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Genetic algorithm behavior is determined by the explorationrexploitation balance kept
throughout the run. When this balance is disproportionate, the premature convergence
problem will probably appear, causing a drop in the genetic algorithm’s efficacy. One
approach presented for dealing with this problem is the distributed genetic algorithm
model. Its basic idea is to keep, in parallel, several subpopulations that are processed by
genetic algorithms, with each one being independent from the others. Furthermore, a
migration operator produces a chromosome exchange between the subpopulations.
Making distinctions between the subpopulations of a distributed genetic algorithm by
applying genetic algorithms with different configurations, we obtain the so-called hetero-
geneous distributed genetic algorithms. In this paper, we present a hierarchical model of
distributed genetic algorithms in which a higher level distributed genetic algorithm joins
different simple distributed genetic algorithms. Furthermore, with the union of the
hierarchical structure presented and the idea of the heterogeneous distributed genetic
algorithms, we propose a type of heterogeneous hierarchical distributed genetic algo-
rithms, the hierarchical gradual distributed genetic algorithms. Experimental results show
that the proposals consistently outperform equivalent sequential genetic algorithms and
simple distributed genetic algorithms. Q 1999 John Wiley & Sons, Inc.

I. INTRODUCTION

Ž .Genetic algorithms GAs are general purpose search algorithms that use
principles inspired by natural genetic populations to evolve solutions to prob-
lems.1,2 The basic idea is to maintain a population of chromosomes, which
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represent candidate solutions to the concrete problem, that evolves over time
through a process of competition and controlled variation. Each chromosome in
the population has an associated fitness to determine which chromosomes are
used to form new ones in the competition process, which is called selection. The
new ones are created using genetic operators such as crosso¨er and mutation.
GAs have great measure of success in search and optimization problems. They
are particularly adequate in large, complex, and poorly understood search

Ž .spaces, where classical search tools enumerative, heuristic, etc. are inappropri-
ate, offering a valid approach to problems requiring efficient and effective
search techniques. The following bibliography may be examined for a more
detailed discussion about GAs and their applications.1 ] 6

The balance between exploration and exploitation or, in other words,
between the creation of diversity and its reduction, by focusing on the individu-
als of higher fitness, is essential in order to achieve a reasonable behavior for
GAs in the case of complicated optimization problems.7 Loss of critical alleles
due to selection pressure, selection noise, schemata disruption due to crossover
operator, and poor parameter setting may make this exploitationrexploration
relationship disproportionate; e.g., the proper balance between a broad search
and a sufficient refinement is not established and produce the lack of dï ersity in
the population.8 ] 10 Under these circumstances a preeminent problem appears,
the premature con¨ergence problem, a premature stagnation of the search caused
by a loss of genotypical diversity.1 Usually the search becomes trapped in a local
optimum before the global optimum is found.

Some tools for monitoring the explorationrexploitation relationship have
been proposed in order to avoid the premature convergence problem and
improve GA performance. These tools include modified selection and crossover
operators,9 ] 12 adaptive techniques,13 optimization of parameter settings,14,15 and
diversity preservation methods based on spatial separation.16 ] 22

Ž .Distributed GAs DGAs are one of the most important representatives of
methods based on spatial separation.21 ] 23 The basic idea of DGAs lies in the

Žpartition of the population into several subpopulations whose sizes are rela-
.tively small , each one of them being processed by a GA, independently from

the others. Furthermore, an operator, called migration, produces a chromosome
exchange between the subpopulations. Its principal role is to promote genetic
diversity, and in essence, to allow the sharing of possible solutions. DGAs show

Ž .two determinant advantages: 1 the preservation of the diversity due to the
semi-isolation of the subpopulations, which may stand up to the premature

Ž .convergence problem, and 2 they may be easily implemented on parallel
hardware, obtaining, in this way, substantial improvements on computational
time. Some authors have highlighted the interest in the distinction between the
subpopulations of a DGA by means of the application of GAs with different
control parameters, genetic operators, codings, etc.21,22,24 These types of DGAs
are called heterogeneous DGAs. A model of these algorithms are the gradual

Ž . 25DGAs GDGAs , a class of heterogeneous DGAs based on real coding that
applies a different crossover operator to each subpopulation. These operators
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are differentiated according to their associated exploration and exploitation
properties and the degree thereof.

Some DGA models combine the advantages of the DGAs with the ones of
other spatial separation methods, such as the cellular GAs,16 ] 19 reporting good
results. The basic idea concerns the organization of each DGA subpopulation as
a cellular GA. Instances of these proposals are the mixed parallel GAs26 for
neural network design and training applications, the structured DGAs27 for
function optimization problems, and a DGA model whose subpopulations are
based on the ECO framework17 that was designed and used in Ref. 28 for
different problems, such as quadratic assignment problem, dynamic control, and
parametric optimization.

