-consistency propert¥he set of the negative  the F one shown in Section 4.2, which combines an
examples foR; is defined as: error measure, the SE, and a term penalizing the lack

_ of the encoded KB completeness property.
E"(R)={a € Ep/Ri(a) =0 andA (ex) > 0} Each time the genetic simplification process obtains

a simplified KB definition, the multisimplification one
epenalizes the search space zone where it is located, so
it will not be generated in future runs. A genotypic
sharing scheme [39] is used to penalize individuals ac-
cording to its space proximity to the previous solutions
found. To do so, there is a need to defindistance
metricwhich, given two individuals, returns a value of
how close they are. We use the Hamming distance due
to the fact that this measure is defined to work on a bi-
nary space and it is very simple to compute, thus being

An example is considered negative for a rule when
it best matches some other rule that has the sam
antecedent but a different consequent. The negative
examples are always considered over the complete
training set.

This last criterion penalizes those fuzzy rules with
many negative examples with respect to the number of
positive examples with a compatibility degree greater
than or equal taw. In this way, it penalizes the non
satisfaction of thek-consistency property [33]. The

penalty function on the negative examples set of the Suitable for our purpose. V.V'th‘ — (@, . .., 8m) anq
rule R will be: B = (by, ..., by) being two individuals, the Hamming
' distance is defined as follows:

On(R7) m

1, if ng <k-n}(R) H(A, B>=i;aa-bi

= 1 .
nr —knj(R) +expl)’ otherwise Making use of this metric, theodified fithess func-
¢ tion guiding the search on the multisimplification pro-

with ng = |[E7(R)| being the number of negative  cessis based on modifying the value associated to anin-
examples. dividual by the basic algorithm fitness function, multi-

These three criteria are combined into a fitness func- plying it by aderating functiorpenalizing the closeness
tion using any aggregation function increasing in the of this individual to the solutions previously obtained.
three variables. In this paper we work with the product Hence, the modified fitness function used by the mul-
in the following way: tisimplification process is the following:

F(R) = lIjEp(Ri) -Gu(R)-gh(R7) F/(Cj) =F(Cj)-G(C;, 9

5.1.2. The Genetic Multisimplification Process. whereF is the basic genetic simplification process fit-
Since the generation process works in an iterative way, ness functionS = {si, ..., &} is the set containing

it may obtain a KB containing redundant rules that do thek solutions already found, ar@ is a kind ofder-

not properly cooperate between them. The aim of this ating function We consider the following taking into
second stage is to simplify the previously generated account the fact that the problem we deal with is a

KB, removing from it the rules not cooperating well. minimization one:
The main idea of the genetic multisimplification pro- )
cess is that it does not only generate one simplified oo, ifd=0

definition of the previous fuzzy rule set, but several G(C. S = d\?* .

different ones. To do so, it runs the genetic simplifica- I 2- <r_> , ifd<randd#0

tion process proposed in [38]. This process is based on 1, ifd>r

a binary-coded GA which encodes the set of rules ob- B

tained from the generation process into a fixed-length whered is the minimum value of the Hamming distance
chromosome. The value 1 means that the rule belongsbetweerC; and the solutions included inS, i.e.,d =

to the final KB, and the 0 means that it does not. Two- Min;{H(C;, 5)}, and the penalization is considered
point crossover and uniform mutation operators are over the most close solution,s theniche radius and
used to alter the individuals and the stochastic univer- g isthepower factodetermining how concavgg(> 1)
sal sampling procedure, along with an elitist selection or convex 8 < 1) the derating curve is. Therefore, the
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penalization given by the derating function takes its
maximum value when the individu&l; encodes one
ofthe solutions already found. There is no penalization
whenC; is far away fromSin a value greater than or
equal to the niche radius

The algorithm of the genetic multisimplification pro-
cess is shown below:

1. Initialization: Equate the multisimplification mod-
ified fitness function to the basic simplification fit-
ness functionF'(C;) < F(Cj).

