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Abstract

This paper deals with the problem of searching basic properties for robust implication operators in fuzzy control. We
use the word &&robust'' in the sense of good average behavior in di!erent applications and in combination with di!erent
defuzzi"cation methods.

We study the behavior of the two main families of implication operators in the fuzzy control inference process. These
two families are composed by those operators that extend the boolean implication (implication functions) and those ones
that extend the boolean conjunction (t-norms and force-implications). In order to develop the comparative study, we will
build di!erent fuzzy controllers by means of these implication operators and will apply them to the fuzzy modeling of the
real function >"X and two three-dimensional surfaces.

We analyze whether one of these two properties, extension of the boolean implication and extension of the boolean
conjunction, is su$cient for obtaining a good implication operator or whether some complementary properties are
necessary.

Next, we analyze whether we can get basic properties for good implication operators, presenting three basic properties
for the so-called robust implication operators. ( 2000 Elsevier Science B.V. All rights reserved.

Keywords: Fuzzy logic controller; Fuzzy inference engine; Fuzzy implication function; Conjunction operator; t-norm;
Force-implication operator

1. Introduction

A fuzzy logic system with a fuzzi"er and a defuz-
zi"er has many attractive features. First, it is suit-
able for engineering systems because its inputs
and outputs are real-valued variables. Second, it

provides a natural framework to incorporate fuzzy
IF}¹HEN rules from human experts. Third, there
is much freedom in the choices of fuzzi"er, fuzzy
inference engine and defuzzi"er, so that we may
obtain the most suitable fuzzy logic system for
a particular problem [23]. This fuzzy logic system
is often called fuzzy logic controller (FLC) since it
has been mainly used as a controller. It was "rst
proposed by Mamdani [14], and has been success-
fully applied to a variety of industrial processes and
consumer products.
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In a fuzzy inference engine or inference system,
fuzzy logic principles are used to combine the fuzzy
IF}¹HEN rules in the fuzzy rule base with a map-
ping from fuzzy sets in X"X

1
]2]X

n
to fuzzy

sets in >. The question for the fuzzy inference
engine is: How do we interpret the fuzzy relation-
ship that de"nes a fuzzy IF}¹HEN rule R

i
in the

following form?.

R
i
: IF x

1
is A

i1
and2 and x

n
is A

in
THEN y is B

i
.

(1.1)

To do so, we use a fuzzy implication operator, I,
and each fuzzy IF}¹HEN rule determines a fuzzy
set B@

i
in> using the compositional rule of inference

(CRI):

k
B{

(y)"Sup
x|U

M¹ @ (k
A{

(x), I(k
A
(x), k

B
(y)))N, (1.2)

where k
A{

(x)"¹ (k
A{1

(x),2 , k
A{n

(x)), k
A
(x)"

¹(k
A1

(x),2, k
An

(x)), being ¹ and ¹ @ t-norms.
Due to the fact that the input x corresponding to

the state variable is crisp, x"x
0
, then A@ is

a singleton, that is, k
A{

(x)"1 if x"x
0
, and

k
A{

(x)"0 if xOx
0
. Thus, the CRI is reduced to the

following expression:

k
B{

(y)"I(k
A
(x

0
), k

B
(y)). (1.3)

Hence, it is found that it depends directly on the
fuzzy implication operator selected. In the special-
ized literature, it is proposed that a huge amount of
operators can be used as implication operators in
the fuzzy control inference process. Many studies
that add information in order to select this operator
have been developed [1}4, 10, 11, 13, 16, 18, 21].

In [4] we analyzed 41 fuzzy implication oper-
ators, 36 of which are collected in [11]. We intro-
duced a comparison methodology and analyzed
their robustness, in the sense of good average be-
havior in three di!erent applications in combina-
tion with di!erent defuzzi"cation methods. A result
of our experiments was &&2 the implication oper-
ators being an extension of the boolean conjunc-
tion, that is, in our case, the t-norms, are more
accurate than those belonging to the other family''.

On the other hand, the force implication (FI) was
introduced in [8]. FI is a generalization of the
boolean conjunction with the peculiarity of not
being symmetrical. The reason behind the proposal

was justi"ed as &&2 to try to modelize human
sentences such as &&proposition A leads to proposi-
tion B'' for which, generally, it does not make sense
to say that &&A leads to B'' is true when the anteced-
ent A is not satis"ed ''.