In this paper we present a proposal of DGAs, the hierarchical DGAs
Ž .HDGAs , DGAs whose nodes are other simple DGAs, which are connected
with each other. The existence of two types of migrations, the local ones, in
every DGA, and the global ones, between the constituent DGAs, is a key
feature of HDGAs, since it establishes the proper hierarchy between the simple
DGAs and the HDGA. An important feature of the hierarchical structure to be
presented is that it may be easily joined with the idea of heterogeneous DGAs.
A possible way is the design of heterogeneous HDGAs, which use different
basic homogeneous DGAs. In this way, we propose the hierarchical GDGAs,
GDGAs that are composed by different homogeneous DGAs whose subpopula-
tions use the same crossover operator, following these crossover operators the
underlying idea in the GDGAs.

In order to develop the HDGAs, this paper is set out as follows. In Section
II, we describe the DGAs. In Section III, we present the HDGAs. In Section IV,
a type of heterogeneous HDGAs based on homogeneous DGAs, the hierarchi-
cal GDGAs, are proposed. In Section V, the experiments carried out for
determining the efficacy of the algorithms presented are described. And, some
concluding remarks are dealt with in Section VI.

II. DISTRIBUTED GENETIC ALGORITHMS

This section is devoted to DGAs. In Subsection A, they shall be presented
as a class of parallel GAs called coarse grained parallel GAs. In Subsection B,
spatial separation, a basic principle of DGAs, is justified from a biological point
of view through the Shifting Balance Theory of E¨olution29 and the Theory of
Punctuated Equilibria.30 In Subsection C, we describe the basic structure of
DGAs. And finally in Subsection D, we review the types of DGAs presented
previously.

A. Parallel Genetic Algorithms

The availability, over the last few years, of fast and cheap parallel hardware
has favored research into possible ways for implementing parallel versions of
GAs. GAs are good candidates for effective parallelization, since they are
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inspired on the principles of evolution, in parallel, for a population of individu-
als.24 In general, three ways were followed for implementing the parallelization
of GAs.24,31 ] 34:

v Global parallelization. The evaluation of chromosome fitness and sometimes the
genetic operator application are carried out in a parallel form.35] 37

v Coarse grained parallelization. The population is divided into small subpopula-
tions that are assigned to different processors. Each subpopulation evolves
independently and simultaneously according to a GA. Periodically, a migration
operator exchanges individuals between subpopulations, allowing new diversity to
be injected into converging subpopulations. The exchange generally takes the
form of copying individuals between the populations. GAs based on coarse
grained parallel GAs are known as distributed GAs, since they are usually
implemented in distributed memory MIMD computers. Versions of DGAs ap-
peared in Refs. 20]23 and 38]43.

v Fine grained parallelization. In this model, the population is divided into a great
number of small subpopulations. Usually, a unique individual is assigned to each
processor. The selection mechanism and the crossover operator are applied by
considering neighboring chromosomes. For example, every chromosome selects
the best neighbor for recombination and the resultant individual shall replace it.
These types of GAs, known as cellular GAs, are usually implemented on massively
parallel computers. Examples of cellular GAs are to be found in Refs. 16]19.

B. Spatial Separation

Both distributed GAs and cellular GAs are instances of models based on
spatial separation. One of the main advantages of these models is the preserva-
tion of diversity. This property caused them to be considered as an important
way to research into mechanisms for dealing with the premature convergence
problem.9,16,17,22,31,34,38 ] 40

Many authors16,17,19 ] 21 have attempted to justify spatial separation models,
starting from the Shifting Balance Theory of E¨olution, developed by Wright.29

This theory explains the process of evolution on the genetic composition of
individuals in natural populations. According to this, large populations of

Ž .organisms rarely act as a single well-mixed panmictic population, but rather
they consist of semi-isolated subpopulations, demes, each of which is relatively
small in size. Furthermore, the demes communicate with each other through
migrations of individuals. For Wright, the evolution process has two phases.
During the first one, the allele frequencies drift randomly around a local fitness
peak in each deme. One of them might, by chance, drift into a set of gene
frequencies that correspond to a higher peak. Then, the second phase starts; this
deme produces an excess of offspring, due to its high average fitness, which then
emigrate to the other demes, and will tend to displace them until eventually the
whole population has the new favorable gene combination. Then, the process
starts again. The relatively small size of the demes allows drift to play an
important role in the evolution of the population, without driving the whole
population towards convergence. Even if drift were to drive every local deme to
fixation, each one of them would be fixed on a different genotype, thereby
maintaining diversity in the population as a whole.



HIERARCHICAL DISTRIBUTED GENETIC ALGORITHMS 1103

Another biological theory adopted by people who do work on spatial
separation is the theory of Punctuated Equilibria.30 This theory states that
evolution is characterized by long periods of relative stasis, punctuated by
periods of rapid change associated with specialization events. In Ref. 39, it is
pointed out that GAs also tend towards stasis, or premature convergence, and
that isolated species could be formed by separating the global population into
subpopulations. By injecting an individual from a different species into a
subpopulation after it had converged, new building blocks would become avail-
able; furthermore, immigrants would effectively change the fitness landscape in
the subpopulations. In this way, premature convergence may be avoided. In this
line, in Ref. 20 it was stated that:

‘‘Subpopulations isolated for a certain time keep the diversity of the population high.
After migration new promising areas can be discovered by crossing over.’’

which explains that:20

‘‘The creative forces of evolution take place at migration and few generations afterwards.
Wright’s argument that better peaks are found just by chance in small subpopulations
does not capture the essential facts.’’