2. Run the basic genetic simplification process, using

the modified fithess function, keeping a record of
the best individual found in the run.

3. Update the modified fitness function to give a de-
pression in the region near the best individual, pro-
ducing a new modified fitness function.

4. Ifall simplified KBs desired have not been obtained,
return to step 2.

the antecedent parts of the fuzzy rules in the preli-
minary KB obtained from the first stage.

Next subsections will present the different compo-
nents of the first learning stage. First of all, the TSK
rule consequent learning method is introduced. Then
we propose the use of the knowledge contained in the
training data set to improve the search process. Finally,
we present the algorithm of the whole generation pro-
cess, which makes use of the two previous aspects.

5.2.1. The TSK Rule Consequent Learning Method.
In this method, ay, 1)-ES is considered to define TSK
rule consequent parameters. The dimensiaf the
object variable vectox is determined by the number
of input variables in the problem being solved. When
there ard v input variables, there ae = iv + 1 pa-
rameters to learn in the TSK rule consequent. Xhe
part of the individuals forming theu(, A)-ES popula-

Hence, the number of runs of the sequential algo- tjon is built by encoding the possible values using the

rithm performed is the number of solutions that we
desire to obtain, i.e., the number of simplified KBs we
will generate. We allow the FRBS designer to decide
this number as well as the values of the parameters
andg.

5.2. A GFRBS for Learning TSK KBs

This second GFRBS is based on performing the learn-

ing of the KB in different steps as the previous one
presented. In this case, it comprises the following two
stages [34]:

1. Anevolutionary generation procedsr learning a
preliminary TSK KB from examples. This first pro-

cess is based on an iterative algorithm that studies
the existence of datain the different fuzzy input sub- in
spaces. Each time data are located in one of them,

the process appliesTSK rule consequent learning
methodo determine the existing partial linear input-
output relation, taking the data located in this input

subspace, a subset of the global data set, as a bas

The latter method is based ona, (.)-ES using the

€.

angular codingn Section 4.3.

EA evolution is guided by a fitness function com-
posed of a local measure of error. The expression of
the measure used is the following one:

> hi-(ey —SExX)’

gcE

where E is the set of input-output data pairs
a = (ex,...,exX ey) located in the fuzzy in-
put subspace defined by the rule antecedant=
T(Ai(ex), ..., A,(eX))) is the matching between
the antecedent part of the rule and the input part of
the current data paiex , andS(eX) is the output pro-
vided by the TSK fuzzy rule when it receives’ as
input.

The object variables of the individuals in the first
population are generated in the way shown in the next
subsection, taking into account the knowledge con-
tained in the input-output data set. As regards the
composition of the remaining vectors, the components
of & are initiated to @01, and the ones i@, when
considered, are set toctan(1).

angular coding proposed in the previous section and
a local measure of error, and takes into account the
knowledge contained in this training data subset to 5.2.2. Using Available Knowledge in the Design Pro-

improve the search process.
2. Theevolutionary refinement procesgroduced in

cess. To develop the knowledge-based generation of
the initial population, we compute the following in-

Section 4.3 for adjusting both the consequent and dices and obtain the following set from the input-output



data set:

ZaeE e))
|E]

Ymax = max{e)) },
acE

Ymed = ’ Ymin = min {ey}
eckE

hmax= max{h|}
gceE
Eo ={a € E/h >0 -hnay

Therefore, we generate the initial ES population in
three steps as follows:

1. Generate th& part of the first individual Xy, ini-
tiating parameters;, i = 1,...,iv, to zero, and
parametekg to the angular coding Ofimeg.