The aim of this paper is to analyze the fuzzy
implication operators as a generalization of classi-
cal operators, boolean implication and boolean
conjunction, trying to answer the following
questions:
f Is the veri"cation of one of these two properties,

generalization of boolean implication or boolean
conjunction, su$cient to have a good implica-
tion operator?

f Is it necessary to verify another complementary
properties?

f Can we get basic properties for robust implica-
tion operators?
The present work starts o! with a comparative

study on the di!erent families of implication oper-
ators, using the ones presenting the best behavior in
[4] together with 21 force implications, and ana-
lyzes the results obtained to answer the questions
above. Then, we answer them presenting some
basic properties for the so-called robust implication
operators.

Before continuing with the work, it is necessary
to point out some remarks:
1. We use the word robust in the said sense, good

average behavior with di!erent applications and
di!erent defuzzi"cation methods.

2. The behavior of the di!erent operators used in
the inference system in practice, o!ers remark-
able di!erences and this justi"es the interest in
carrying out this practical research.

3. It would be desirable to structure such research
studies by compiling the results obtained into
families of operators, i.e., analyzing the similari-
ties in the behavior of the operators belonging
to a particular family verifying certain common
properties.
In order to so, the paper is organized as follows.

Section 2 describes the fuzzy implication operators
considered; Section 3 presents the comparison
method; Section 4 presents the results obtained in
the experiments; Section 5 shows an analysis of
those results; Section 6 is devoted to provide an
answer to the questions; and Section 7 points out
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some concluding remarks. Finally, the appendix
describes the three applications considered for our
study, presenting the fuzzy knowledge base con-
sidered in each experiment.

2. Fuzzy implication operators

A classi"cation of the fuzzy implication oper-
ators is proposed in [8] by considering the exten-
sion that they perform with regard to boolean logic:
f ¹hose extending the boolean implication. Within

this group, fuzzy implication functions are found
[19]. They satisfy the following truth table:

aCb 0 1

0 1 1
1 0 1

f ¹hose extending the boolean conjunction. Force
Implications [8] and T-norms when used as im-
plication operators [9] are included in this group
satisfying the truth table:

aCb 0 1

0 0 0
1 0 1

The following subsections present the di!erent
families of fuzzy implication operators analyzed in
this paper.

2.1. Implication functions

The implication functions [19] are the most
well-known implication operators that extend the
boolean implication. They are classi"ed into two
families [19, 20]:
f Strong implications (S-implications): Correspon-

ding to the de"nition of implication in classical
Boolean logic: APB"2AsB. They present
the form: I(x, y)"S (N(a), b), S being a t-conorm
and N a negation function.

f Residual implications (R-implications): Obtained
by residuation of a t-norm ¹ as follows I(x, y)"
SupMc: c3[0, 1]/¹(c, x))yN.

The implication functions selected for use in this
paper are the ones considered in our previous con-
tributions [3, 4]:

S-Implications:
Diene:

I1(x, y)"Max(1!x, y). (2.1)

Dubois}Prade:

I
2
(x, y)"

i
g
j
g
k

1!x if y"0,

y if x"1,

1 otherwise.

(2.2)

Mizumoto:

I3(x, y)"1!x#x ) y. (2.3)

R-implications:
GoK del:

I
4
(x, y)"G

1

y

if x)y,

otherwise.
(2.4)

Goguen:

I
5
(x, y)"G

Min(1, y/x)

1

if xO0,

otherwise.
(2.5)

S and R-implications:
¸ukasiewicz:

I
6
(x, y)"Min(1, 1!x#y). (2.6)

2.2. T-Norms

We use the following t-norms as implication op-
erators [4, 9, 17]:

¸ogical product (minimum):

I7(x, y)"Min(x, y). (2.7)

Hamacher product:

I
8
(x, y)"

x ) y

x#y!x ) y
. (2.8)

Algebraic product:

I9(x, y)"x ) y. (2.9)
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Einstein product:

I
10

(x, y)"
x ) y

1#(1!x) ) (1!y)
. (2.10)

Bounded product:

I11(x, y)"Max(0, x#y!1). (2.11)

Drastic product:

I
12

(x, y)"

i
g
j
g
k

x if y"1,

y if x"1,

0 otherwise.