C. Basic Structure of Distributed GAs

Although there are a lot of different types of DGAs, all of them are
variations on the following basic algorithm:

v Distributed Genetic Algorithm
1. Generate at random a population, P, of chromosomes.
2. Divide P into SP , . . . , SP subpopulations.1 NS
3. Define a neighborhood structure for SP , i s 1, . . . , N .i S
4. For SP , i s 1, . . . , N , execute in parallel the next steps:i S

4.1 Apply, during f generations, the selection mechanism and the geneticm
operators.

4.2 Send n chromosomes to neighboring subpopulations.m
4.3 Receive chromosomes from neighboring subpopulations.

5. If the stop criterion is not fulfilled, return to 4.

Some additional issues should be considered:

1. The neighborhood structure, topology, to be used. Generally, hypercubic topolo-
gies were considered for exploiting the power of DGAs.21] 23,39,41,42

2. The migration rate, n , that controls how many chromosomes migrate.m
3. The migration inter̈ al, f , the number of generations between each migration.m
4. The selection strategy of the genetic material to be copied. Two methods were

widely used. The first one is to select randomly the element from current
subpopulation. The advantage of this approach is the greater mix of genes that
will result. A second method is to select the highest performing individual from
each subpopulation to be copied to another subpopulation. This would result in
more directed evolution than the first case, as the migrant individuals would not
be tainted by genes from lower performing individuals. This is not to say that the
former method is worse, for the less directed a population is, the greater diversity
it will contain.44
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5. The replacement strategy for including the chromosomes to be received. Some
approaches are, replace the worst ones, the most similar to the incoming ones,
one randomly chosen, etc.

6. The choice of whether or not to replicate migrating indï iduals; i.e., should
individuals move to their new home or should a copy of them be sent there? If
one does not copy individuals it is possible that a subpopulation could be set back
several generations in evolutionary terms by the mass emigration of its best
performers. On the other hand, simply copying individuals across could lead to
highly fit individuals dominating several populations.44

D. Types of Distributed GAs

In Ref. 34, the following three categorizations of DGAs are reported:

v Regarding the migration method
v Isolated DGAs. There are no migrations between subpopulations. This model is

known as well as partitioned GAs.22,42

v Synchronous DGAs. Migrations between subpopulations are synchronized, i.e.,
they are produced at the same time.21] 23

v Asynchronous DGAs. Migrations are produced when certain events appear,
related with the activity of each subpopulation. Asynchronous behavior is
typically found in nature, since evolution is produced at different states
depending on the environment.34

v Regarding the connection schema
v Static connection scheme. The connections between the subpopulations are

established at the beginning of the run, and they are not modified through-
out it.

v Dynamic connection scheme. The connection topology is dynamically changed
throughout the run. The reconfigurations in these connections may occur
depending on the evolution state of the subpopulations. For example, in Ref.
34, a connection schema called positive-distance topology was proposed in
which an individual is passed to another subpopulation only if the Hamming
distance between the best individuals in the two subpopulations is less than 24.
An analogous connection schema called negative-distance topology was pre-
sented as well.

Finally, we point out that some authors32,45 assumed another division, based
on the connection schema: the island model and the stepping stone model. In the
first model, individuals can migrate to any other subpopulation; in the second
model, migration is restricted to neighboring subpopulations.

v Regarding the subpopulation homogeneity
v Homogeneous DGAs. Every subpopulation uses the same genetic operators,

control parameter values, fitness function, coding schema, etc. Most DGAs
proposed in the literature are homogeneous.21] 23 Their principal advantage is
that they are easily implemented.

v Heterogeneous DGAs. The subpopulations are processed using GAs with either
different control parameter values, genetic operators, coding schema, etc.
Some interesting heterogeneous DGAs are the models of adaptation by
competing subpopulations,46,47 the GAs based on migration and artificial

Ž . 10 Ž . 34 25selection GAMAS , the injection island GAs iiGAs , and the GDGAs.
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III. HIERARCHICAL DISTRIBUTED GENETIC ALGORITHMS

In this section we present HDGAs. The main idea of these algorithms is to
connect DGAs with other DGAs, building, in this way, DGAs whose nodes
Ž .subpopulations are simple DGAs which shall be called basic DGAs. For this
purpose we have chosen the Cube-Connected Cycles structure,48 which has been
used until now mostly for parallel processing in multiprocessor architectures;
but is quite appropriate to support migrations within a hierarchical approach.
Figure 1 shows an example of HDGA, where the basic DGAs are rings with
three subpopulations. It may be observed that every subpopulation in a basic
DGA is connected with another subpopulation in an adjacent basic DGA.