. Generate th& part of the followingy individu-
als, X, ..., X 41, Withy € {0, ..., u — 1} defined
by the GFRBS designer, initiating parameters
i =1,...,iv, to zero, andkg to the angular cod-
ing of a value computed at random in the interval
[yminv yma)d-

. Generate th& part of the remaining. — (y + 1)
individuals, X, 12, ..., X,, initiating parameters;,

i =1,...,iv,tothe angular coding of values com-
puted at random in the interval-7, %), andXo
to the angular coding of a value computed from a
randomly selected elemeain E, (6 € [0.5, 1] is
provided by the GFRBS designer as well) in such a
way thate belongs to the hyperplane defined by the
TSK rule consequent generated. Thus, we shall en-
sure that this hyperplane intersects with the swarm
of points contained iy, the most significant ones
from E.

Since with small angular values, large search

space zones are covered, it seems interesting to gen-

erate small values for the parametgri this third
step. To do this, we make use of a modifier func-
tion that assigns greater probability of appearance
to the smaller angles according to a parameter
also provided by the GFRBS designer. We use the
following function:

. T

f(x,2) = z x4

T
2

Hence, the individual generation is performed as
follows in this third step:

Forj=y+2,...,ndo
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(@ Fori=1,...,ivdo

(al) Generatg at random in [01].
(a2) Generate at random inf{—1, 1}.
(a3) Setx to f(y, 2).

(b) Generate the value a:

(b1) Select at random fromE.
(b2) Setxptoey— >\, CL(x) - e, where
C~1(B) = tan(p) is the inverse oC.

5.2.3. Algorithm of the Evolutionary Generation Pro-
cess. The generation process proposed is developed
by means of the following steps:

1. Consider a fuzzy partition of the input variable
spaces obtained from the expert information (if it
is available) or by a normalization process. If the
latter is the case, perform a fuzzy partition of the
input variable spaces dividing each universe of dis-
course into a number of equal or unequal partitions,
selecta kind of membership function and assign one
fuzzy set to each subspace. In this paper, we will
work with symmetrical fuzzy partitions of triangu-
lar membership functions (see Fig. 5).

2. Foreach multidimensional fuzzy subspace obtained
by combining the individual input variable sub-
spaces using thend conjunction do:

(a) Build the sett’ composed of the input-output
data pairse € E that are located in this sub-
space.

(b) If [E’| # 0, i.e., ifthere is any data in this space
zone, apply the TSK rule consequent learning
method over the data s&' to determine the
partial linear input-output relation existing in
this subspace. Therefore, no rules are consid-
ered in the fuzzy subspaces in which no data
are located.

(c) Add the generated rule to the KB.

6. Modeling Electrical Distribution Networks
by Means of the Proposed Hybrid

Evolutionary Data Analysis Techniques
6.1. Computing the Length of Low Voltage Lines

The first of the problems we will show is that of find-
ing a model that relates the total length of low voltage



18 Corddn, Herrera and 8nchez

Tablel Notation considered forthe low voltage
line estimation problem variables.

Symbol Meaning

A Number of clients in population

R Radius ofi population in the sample
n Number of populations in the sample
li Line length, population

li Estimation ofl;

S Number of sectors in town

line installed in a rural town with the number of in-

habitants in the town and the mean of the distances

from the center of the town to the three furthest clients
in it. This model will be used to estimate the total

length of line being maintained by one of the compa-
nies. We were provided with a sample of 495 towns
in which the length of line was actually measured

and the company used the model to extrapolate this

length over more than 10,000 towns with these pro-
perties.

We will limit ourselves to the estimation of the length
of line in a town, given the inputs mentioned before.
Hence, our objective is to relate the first variable (line
length) with the other two ones (population, radius of
village), first by classical methods, later by applying
the hybrid evolutionary DA techniques presented in
this paper. Numerical results will be compared in a
next subsection.

Our variables are named as shown in Table 1.

Villages of Type 1

Idealized
Electrical

2 sectors
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Figure 8 Models of some kind of nuclei.
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6.1.1. Application of Classical Methods: Classical
Regression Adjust. In order to apply classical meth-
ods, we needed to make some hypothesis [2]. In the
populations that are being studied, electrical networks
are star-shaped and arranged in sectors. A main line
passes near all clients inside them, and clients are
connected to these main lines by small segments (see
Fig. 8).