(2.12)

2.3. Force implication operators

The force implication operators are introduced
for &&combining the aim to modelize human reason-
ing in a more natural way with the necessity to get
an implication'' [8].

There are two di!erent groups of force implica-
tions depending on the way in which they are built:

2.3.1. Force implications based on
indistinguishability operators:

I(x, y)"¹(x, E (x, y)), (2.13)

where ¹ is a t-norm, and E is an indistinguishabil-
ity operator,

E"¹ @(I @ (x, y), I @(y, x)) (2.14)

with ¹ @ being a t-norm, and I@ an implication
function.

There are three di!erent kinds of indistinguisha-
bility operators depending on the t-norm used to
de"ne them [19]:
f Similarity relations: ¹ @ (x, y)"Min(x, y).
f Probabilistic relations: ¹ @ (x, y)"x ) y.
f Likeness relations: ¹ @(x, y)"Max(0, x#y!1).

We are going to use 15 force implication oper-
ators obtained by means of "ve indistinguishability
operators selected from [19] and three t-norms:
logical, algebraic and bounded products. Their ex-
pressions are shown as follows:

I13(x, y)"Min(x, E
G0K $%-

(x, y)), (2.15)

where

E
G0K $%-

(x, y)"G
1

Min(x, y)

if x"y,

otherwise,

I
14

(x, y)"Min(x, E
G0'6%/

(x, y)), (2.16)

where

E
G0'6%/

(x, y)"MinA1,
Min(x, y)

Max(y, x)B ,

I
15

(x, y)"Min(x, E
F
(x, y)), (2.17)

where E
F
(x, y)"1!Dx!y D, generated from the

R-implication I
F
(x, y)"f~1( f (y)!f (x)), with F

being an archimedian t-norm generated by f"
1!x [19].

I
16

(x, y)"Min(x, E
L6,!4*%8*#;

(x, y)), (2.18)

where E
L6,!4*%8*#;

(x, y)"1!x!y#2 )x ) y.

I17(x, y)"Min(x, E
D*%/%

(x, y)), (2.19)

where E
D*%/%

(x, y)"F(Max(1!x, y), Max(1!y, x)),
with F being a nilpotent t-norm. In this paper we
work with the bounded product, and therefore,
E
D*%/%

"MaxM0, Max(1!x, y)#Max(1!y, x)!1N.

I18(x, y)"x )E
G0K $%-

(x, y), (2.20)

I19(x, y)"x )E
G0'6%/

(x, y), (2.21)

I20(x, y)"x )E
F
(x, y), (2.22)

I21(x, y)"x )E
L6,!4*%8*#;

(x, y), (2.23)

I22(x, y)"x )E
D*%/%

(x, y), (2.24)

I23(x, y)"Max(x#E
G0K $%-

(x, y)!1, 0), (2.25)

I24(x, y)"Max(x#E
G0'6%/

(x, y)!1, 0), (2.26)

I25(x, y)"Max(x#E
F
(x, y)!1, 0), (2.27)

I26(x, y)"Max(x#E
L6,!4*%8*#;

(x, y)!1, 0), (2.28)

I27(x, y)"Max(x#E
D*%/%

(x, y)!1, 0). (2.29)

2.3.2. Force implications based on distances

I(x, y)"¹(x, 1!d (x, y)), (2.30)

where ¹ is a t-norm, and d is a distance.
We will consider six force implication operators

based on three t-norms (logical, algebraic and
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2Quantum mechanics implications (QM-implications): Corre-
sponding to the de"nition of implication in Quantum Logic:
APB"2As(A'B). De"ned in fuzzy logic by means of
I(x, y)"S(N (x), ¹(x, y)), with S being a t-conorm, N a negation
function and ¹ a t-norm.

bounded products), and two distances for which the
expressions are:

I28(x, y)"Min(x, 1!Dx!yD), (2.31)

I29(x, y)"x ) (1!Dx!y D ), (2.32)

I30(x, y)"Max(x!Dx!y D, 0), (2.33)

I31(x, y)"Min(x, 1!Dx!y D2), (2.34)

I32(x, y)"x ) (1!Dx!y D2), (2.35)

I33(x, y)"Max(x!Dx!y D2, 0). (2.36)

2.4. Other implication operators

There are many implication operators in the
specialized literature that do not belong to any of
the well-known families mentioned in the previous
sections. We will add to our study four of these
implication operators which showed good behavior
in [4]. Although they are not fuzzy implication
functions; the three "rst ones generalize the
boolean implication:

f Other Extensions of the boolean implication
QM-implication2, Early}Zadeh:

I34(x, y)"Max(1!x, Min(x, y)). (2.37)

Gaines:

I
35

(x, y)"G
1

0

if x)y,

otherwise,
(2.38)

I
36

(x, y)

"G
1

MinA1,
y

x
,
1!y

1!xB
if x"0 or 1!y"0,

if x'0 and 1!y'0.