Ž .Two type of migrations are produced in a HDGA: 1 local migrations,
Ž .produced between subpopulations belonging to the same basic DGAs, and 2

global migrations, produced between subpopulations belonging to different basic
DGAs that connect these ones. The existence of these two different migrations
is the key feature of HDGAs, since they establish the real hierarchy between the
basic DGAs and the HDGA.

With the HDGA model we attempt to improve the behavior of traditional
DGAs in the following ways:

v Better performance for each node. In the HDGAs, every node is a DGA instead
of a simple subpopulation. In this way, we raise the efficiency of these nodes.

v The search may be carried out in different levels. Every basic DGA develops an
independent search and collaborates, through the global migrations, with others
basic DGAs on a global search of the HDGA.

Figure 1. Example of HDGA.
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v The good features of the homogeneous and heterogeneous DGAs may be easily
joined in two ways:
v homogeneous HDGAs with heterogeneous basic DGAs or
v heterogeneous HDGAs with homogeneous basic DGAs.

Finally, we should point out that the HDGAs proposed may be extended
using more levels. In this faction, each basic DGA may be, in its turn, a DGA of
DGAs, i.e., an HDGA.

IV. HETEROGENEOUS HDGAS BASED ON HOMOGENEOUS
BASIC DGAS

In this section we design heterogeneous HDGA based on homogeneous
basic DGAs. In order to do so, we use the GDGAs presented in Ref. 25. In
Subsection A, we describe the structure of GDGAs. In Subsection B, we build a
particular model of them. And finally in Subsection C, we present the heteroge-
neous HDGAs based on the gradual structure which shall be called hierarchical
GDGAs.

A. Gradual Distributed Genetic Algorithms

Heterogenous DGAs have been considered as suitable tools for avoiding the
premature convergence problem and for maximizing the exploration and ex-
ploitation on the search space. For example, in Ref. 22, Tanese suggested:

‘‘The distributed genetic algorithm enables different subpopulations to run with different
crossover and mutation rates, maintaining a balance between exploration and exploita-
tion in a novel way.’’

Ž .25Gradual DGAs GDGAs are a class of heterogeneous DGAs based on
real coding in which subpopulations are distinguished by applying crossover
operators with different degrees of exploration or exploitation. So, a parallel
multiresolution is obtained with regard to the crossover operator, which allows a

Ž . Ž .spread search reliability along with an effective local tuning accuracy to be
simultaneously achieved. Furthermore, subpopulations are adequately con-
nected for exploiting the multiresolution in a gradual way, offering the refine-
ment or the expansion of the best zones emerging. The migrations between
subpopulations belonging to different categories produce these final effects.

Figure 2 outlines the basic structure of the GDGAs. They are based on a
hypercube topology with three dimensions with two important sides to be
differentiated.

v The front side is devoted to the exploration. It is made up of four subpopulations,
E , . . . , E , to which exploratory crossover operators are applied. The exploration1 4
degree increases clockwise, starting at the lowest, E , and ending at the high-1
est, E .4

v The rear side is for exploitation. It is composed of subpopulations e , . . . , e , that1 4
undergo exploitative crossover operators. The exploitation degree increases clock-
wise, starting at the lowest, e , and finishing at the highest e .1 4
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Figure 2. GDGA topology.

The short diameter of the cubic topology may allow multiresolution to-
gether with migrations to produce an effective explorationrexploitation balance,
since genetic material is quickly exchanged between subpopulations with a wide
spectrum of properties and exploration and exploitation degrees, producing a
spread search along with an effective local tuning.

In order to allow the refinement and expansion to be carried through to a
suitable conclusion, and overcome two possible problems that may appear due
to the crossover configuration of GDGAs, the conquest28,34,49 and the noneffect25

problems, the authors proposed to use the following migration schema and
selection mechanism:

v 50Migration schema. GDGAs use emigration ; individuals leave their subpopula-
tion and migrate to exactly one of the neighboring subpopulations. In particular,
every five generations, the best element of each subpopulation is sent towards the
corresponding subpopulation, as shown in Figure 3. The sequence of application
is from left to right; i.e., first the refinement migrations; second, the
refinementrexpansion migrations; third, the expansion migrations; and then, the
sequence starts again. The place of an emigrant is taken by an immigrant.

v Selection mechanism. The selection mechanism of GDGAs is the linear ranking
selection51; the chromosomes are sorted in order of raw fitness, and then the
selection probability of each chromosome is computed according to its rank by
using a nonincreasing assignment function. Every individual receives an expected
number of copies that depends on its rank, independent of the magnitude of its
fitness. The selective pressure of this selection mechanism is determined by a

w xparameter, h g 0, 1 , which specifies the expected number of copies for themin
worst chromosome; the best one has 2 y h expected copies. If h is low, highmin min
pressure is achieved, whereas if it is high, the pressure is low. Different hmin
values were assigned to the subpopulations, such as shown in Table I.
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Figure 3. The three types of migration in a GDGA.