To build a theoretical simplified model we have ad-
mitted that:

e Village i comprisess sectors. All sectors in the
same village cover the same angt.2Main lines
depart from the centre of the village.

e The density of clients is constant inside every sector.

e All sectors in a village have the same radilg,
and contain a main line of lengtR; and as many
branches as customers.

If we admit that customers are uniformly distributed,
we can approximate the total length by multiplying the
mean distance between one of them and the nerve by the
number of inhabitants. Let us name this mean distance
d; for populationi, and let the sector b&2wide. Then

2(1 — coséb)
d = .
] % R
so cable length will be
- i 2(1 — cosé,
T=s(R+2d)=sR+aZER
S 30,

Angle covered

Villages of Type 2
° ° by one sector

-

—— " 3 seclors
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If the angles@i and the numbers, were similar Table 2 Parameter values considered for the GA-P process.
enough between them, we could regard them as con- p,rameter Decision
stants and estimate them by the parametets 6 and
§ = sof a least squares linear regression Population size 100

Maximum number of generations 1000 (steady state)
|~i/Ri =s+k@OA. Parent selection (See text)
GA Part encoding Real
to a set of pair$x, y) = (A, I; /R). GA Crossover operator Two points

We can get a better adjust by allowing a certain de- GP Crossover operation Standard
pendence between the number of sectors, their anglesGA Cross. probability 0.9
and the number of inhabitants. This can be done by di- GP Cross. prob. internal nodes 0.9
viding the sample into classes or by mean of a change Gp cross. prob. leaves 0.1
of variables. Both cases were studied, and the best ga mutation probability 0.01
adjust was obtained with the model GP Mutation probability 0.01

5 Expression part limited to 20 nodes

I_i — klAikz Complexity individuals initial pop. 20 nodes

R Maximum number of parameters 10

. Enrichment initial population 1000 individuals

6.1.2. GA-P and Interval GA-P Adjust. Let us apply Edition probability 0
GA-P algorit_hms to check _Whether we can obtain a Encapsulation probabilty
formula that is comparable in complexity with the last
one, while getting better adjust to the real data. We Permutation probability
will define “simple expression” as a formula that can Decimation No
be codified in a tree with no more than 20 nodes and ADFs maximum 0

depending on no more than 10 parameters. Binary Local GA optimization

Nelder and Mead’s simplex

operations will be sum, difference, product, ratio and

power. The unary operation will be the square root. 6.1.4. Comparison Between MethodsTo compare

Other decisions (whose meaning is well known, see
for instance [4, 30, 40]) are shown in the Table 2.
We randomly select three individuals every genera-

classical methods, GA-P technique and GFRBS fuzzy
modeling we have divided the sample into two sets
comprising 396 and 99 samples. SE values over these

tion. The worst one of them is replaced with the best two sets are labeletlaining andtest In this case, we

descendent of the crossover of the remaining ones. Ob'define SE as
serve that this strategy is elitist and steady state.

1 e 2
6.1.3. GFRBS Fuzzy Modeling. We have considered 2. N Z(Ii —h)

three different fuzzy models to solve the problem, two =1

Mamdani-type and one TSK-type ones. They have Table 3 Parameter values considered for the Mamdani-

been generated from a two-stage GFRBS composed  type genetic tuning process.

of the WM RB learning process (see Appendix) and Parameter

Decision
the Mamdani-type genetic tuning process presented in
Section 4.2 and from the Mamdani and TSK GFRBSs ~ Population size 61
presentedin Sections 5.1 and5.2. The parametervalues Maximum number of generations 1000
considered are shown in Tables 3, 4 and 5, respectively. ~ Non-uniform mutation parameter 5
In all cases, the initial DB considered is constituted Max-min-arithmetical parameter 0.35
by some primary equally partitioned fuzzy partitions Crossover probability 0.6
formed byfive linguistic termswith triangular-shaped Mutation probability 0.1
fuzzy sets giving meaning to them (as shown in Fig. 5), Fitness function WM tuning E
anq the adeq_uate scal_ing factors to trans_late the_ geNeric  riness function Mamdani GERBS tuning F
universe of discourse into the one associated with each Completeness property parameter o1

problem variable.
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Table 4 Parameter values considered for the Mamdani
GFRBS.