(2.39)
f Another implication operator

I37(x, y)"Min(I@ (x, y), I@(1!x, 1!y)), (2.40)

where

I@(x, y)"G
1

y

if x)y,

otherwise.

3. Comparison methodology

In order to compare the behavior of the fuzzy
implication operators selected, we are going to
build di!erent FLCs designed by means of the
combinations between these implication operators
and di!erent choices for the defuzzi"cation inter-
face. We run them over three applications
described in the appendix and compute di!erent
performance degrees.

The connective operator used in the antecedent
was always the minimum t-norm.

The defuzzi"cation methods and the perfor-
mance degrees are presented in the following two
sections.

3.1. Defuzzixcation methods

We denote by B@
i
the fuzzy set obtained as output

when performing inference on rule R
i
, and by y

0
the

output of the FLC for an input x
0
. We use the value

of importance h
i
, and the characteristic values

=
i
and G

i
, in the defuzzi"cation process:

f h
i
is the matching degree among the inputs and

the antecedents of fuzzy rule R
i
, and

f =
i

and G
i

are the center of gravity and the
maximum value of B@

i
, respectively. When there

are more than one point satisfying the last condi-
tion, we take the average of the lowest and high-
est ones.
There are two types of defuzzi"cation methods

[4]:
Mode A: Aggregation ,rst, defuzzi,cation after:

The defuzzi"cation interface performs the aggrega-
tion of the individual fuzzy sets inferred, B@

i
, to get

the "nal output fuzzy set B@. The aggregation oper-
ator modeling the connective may also be selected
to be a t-norm or a t-conorm. Usually, the ones
most used are the minimum and maximum, respec-
tively. In this paper, we will work with both.

Then, the defuzzi"cation interface defuzzi"es the
fuzzy set B@, giving the nonfuzzy control action as
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output, by using a defuzzi"cation method. We will
consider two possibilities for the defuzzi"cation of
the fuzzy set B@:
f The middle of maxima (MOM) of the fuzzy set

B@:

y
1
"MinMz/k

B{
(z)"Max k

B{
(y)N,

y
2
"MaxMz/k

B{
(z)"Max k

B{
(y)N, (3.1)

y
0
"

y
1
#y

2
2

.

f The center of gravity of the fuzzy set B@.

y
0
"

:
Y
y ) k

B{
(y) dy

:
Y
k
B{

(y) dy
. (3.2)

According to the combination of these two
possibilities, we will deal with four defuzzi"ca-
tion mechanisms working in mode A:

f D1: Middle of maxima of the individual fuzzy
sets aggregated with also connective min-
imum.

f D2: Center of gravity of the individual fuzzy sets
aggregated with also connective minimum.

f D3: Middle of maxima of the individual fuzzy
sets aggregated with also connective max-
imum.

f D4: Center of gravity of the individual fuzzy sets
aggregated with also connective maximum.

Mode B: Defuzzi,cation ,rst, aggregation after: It
avoids the computation of the "nal fuzzy set B@ by
considering the contribution of each rule output
individually, obtaining the "nal control action by
taking a calculus (an average, a weighted sum or
a selection of one of them) of a concrete crisp
characteristic value associated to each of them.