B. Gradual DGA Based on FCB-Crossovers

In Ref. 25, some versions of GDGAs were built based on different crossover
operators for real-coded GAs that allow different exploration or exploitation
degrees to be obtained. In this work, we use only one of these crossover

Ž . 12operators, the Fuzzy Connectï es-Based Crosso¨ers FCB-crossovers . Next, we
comment on some of the main features for these crossover operators and
describe how they were used for building a GDGA.

Ž . Ž . Ž w xLet us assume that X s x . . . x and Y s y . . . y x , y g a , b : R ,1 n 1 n i i i i
.i s 1 . . . n are two real-coded chromosomes that have been selected to apply

the crossover operator to them. In short, the action interval of the genes x andi
w x w x w x w xy a , b , may be divided into three intervals, a , x x , y , and y , b , thati i i i i i i i i

Table I. h values for each subpopulation.min

Exploitation Exploration
q ¤ y y ª q

e e e e E E E E4 3 2 1 1 2 3 4
0.9 0.7 0.5 0.1 0.9 0.7 0.5 0.1
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bound three regions to which the resultant genes of some combination of x andi
y may belong. These intervals could be classified as exploration or exploitationi
zones. The interval with both genes being the extremes is an exploitation zone;
the two remaining intervals are exploration zones.

With regards to these intervals, in Ref. 12, three monotone and nondecreas-
w x w x w xing functions, F, S, and M, are proposed, defined from a, b = a, b into a, b ,

a, b g R , and which fulfill:

X w x X X X X� 4 � 4;c, c g a, b , F c, c F min c, c , S c, c G max c, c andŽ . Ž .
� X 4 X � X 4min c, c F M c, c F max c, c .Ž .

Each one of these functions allows us to combine two genes giving results
� 4belonging to each one of the aforementioned intervals. Now, if Q g F, S, M ,

Ž .we may generate the offspring Z s z . . . z as1 n

z s Q x , y , i s 1 . . . n.Ž .i i i

This crossover operator applies the same F, S, or M function for all the
genes in the chromosomes to crossover. For this reason, they were called
F-crossover, S-crossover, and M-crossover, respectively. Moreover, they have
different properties: The F- and S-crossover operators show exploration and the
M-crossover operators show exploitation. Four families of F-, S-, and M-cros-
sover operators, Logical, Hamacher, Algebraic, and Einstein, were presented in
Ref. 12. Their effects, along with their associated exploration or exploitation
degrees, may be observed in Figure 4.

We have considered that the maximum degree of exploitation is for the
logical M-crossover, which is based on the arithmetical mean since it uses the
maximum level of information from both genes; i.e., it is not biased toward
either of them.

Using the F-, S-, and M-crossover operators, a GDGA called GDGA-FCB
was implemented with the configuration show in Table II.

C. Hierarchical Gradual DGAs

We may obtain heterogeneous HDGAs based on homogeneous basic DGAs
by assigning to every node of a GDGA a homogeneous DGA whose subpopula-
tions use the same crossover operator and h values of the correspondingmin

Figure 4. FCB-crossover operators.
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Table II. Crossover configuration for GDGA-FCB.

Subpopulations M-crossover Subpopulations F- and S-crossover

e Hamacher E Logical1 1
e Algebraic E Hamacher2 2
e Einstein E Algebraic3 3
e Logical E Einstein4 4

Ž .node of the GDGA see Tables I and II . These HDGAs shall be called
hierarchical GDGAs. Figure 5 shows an example of these algorithms where each
basic DGA is a ring with three subpopulations. E j with j s 1, . . . , 3 and e j withi i
j s 1, . . . , 3 use the same crossover operator and selective pressure than E andi
e in a GDGA, respectively.i

With regards to the migration schema of the hierarchical GDGAs, we
propose the following:

1. The global migrations, produced between subpopulations belonging to different
basic DGAs, are similar to the migration schema of a GDGA. They occur every
10 generations in the sequence of application that is shown in Figure 3, i.e., first,
the refinement migrations, second, the refinementrexpansion migrations, third,
the expansion migrations, and then, the sequence starts again.

2. The local migrations, produced between the subpopulations in the same basic
DGA, happen 5 generations after each global migration. These migrations are:
E1 ª E2, E2 ª E3 and E3 ª E1, i s 1, . . . , 4, and e1 ª e2, e2 ª e3 and e3 ª e1,i i i i i i i i i i i i
i s 1, . . . , 4.

Starting from GDGA-FCB we built a hierarchical GDGA called H-GDGA-FCB.

Figure 5. Hierarchical GDGA.
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V. EXPERIMENTS

Minimization experiments on the test suite, described below, were carried
out in order to study the behavior of the hierarchical GDGA proposed. It was
compared with equivalent sequential versions and other implementations of
homogeneous DGAs and homogenous HDGAs, in which all the subpopulations
have the same configuration.