Table 6 Results obtained in the low voltage line estimation problem.

Method Training  Test Complexity
Parameter Decision
- Linear 287775 209656 7 nodes, 2 par.

Generation . Exponential 232743 197004 7 nodes, 2 par.
Example covering value 15 )
Positive example degree 005 Second-order polynomial 235948 203232 25 nodes, 6 par.

) Third-order polynomial 235934 202991 49 nodes, 10 par.
k-consistency property parameter 0.1
Multisimlificati Three layer perceptron 2-25-1 169399 167092 102 par.

ultisimplification
Population size 61 GA-P 183693 159837 20 nodes, 3 par.
Maximum number of generations 500 Interval GA-P 192908 158737 16 nodes, 3 par.
Crossover probability 0.6 WM fuzz?/ model 175337 180102 13rules
Mutation probability 01 Mamdani fuzzy model 150559 166669 19 rules
TSK fuzzy model
Completeness property parameter 0.1
P propery p (without refinement) 162609148514 20 rules
Number of simplified KBs to generate 3
Niche radiug 10% of initial
KB rule number

Power factorg 05 The parameters of the polynomial models were fit-

ted by nonlinear least squares (Levenberg-Marquardt
method); exponential and linear models were fitted by
and the columomplexitycontains the number of pa-  jinear least squares and the multilayer perceptron error
rameters and the number of nodes in the parse tree ofyyas minimized with the Conjugate Gradient algorithm.
the expression, as well as the number of rules in the The number of neurons in the hidden layer was chosen
KB of every generated fuzzy model (see Table 6). to minimize the test error.

We can observe that fuzzy models and GA-P tech-
Table 5 Parameter values considered for the TSK GFRBS.

niques clearly outperform classical non linear re-

Parameter Decision gression methods, being equal or superior to Neu-
Generation ral Networks. This result has great significance, be-
Number of parentg 15 cause it means that Neural Network performance can
Number of descendents 100 be achieved with a model with a high des_cnptwe power.
. . WM fuzzy model and the other Mamdani-type one gen-
Maximum number of generations 500 .
erated from our GFRBS provide the most comprehen-
Parametey 02-u=3 . . . .
sive explanation of their functioning, and should be
Parameted 0.7 used when a human-readable, rule based, description
Parameteq 5 ofthe problemis needed. Inthis case, the genetic-based
Recombination operators considered 320 methods have found very simple structures, compris-
Number of parents considered ing only 13 and 19 rules, respectively, and, as may be
for recombinatiort (s 1) observed, the fuzzy model obtained from our GFRBS
Refinement is more accurate to a high degree than the one gener-
Population size 61 ated from the WM-based one in the approximation of
Maximum number of generations 1000 both data sets.
Non-uniform mutation parametér 5 When a mathematical formula is preferred to the
Max-min-arithmetical parameter 0.35 rl_JIe bank, GA-P methods provide a suitable expres-
. sion where the user can select the balance between
Crossover probability 0.6 B .
) iy complexity and precision. We observed that usually
Mutation probability 0.1 . . .
Selective local N o 00 Interval GA-P finds a simpler expression than punctual
I m r . . . .
elective local search paramese (0.0 GA-P, besides its convergence is somewhat slower. Ob-
Maximum number of generations serve that Interval GA-P isotintended to provide an
forthe(1+ 1)-ES 25 . . . . .
standard deviatiod dered inth estimation but a range of values in which the output is,
andar eviatiod considerea in the . T .
generation of the initial population 0.001 with a probability higher than a preselected value. The

number collected in the table is the scoring achieved
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by a punctual model formed when every interval of Table7 Notation considered for the medium voltage line
parameters is replaced by its mean point in the final maintenance cost estimation problem variables.
model. Symbol Meaning