We will consider the following six methods asso-
ciated to this defuzzi"cation mode:
f D5: Center of gravity weighted by matching:

y
0
"

+
i
h
i
)=

i
+

i
h
i

. (3.3)

f D6: Maximum value weighted by matching:

y
0
"

+
i
h
i
)G

i
+

i
h
i

. (3.4)

f D7: Center of gravity of the fuzzy set with largest
matching:

B@
k
"MB@

i
Dh

i
"Max(h

t
), ∀t3M1,2 ,mNN,

(3.5)
y
0
"=

k
.

f D8: Maximum value of the fuzzy set with largest
matching:

B@
k
"MB@

i
Dh

i
"Max(h

t
), ∀t3M1,2 ,mNN,

(3.6)
y
0
"G

k
.

f D9: Middle of maximum values:

y
0
"

+
i
G

i
m

, (3.7)

where m is the number of fuzzy sets obtained as
output from the inference process.

f D10: Center of sums:

y
0
"

+
i
:
Y

y ) k
B{i

(y) dy

+
i
:
Y
k
B{i

(y) dy
. (3.8)

Some implication operators (I12, I18, I23, I35 and
I36) present problems when making inference due to
the discontinuities that appear in the inferred mem-
bership functions. In those cases, we only used
defuzzi"cation mode B, that defuzzi"es the one-
element to that single element exactly. We do not
aggregate fuzzy sets of this kind.

3.2. Performance degrees

Below, we analyze the comparison methodology.
To do so, we use an FLC performance measure,
medium square error (SE):

SE(S[i, j])"
1
2

+N
k/1

(y
k
!S[i, j] (x

k
))2

N
, (3.9)

where S[i, j] denotes the FLC whose inference sys-
tem uses the implication operator I

i
, and whose

defuzzi"cation interface is based on defuzzi"cation
method D

j
. This measure employs a set of system

evaluation data formed by N arrays of numerical
data Z

k
"(x

k
, y

k
), k"1,2,N, x

k
being the values

of the state variables, and y
k

the corresponding
values of the associated control variables.

242 O. Cordo& n et al. / Fuzzy Sets and Systems 111 (2000) 237}251



To compare the results obtained by these FLCs
in three di!erent experiments, we use several
measures of adaptation presented in [4]:
f The adaptation degree associated to the medium

square error (AD
}
SE):

Min <"Min
i, j

(SE(S[i, j])),

Max <"Max
i, j

(SE(S[i, j])),

AD
}
SE[i, j]"1!

SE(S[i, j])!Min <

Max <!Min<
. (3.10)

This degree is de"ned in the interval [0, 1].
Thus, we have a homogeneous measure allowing
us to combine the values obtained in di!erent
applications.
f The mean adaptation degree (MAD) for a fuzzy

implication operator:

MAD[i]"
1

10

10
+
j/1

AD
}
SE[i, j]. (3.11)

This adaptation degree provides us with
a measure of robustness for a fuzzy implication
operator in a speci"c application.

f As we have said, three experiments have been
developed to analyze the behavior of the fuzzy
implication operators selected in fuzzy control:
the fuzzy modeling of the simplest functional
relation >"X and two three-dimensional sur-
faces. They are described in the Appendix.

The average mean adaptation degree, (AMAD),
is used for unifying the results obtained in the
three experiments:

AMAD[i]

"
MAD

y~x
[i]#MAD

F1
[i]#MAD

F2
[i]

3
.

(3.12)

This degree gives a global measure for com-
paring the behavior of the di!erent implication
operators in the three applications.

4. Results

In this section we present the values obtained for
the performance degrees considered, organized in

four tables with the following results:
f Table 1 presents the values of the MAD for each

application and the values of the AMAD.
f Table 2 shows the value of adaptation degree

with the best defuzzi"cation method for every
implication operator and application.

f Table 3 shows the mean of the AMAD values for
the di!erent families or classes of implication
operators (from Table 1) according to the classi-
"cation of Section 2.

f Table 4 presents the value of the mean of adapta-
tion degrees for every implication operator with
the best defuzzi"cation method and di!erent ap-
plication (from Table 2), according to the said
families or classes.

5. Analysis of results

First, we should point out that the results ob-
tained in the three applications show a homogene-
ous behavior of the di!erent fuzzy implication
operators, as regards the MAD for each one of
them (see Table 1). Therefore, the AMAD seems to
be a good measure to analyze the robustness of the
implication operators in the said sense: &&good aver-
age behavior in di!erent applications and in combi-
nation with di!erent defuzzi"cation methods''.

In the following we present some comments as
regards the di!erent families of fuzzy implication
operators considered in our study.

¹-norms: Analyzing the results presented in
Table 3, "rst we should point out that the results
con"rm the conclusions presented in [3, 4] as re-
gards the better behavior of t-norms in the role of
implication operators when compared to implica-
tion functions. The mean of the AMAD obtained
by the t-norms is clearly the best, with great di!er-
ence with respect to the remaining operators (see
Table 3). This con"rms that

&&t-norms are very robust implication operators''.