In Section V A, we describe the test functions considered. And in Section
V B, we study the results obtained in the experiments.

A. The Test Suite

For the experiments, we have considered three very complex test functions
used in the GA literature: the Generalized Rosenbrock’s function,52,53 the
Griewangk’s function,54 and the Expansion of F10.55 The dimension of the
search space is 25.

v Generalized Rosenbrock’s function.

ny1
2 2ª 2f x s 100 ? x y x q x y 1 ,Ž . Ž .Ž .Ý ž /Ros iq1 i i

is1

U Ž .with y5.12 F x F 5.12 and f s f 1, . . . , 1 s 0.i Ros Ros
f is a continuous and unimodal function, with the optimum located in a steepRos
parabolic valley with a flat bottom. This feature will probably cause slow progress
in many algorithms since they must permanently change their search direction to
reach the optimum. This function has been considered by some authors to be a
real challenge for any continuous function optimization program.46 A great part
of its difficulty lies in the fact that there are nonlinear interactions between the
variables, i.e., it is nonseparable.56

v Griewangk’s function.

n n1 xiª 2f x s x y cos q 1,Ž . Ý ŁGri i ž /'d iis1is1

U Ž .with d s 4000, y600.0 F x F 600.0 and f s f 0, . . . , 0 s 0.i Gri Gri
f is a continuous and multimodal function. This function is difficult to optimizeGri
because it is nonseparable21 and the search algorithm has to climb a hill to reach
the next valley. Nevertheless, one undesirable property exhibited is that it
becomes easier as the dimensionality is increased.56

v Expansion of F10.

E y F10 x , . . . , x s F10 x , x q F10 x , x q ???Ž . Ž . Ž .1 n 1 2 2 3

q F10 x , x q F10 x , x ,Ž . Ž .ny1 n n 1

Ž . Ž 2 2.0.25 w 2Ž Ž 2 2.0.1. x Žwhere F10 x, y s x q y ? sin 50 ? x q y q 1 , with x, y g y100,
x Ž U.100 and E y F10 x s 0.

F10 is a function that has nonlinear interactions between two variables. Its
expanded version, E]F10, is built in such a way that it induces nonlinear
interaction across multiple variables. It is nonseparable as well.
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B. Results

Table III shows the set of algorithms executed in order to study the
behavior of the HDGAs proposed. We include hierarchical GDGAs, hierarchi-

Ž . 57cal homogeneous DGAs, and real-coded GAs RCGAs . The table row has the
name of the algorithm, its type, the number of subpopulations, the size of them,
the maximum number of generations, and the strategy of application of the
crossover operators. The algorithms based on the ST2 and ST412 strategies use
FCB-crossover operators, and the ones based on the DST1 and DST2 use
dynamic FCB-crossovers.11 The values of the control parameters of the algo-
rithms were suitably chosen for requiring the same number of evaluations. In
the following, we briefly describe the mentioned strategies.

v The ST 2 strategy. For each pair of chromosomes from the total population that
undergo crossover, four offspring are generated, the result of applying two
exploratory crossover operators and two exploitative ones to them. The two most
promising offsprings of the four substitute their parents in the population.

1
v ŽThe ST4 strategy. For each pair of chromosomes from a total of ? p ? N p isc c2

.the crossover probability and N is the population size , four offspring are
generated, the result of applying two exploratory crossover operators, an exploita-
tive one and an operator with ‘‘relaxed’’ exploitation, which puts together the two
properties. All four offspring will form part of the population in such a way that
two of them substitute their parents and the other two substitute two chromo-

1somes belonging to the remaining of the population that should undergo2
crossover.

v The DST1 and DST 2 strategies. DST1 and DST2 are similar to ST2 and ST4,
respectively. They use dynamic FCB-crossover operators, which keep a suitable
sequence between the exploration and the exploitation along the GA run: ‘‘to
protect the exploration in the initial stages and the exploitation later.’’

Table III. Algorithms.

Algorithms Type Subs. Size Gens. Strategy

H-GDGA-FCB Hier. GDGA 24 15 5000
H-DGA-S4-Log, . . . Hier. Hom DGAs 24 15 5000 ST4
GDGA-FCB GDGA 8 45 5000
DGA-S4-Log, . . . Hom. DGAs 8 45 5000 ST4
RGA-S2-180-Log, . . . Seq. RCGAs 1 180 5000 ST2
RGA-DS1-180-Dub Seq. RCGA 1 180 5000 DST1
RGA-S2-60-Log, . . . Seq. RCGAs 1 60 15000 ST2
RGA-DS1-60-Dub Seq. RCGA 1 60 15000 DST1
RGA-S4-360-Log, . . . Seq. RCGAs 1 360 5000 ST4
RGA-DS2-360-Dub Seq. RCGA 1 360 5000 DST2
RGA-S4-120-Log, . . . Seq. RCGAs 1 120 15000 ST4
RGA-DS2-120-Dub Seq. RCGA 1 120 15000 DST2
H-GDGA-FCB-R6 Hier. GDGA 48 8 5000
H-DGA-S4-Log-R6, . . . Hier. Hom. DGAs 48 8 5000 ST4
GDGA-FCB-R6 GDGA 8 48 5000
DGA-S4-Log-R6, . . . Hom. DGAs 8 48 5000 ST4
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Figure 6. Hierarchical GDGA based on rings with six subpopulations.