By last, observe that the best precision can only be

obtained if we choose the less descriptive of the fuzzy ~ * Sum of the lengths of all streets in the town
models, TSK. We have to note that the result shown X2 Total area of the town

in the table has been obtained after the first learning ~ *s Area that is occupied by buildings

stage due to the refinement one presents an undesir- xa Energy supply to the town

able overlearning, improving the abstraction capabil- y Maintenance costs of medium voltage line

ity of the fuzzy model to a high degree but making the
generalization one worse. This fuzzy model is only a
little more complex than the other two ones (20 rules) Table 8‘ R_esults obtained in the medium voltage line maintenance
and definitely it is the selection that should be made €St estimation problem.

when the precision is more important than the easinessMethod Training  Test Complexity

of explanation. Anyway, this fuzzy model has associ-
ated a higher level of description than Neural Network
models, because of the possibility of interpreting the

Linear 164662 36819 17 nodes, 5 par.
Second-order polynomial 103032 45332 77 nodes, 15 par.

antecedent part of the fuzzy rules. Three-layer perceptron 4-5-1 86469 33105 35 par.
GA-P 18168 21884 50 nodes, 5 par.
Interval GA-P 16263 18325 15 nodes, 4 par.
6.2. Computing the Maintenance Costs of Medium fuzzy model 20318 27615 66 rules
VOItage Line Mamdani fuzzy model 19679 22591 63rules
TSK fuzzy model & = 0) 25579 26450 268 rules

The second problem has a different nature, since we
will not deal with real data but with estimations of min-
imum maintenance costs which are based on a model
of the optimal electrical network for a town. These
values are somewhat lower than real ones, but com- GA-P algorithms have been applied with the same
panies are interested in an estimation of the minimum parameter values used in the solving of the previous
costs. Obviously, real maintenance costs are exactly problem. Since the problem tackled now is more com-
accounted and hence a model that relates these costplex (four input variables instead of two), in this case
to any characteristics of towns would not be of a great we will define “simple expression”as aformulathat can
practical significance. be codified in a tree with no more than 50 nodes and de-
We were provided with data concerning four differ- pending on no more than 10 parameters. The GFRBSs
ent characteristics of the towns (see Table 7) and their use the same parameters as well, excepting the example
minimum maintenance costs in a sample of 1059 sim- covering value parameterin the Mamdani GFRBS,
ulated towns. In this case, our objective was to relate that now takes @ as a value.
the last variable (maintenance costs) with the other four ~ To compare the mentioned techniques, we have di-
ones by applying the DA techniques presented in this vided the sample into two sets comprising 847 and
paper. Numerical results will be compared next. 212 samples, 80 and 20 percent of the whole data set,
As regards classical methods, we have consideredrespectively. Results obtained in the different experi-
again linear, polynomial and Neural Network mod- ments developed are shown in Table 8, where column
els. The parameters of the polynomial models were names stand for the same aspects that in the previous
fitted using the same method, Levenberg-Marquardt, section.
and the neural model (a three layer perceptron) was In view of them, we can draw similar conclu-
trained again with the Conjugate Gradient algorithm. sions to the ones in the previous problem. GA-P tech-
The number of neurons in the hidden layer was chosen niques and fuzzy models outperform again classical
to minimize the test error; note that the training error non linear regression methods and Neural Networks.
could be made much lower than the shown, but not In this case, the WM-based design process has found
without making the test error higher. In this case, we a structure comprising 66 rules, a little more com-
used 4 input nodes, 5 hidden nodes, and 1 output node plex than the one obtained by the Mamdani GFRBS