A second clear result that may also be noted is
that t-norms present a much better overall behav-
ior than both groups of force implications (see
Table 3), those based on indistinguishability rela-
tions and those based on distances.
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Table 1
MAD and AMAD for a fuzzy implication operator

MAD
Y~X

MAD
F1

MAD
F2

AMAD

Boolean implication extension
Implication functions
I1 0.62387 0.64264 0.59397 0.62016
I2 0.66106 0.67831 0.62922 0.65620
I3 0.64468 0.65713 0.60688 0.63623
I4 0.73984 0.68814 0.69818 0.70872
I5 0.74157 0.68827 0.69826 0.70937
I6 0.65540 0.66625 0.61664 0.64610

Other GBI
I34 0.58554 0.61552 0.56316 0.58807
I35 0.81963 0.80754 0.78696 0.80471
I36 0.84293 0.80283 0.78774 0.81117

Boolean conjunction extension
T-norms
I7 0.96482 0.89342 0.93323 0.93049
I8 0.95592 0.89309 0.93166 0.92689
I9 0.95702 0.89404 0.93282 0.92796
I10 0.95747 0.89435 0.93324 0.92835
I11 0.85185 0.86463 0.86421 0.86023
I12 0.97116 0.96694 0.97201 0.97004

Force-implications based on indist. operators
I13 0.96482 0.89342 0.93323 0.93049
I14 0.96410 0.89331 0.93280 0.93007
I15 0.67802 0.65851 0.60739 0.64797
I16 0.66408 0.64363 0.59497 0.63423
I17 0.58700 0.58538 0.54274 0.57171
I18 0.96844 0.97244 0.97658 0.97249
I19 0.96922 0.89377 0.93301 0.93200
I20 0.78767 0.71791 0.67975 0.72845
I21 0.64420 0.61544 0.56680 0.60881
I22 0.55553 0.54695 0.50868 0.53705
I23 0.95057 0.96254 0.93930 0.95080
I24 0.97266 0.87486 0.89615 0.91456
I25 0.97266 0.87486 0.89615 0.91456
I26 0.73445 0.79109 0.73857 0.75470
I27 0.73533 0.79075 0.73850 0.75486

Force-implications based on distances
I28 0.67802 0.65851 0.60739 0.64797
I29 0.78767 0.71791 0.67975 0.72845
I30 0.97266 0.87486 0.89615 0.91456
I31 0.60323 0.57210 0.50672 0.56068
I32 0.72752 0.67737 0.64172 0.68220
I33 0.80822 0.77472 0.74277 0.77524

Other implication operator
I37 0.75157 0.68438 0.69736 0.71111

Table 2
Adaptation degrees with the best defuzzi"cation method for
a fuzzy implication operator (D*)"(D4, 7, 10)

AD
}
SE

Y~X
AD
}
SE

F1
AD
}
SE

F2

Boolean implication extension
Implication functions
I1 0.99642(D6) 0.99756(D6) 1.00000(D6)
I2 0.97633(D1) 0.99112(D6) 0.98935(D6)
I3 0.99642(D6) 0.99756(D6) 1.00000(D6)
I4 1.00000(D1) 0.99557(D6) 0.99742(D6)
I5 1.00000(D1) 0.99557(D6) 0.99742(D6)
I6 1.00000(D1) 0.99557(D6) 0.99742(D6)

Other GBI
I34 0.92722(D1) 0.95141(D1,8) 0.95778(D1,8)
I35 0.99141(D5,6) 0.99557(D5,6) 0.99742(D5,6)
I36 0.99141(D6) 0.99557(D6) 0.99742(D6)

Boolean conjunction extension
T-norms
I7 0.99141(D6) 0.99557(D6) 0.99742(D6)
I8 0.99642(D6) 0.99756(D6) 1.00000(D6)
I9 0.99642(D6) 0.99756(D6) 1.00000(D6)
I10 0.99642(D6) 0.99756(D6) 1.00000(D6)
I11 0.99642(D6) 0.99756(D6) 1.00000(D6)
I12 0.99642(D6) 0.99756(D5,6) 1.00000(D5,6)