For studying the importance of the structure of the basic DGAs in the
HDGA behavior, we have implemented a hierarchical GDGA and four hierar-
chical homogeneous DGAs whose basic DGAs are ring with six subpopulations,
such as shown in Figure 6. Their names end with ‘‘R6’’ and their features appear
in Table III. All algorithms were executed 15 times.

Table IV shows the average values of the results obtained. For each
Ž .function, we introduce the medium of the best B from the last generation, the

Ž .percentage of success S with respect to the thresholds shown in Table V, and
Ž .52 Žthe final average online measure O the average of the fitness of all the

.elements appearing throughout the GA execution . Online is considered here as
a population diversity measure.

Next, we point out some important considerations about the results ob-
tained.

About the Hierarchical GDGAs
v The B results of the hierarchical GDGA based on rings with six subpopulations,

H-GDGA-FCB-R6, are better than the ones of the hierarchical GDGA based on
rings with three subpopulations, H-GDGA-FCB, for all the test functions. Fur-
thermore, we also observe that the S performance of H-GDGA-FCB-R6 is better
than the one of H-GDGA-FCB for f and f , and is equal for f . TheseRos EyF10 Gri
results indicate that the hierarchical GDGAs achieve a better behavior when
rings with a higher number of subpopulations are introduced.

v We should highlight the good results of H-GDGA-FCB-R6 for the complex f ,Ros

which has been considered as a very complex test function.25,46,56 H-GDGA-FCB-
R6 obtains the best S value, 93.3, and the second B result, 1.4. Only RGA-S4-
120-Ham, a real-coded GA based on the ST4 strategy, returned a better B result,
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Table V. Thresholds for the test functions.

Test Functions Thresholds

f 0.1Ros
f 0.005Gri
f 0.05E- F10

0.93; however, its S performance is 0. This algorithm, RGA-S4-120-Ham, uses the
ST4 strategy with the Hamacher FCB-crossover operators, which induces a high
diversity level into the population such as is indicated in Ref. 12. Its O value
shows this fact. The diversity allowed good results to be reached; however, an
efficient final refinement is not achieved and therefore S was not good. In
H-GDGA-FCB-R6, the joined effects of the hierarchical structure and the

Ž .gradual features produce high levels of diversity see its O value and a suitable
final local refinement. In this way, reliability and accuracy were simultaneously
improved and so the better result was obtained. Finally, we point out that the B
and S results of the hierarchical GDGA based on rings with three subpopula-
tions, H-GDGA-FCB, for f are very good as well.Ros

v With regard to f and f , we observe that although H-GDGA-FCB-R6Gri EyF10
does not return the best B results, it combines two notable qualities due to the
union of the gradual features and the hierarchical structure:
1. High O values, which indicates that it generated high diversity levels.
2. Good final approximations, B values, which shows that the level of conver-

gence was suitable as well.
There is not another algorithm showing simultaneously these two desirable
properties. For example, the best algorithm for f , with respect to B, RGA-S4-Gri
360-Log, obtained 2.3e-03 with an O value of 3.7; however, H-GDGA-FCB-R6
obtained 6.1e y 03 for B with a higher O value, 2.3e q 0.2. So, it may be
considered that H-GDGA-FCB-R6 established a good relationship between ex-
ploration and exploitation for avoiding the premature convergence problem
without sacrificing the obtaining of good approximations.

v In general, the hierarchical GDGA based on rings with six subpopulations,
H-GDGA-FCB-R6, improves the behavior of the GDGAs executed, GDGA-FCB
and GDGA-FCB-R6. For f , H-GDGA-FCB-R6 reaches better B and S resultsRos
than these algorithms; for f , it achieves a better B result; and finally forGri
f , it returns better B and S results than GDGA-FCB-R6 and a better SEyF10
value than GDGA-FCB.

We may conclude that the inclusion of a hierarchical structure in the
GDGAs improves the behavior of these algorithms in such a way that both
reliability and accuracy are carried through to a suitable conclusion. This fact
allowed good results to be reported for complex test functions.