TSK fuzzy model§¢ = 0.2) 11074 11836 268 rules
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(63 rules), being more accurate the latter descriptive  Both hybrid evolutionary techniques have proven to
fuzzy model. be powerful DA tools capable of making abstraction on
Punctual GA-P found a mathematical expression that the data with good generalization properties in view of
can be codified in 50 nodes (note that a second orderthe results obtained. The first one allows us to obtain
polynomial needs 77 nodes and that a linear model usesexpressions with algebraic operators while the second
17) and that explains the data almost identically than one is able to generate KBs that are interpretable to
the fuzzy model generated from the Mamdani GFRBS. a different degree: Mamdani-type fuzzy models give
Interval GA-P results reflect the ability of the methodto a complete description of the problem-solving, whilst
eliminate outliers. The results shown in Interval GA-P  TSK ones give a local linguistic description of it.
row were calculated over the subset of examples that
were in the confidence interval (97.9% of total) and
therefore it found the simplest expression (15 nodes
and it does not use the inpyg, the total area of the
town). Interval GA-P can only be used when we are
allowed to discard some elements of the sample. If we
cannotdothat, we should apply punctual GA-P or fuzzy
models. For example, if we apply the obtained Interval
GA-P model to the whole dataset, without discarding
outliers, we obtain roughly the same test error, but a
much higher training error (202385) that may not be
admissible.

Finally, the TSK fuzzy model has obtained again the
best results but its interpretation capability has been
very reduced due to the high number of rules in the
KB, 268. Anyway, it is the right choice when the main
requirement is the model accuracy, performing really
better than the neural model. It has to be noted that, in e L ,
this case, the refinement process has shown very goodl' To ge'nerate apreliminary linguistic rule setThis i
performance, improving the preliminary TSK fuzzy set will be composed of the fuzzy rule best covering
model obtained from the generation stage to a high de- eac_h example (input-output data pa|r_) _eX|st|ng in
gree. It may be observed, as well, the good behaviour ~ th€ input-output data set. The composition of these
of the genetic local search strategy since the bestresults  'U€S is obtained by taking a specific example, i.e., a
are obtained when a 20% & 0.2) of the population (anl)-d|menS|onaI real arrayfvalues for the mput.
individuals in each GA generation are refined using the variables and one for the output one), and setting

Appendix: The Wang and Mendel's Rule Base
Generation Process

The inductive KB generation process proposed by
Wang and Mendel in [27] has been widely known be-
cause of its simplicity and good performance. It is
based on working with an input-output data set repre-
senting the behaviour of the problem being solved and
with a previous definition of the DB composed of the
input and output primary fuzzy partitions used. The
fuzzy rule structure considered is the usual Mamdani-
type rule withn input variables and one output variable
presented in Section 2.

The generation of the fuzzy rules of this kind is per-
formed by putting into effect the three following steps:

(1+1)-ES each one of the rule variables to the linguistic label
associated to the fuzzy set best covering every array
component.

7. Concluding Remarks 2. To give an importance degree to each ruld_et
R =If X;is AandX; is B thenY is C be the lin-

In this paper, we have solved two real-world mod- guistic rule generated from the examlg, x2, y)

els of electrical energy distribution, namely the com- in a problem in which three variables (two input

putation of the low voltage line installed in rural variables and one output variable) are involved. The

towns and the estimation of the minimum mainte- importance degree associated to it will be obtained

nance costs (for medium voltage lines) by means of  as follows:

different DA techniques. We presented two new hy-

brid evolutionary DA techniques, GA-P algorithms G(R) = ua(x1) - up(X2) - uc(y)

for performing symbolic regressions and GFRBSs

for designing and optimizing fuzzy models. We 3. To obtain a final RB by using the preliminary rule
compared these methods with better known DA set Ifallrules presenting the same antecedent val-
methods such as classical regression and Neural ues have associated the same consequent one in the
Networks. preliminary set, this linguistic rule is automatically



put (only once) into the final RB. On the other hand,
if there are conflictive rules, i.e., rules with the same

14

antecedent and different consequent values, the rule®

considered for the final RB will be the one with
higher importance degree.
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