Force-implications based on indist. operators
I13 0.99141(D6) 0.99557(D6) 0.99742(D6)
I14 0.98635(D6) 0.99413(D6) 0.99495(D6)
I15 0.91775(D3) 0.95287(D3,8) 0.95850(D3,8)
I16 0.91216(D3) 0.94746(D3,8) 0.95083(D3,8)
I17 0.91216(D3) 0.94746(D3,8) 0.95083(D3,8)
I18 0.99141(D6) 0.99557(D6) 0.99742(D6)
I19 1.00000(D1) 0.99557(D6) 0.99742(D6)
I20 0.99141(D6) 0.99557(D6) 0.99742(D6)
I21 0.91216(D3) 0.94746(D3,8) 0.95083(D3,8)
I22 0.91216(D3) 0.94746(D3,8) 0.95083(D3,8)
I23 0.99642(D6) 0.99756(D6) 1.00000(D6)
I24 1.00000(D1) 0.99557(D6) 0.99742(D6)
I25 1.00000(D1) 0.99557(D6) 0.99742(D6)
I26 0.92174(D4) 0.95324(D*) 0.95964(D*)
I27 0.92085(D4) 0.95199(D*) 0.95738(D*)

Force-implications based on distances
I28 0.91775(D3) 0.95287(D3,8) 0.95850(D3,8)
I29 0.99141(D6) 0.99557(D6) 0.99742(D6)
I30 1.00000(D1) 0.99557(D6) 0.99742(D1)
I31 0.82130(D3) 0.77240(D3,8) 0.72145(D3,8)
I32 0.99141(D6) 0.99561(D6) 0.99739(D6)
I33 0.99118(D6) 1.00000(D6) 0.99730(D6)

Other Implication Operator
I37 0.99921(D1) 0.99557(D6) 0.99742(D6)
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Table 3
Mean of the AMAD for the di!erent families of implication operators

Boolean implication extension Boolean conjunction extension Another

Implication functions Others T-norms Force implications (I37)
S-Implic. R-Implic. QM-Implic. I35, I36 Indist. Distance
0.63967 0.68806 0.58807 0.80794 0.78552 0.71818

0.66387 0.69801 0.92399 0.75185
0.68094 0.83792 0.71111

Table 4
Mean of the AD with the best defuzzi"cation method

Boolean implication extension Boolean conjunction extension Another

Implication functions Others T-norms Force implications (I37)
S-Implic. R-Implic. QM-Implic. I35, I36 Indist. Distance
0.99481 0.99766 0.94547 0.99480 0.96972 0.94970

0.99624 0.97014 0.99746 0.95971
0.98319 0.97858 0.99740

These results con"rm those obtained in a pre-
vious study [5], where the best behavior of t-
norms with respect to the force implications was
shown.

Force implications: If we analyze the mean of the
AMAD of the force implications (Table 3), we can
see that there is a signi"cant di!erence between
those based on indistinguishability relations and
those based on distances. The last family shows
worse behavior than the former (0.78552 versus
0.71818).

If we analyze the individual values (Table 1) we
"nd di!erent behavior in every class. In fact, in the
"rst group (those based on indistinguishability rela-
tions) we "nd the worst result of the AMAD
(0.53705, I22) joined to some good results (I18 , I19 ,
I23, for example). In the same way, if we analyze
these values for the second class we also "nd a het-
erogeneous behavior.

Therefore, we can conclude that force implica-
tions present an irregular behavior. In the "rst
group, those based on the use of the GoK del and
Goguen implications show a good accuracy
(greater than 0.9) and the remainder show a bad
behavior, except I25. For the second class, only

I30 obtains good results. In fact, it presents the same
form as I25.

Implication functions: Regarding these kinds of
operators, we obtain similar conclusions to those in
[4]. R-implications present the best behavior, but
they all are not accurate to an adequate degree.

Other implication operators extending the boolean
implication: The remaining implication operators
(selected from [4] according to their accuracy (I35

and I36) and notoriety (I34)) do not present good
behavior with respect to t-norms. The QM-
Implication (I34) shows the worst behavior of the
boolean implication extension family (Tables 1 and
2). The remaining ones show better behavior than
implication functions.

¹he other implication operator: I37 shows a bad
average behavior (Table 1), but it works "ne with
the speci"c defuzzi"cation operators D1 and D6

(Tables 2 and 4).
We should point that these results involve the

MAD and the AMAD (Tables 1 and 3), that is, they
are related to the robustness of the implication
functions. If we observe the ones in Table 2 (ad-
aptation degrees for the best defuzzi"cation
method for every implication function), we "nd
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good individual results for every implication oper-
ator, that is to say, good behavior with a speci"c
defuzzi"er. We will come back to this feature later.