About the Hierarchical Homogeneous DGAs

v Comparing the B results of the hierarchical homogeneous H-DGA-S4-
Log, . . . , H-DGA-S4-Ein, which are based on rings with three subpopulations,
with the ones of their corresponding homogeneous DGAs, DGA-S4-
Log, . . . , DGA-S4-Ein, we observe that, in general, no improvements are pro-
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duced. So, the hierarchical structure based on rings with three subpopulations
does not seem to introduce a suitable way for improving clearly the results for the
complex test functions used.

v Hierarchical homogeneous H-DGA-S4-Logy R6, . . . , H-DGA-S4-Ein-R6, which
are based on rings with six subpopulations, improve the B performance of their
corresponding homogeneous DGAs, DGA-S4-Log-R6, . . . , DGA-S4-Ein-R6, and
the one of the homogeneous DGAs DGA-S4-Log, . . . , DGA-S4-Ein. So, we ob-
serve again that the use of ring with six subpopulation introduces a good behavior
of the hierarchical structure on the test functions.

v In general, we may observe that the results of the GDGAs, GDGA-FCB and
GDGA-FCB-R6, are better than the ones of homogeneous DGAs, DGA-S4-
Log, . . . , DGA-S4-Ein and DGA-S4-Log y R6, . . . , DGA-S4-Ein-R6, respectively.
Furthermore, the results of the hierarchical GDGAs, H-GDGA-FCB and H-
GDGA-FCB-R6, are better than the ones of the hierarchical homogeneous
DGAs, H-DGA-S4-Log, . . . , H-DGA-S4-Ein and H-DGA-S4-Logy R6, . . . , H-
DGA-S4-Ein-R6, respectively. These results confirm the suitability of the mul-
tiresolution based on the crossover operator, as already claimed in Ref. 12.

The two previous considerations have highlighted, separately, that the
hierarchical structure and a multiresolution based on crossover operators are
promising ways for empowering DGAs to have a great measure of success on
complex problems.

General Remarks About the Hierarchical Structure

The hierarchical structure proposed has a better behavior using rings with a
higher number of subpopulations. Next, we attempt to explain this fact.

In Ref. 32, Cantu-Paz wrote:´

‘‘The topology is an important factor in the performance of the parallel GA, because it
Ž .determines how fast or how slow a good solution spreads to other demes. If the

Ž .topology has a dense connectivity or a short diameter, or both , good solutions will
spread fast to all the demes and may quickly take over the population. On the other

Ž .hand, if the topology is sparsely connected or has a long diameter , solutions will spread
slower and the demes will be more isolated from each other, permitting the appearance
of different solution. These solutions may come together at a later time and recombine to
form potentially better individuals.’’

With these words, Cantu-Paz pointed out that the topology has important´
effects in the determination of the exploitation versus exploration tradeoff of
DGAs. If it has a dense connectivity, exploitation comes into force, whereas if it
is sparsely connected diversity is kept and so exploration takes effect.

The hierarchical structure based on rings with six subpopulations combines
sparsely connected topologies, the rings of the basic DGAs, with cubic topology
of the HDGA, which has a short diameter. In this way, the basic DGAs develop
exploration and the topology that joins them produces exploitation.

So, the hierarchical structure together with a multiresolution based on the
crossover operator and the global and local migrations produce an effective
explorationrexploitation balance, and therefore results are improved.
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VI. CONCLUDING REMARKS

In this paper, we have presented HDGAs, DGAs whose nodes are simple
DGAs, in which two types of migrations, local and global, are produced. We also
presented a model that mixes the hierarchical structure and the idea of the
GDGAs, the hierarchical GDGAs. The results of the experiment carried out
with HDGAs and hierarchical GDGAs have shown that:

v HDGAs have a better behavior using rings with a higher number of subpopula-
tions, improving the results of traditional DGAs.

v An effective exploitationrexploration balance may be induced by means of the
combination of the two types of topologies underlying in the hierarchical struc-
ture: one consisting of the basic DGAs and one that connects them.

v The good results obtained on the test function used and, in particular, on the
complex generalized Rosenbrock’s function allow us to point out that HDGAs are
promixing for dealing with complex problems.

v The union of the gradual features and the hierarchical structure allows reliability
and accuracy to be improved.

So, all these conclusions indicate that the introduction of a hierarchy
between DGAs is a promising way for increasing the efficacy of DGAs. This
paper is a first investigation on a basic implementation of this idea, the
connection of different DGAs establishing a higher level DGA. Finally, we
should point out that future research needs to be done on the following topics
related with HDGAs:

v Study other topologies for the basic DGAs and the ones that connect them. This
study should consider the most appropriate multiresolution based models as basic
DGAs and the most suitable types of local and global migrations associated with
these topologies. A part of this study should tackle the determination of a correct
balance between the behavior of the basic DGAs and the global behavior of the
HDGA.

v Study the impact of the control parameters that affect the behavior of the basic
DGAs and the higher level DGA, such as migration rates, migration intervals,
subpopulation sizes, etc.

v Find efficient models for the selection of the chromosomes that migrate, the
selection of the chromosomes in the destination subpopulations that are replaced
by the ones that arrive and deal with the choice of whether or not to replicate
migrating individuals.

v Design homogeneous HDGAs with heterogeneous basic DGAs, such as an
homogeneous hierarchical GDGA composed by the same type of basic GDGAs.
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