6. Searching for basic properties

We try to answer the three questions that we
asked in the introduction:
1. Is the veri"cation of one of these two properties

(generalization of boolean implication or
boolean conjunction) su$cient to have a good
implication operator?
Those implication operators that generalize the

boolean implication do not present good behavior.
Therefore, this property is not su$cient for being
a good implication operator.

As regards the implication operators extending
the boolean conjunction, some of them show good
behavior (t-norms and some force implications),
but others o!er clearly worse results than the im-
plication functions and the remaining operators. As
we mentioned earlier, the worst behavior is given
by the force implication based on an indistin-
guishability relation, I22. This leads us to conclude
that:

&&the good behavior shown by many of the oper-
ators that extend the boolean conjunction as
compared to the implication functions is not
merely due to this characteristic''.

2. Is it necessary to verify another complementary
properties?
First, as regards the operators that generalize the

boolean implication, they do not present good
behavior. In fact, we do not "nd good behavior
(robustness with respect to the defuzzi"cation
methods) in any implication function, so we do not
consider that any additional property may improve
the behavior of these operators.

Now, we will try to analyze the characteristics
that cause the di!erent behavior existing among the
di!erent implication operators that extend the
boolean conjunction.

The best behavior is presented by t-norms and
some of the force implications. We are going to
analyze the common properties to the force im-
plications that present bad behavior.

f First case:
If we observe the form of B@

i
for those rules

"red when using the force implication operators
I15, I16, I17, I20, I21, I22, I28, I29, I31, I32 and I33, we
"nd that in all of them I(h, 0)'0, with h being
the matching degree between the input and the
antecedent part of the rule.
f For those force implications based on distan-

ces we know that t"1!d(x, 0)'0, and
¹(h, t)O0 in a lot of cases, with di!erent
kinds of t-norms and values of h and t.

f For those force implications based on indistin-
guishability relations we "nd that:

E(h, 0)"¹ @(I@(h, 0), I @(0, h))

"¹ @(I@(h, 0), 1)"I@ (h, 0),
and

} I@ (h, 0)'0 for some R-implications which
verify that &c'0 such that ¹ (c, h)"0,

} I@ (h, 0)"1!h for S-implications and QM-
implications.
In all these cases, the behavior of the FLC
when the support of B@

i
includes the support of

B
i
(the support of B@

i
is the variable's domain)

is not robust. Anyway, the behavior of these
FLCs is quite di!erent with respect to the
defuzzi"cation method employed.

f Second Case:
On the other hand, if we study the force im-

plications I24, I25, I26, I27, I30 and I33, we "nd that
I(h, 1)"0, ∀h)1

2
, (even I(h, y)"0 ∀h)1

2
in

some cases). This feature also leads to a bad
overall behavior as regards their robustness.
Those rules with a matching degree less than or
equal to 1

2
are ignored or bad defuzzi"ed.

Regarding the result (I (h, 0)'0), Mendel men-
tioned in [15] that &&this does not make much sense
from an engineering perspective'' and &&violates
engineering common sense''. He referred as &&engi-
neering implications'' to t-norms minimum, the "rst
implication operator used by Mamdani in [14],
and product, proposed later [12] also as an im-
plication operator.

In this way we call &&robust engineering implica-
tions'' those implication operators that have a ro-
bust behavior (good average behavior in di!erent
applications and in combination with di!erent de-
fuzzi"cation methods).
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We may point out that the force implication
operators are robust engineering implications if they
verify the following two properties:

(a) I(h, 0)"0, ∀h3[0, 1],
(6.1)

(b) I(h, 1)'0, ∀h3(0, 1].

Obviously, these two properties are also veri"ed
by the t-norms.

3. Can we get basic properties for robust implica-
tion operators?
The "rst aforementioned property can justify the

bad behavior of the implication functions that pro-
duce output fuzzy sets with an unlimited support,
although there are other implication functions that
do not work in this way, such as GoK del and
Goguen implications.

The GoK del and Goguen implication functions
verify the properties (a) and (b), therefore their bad
behavior would be due to other features of their
output fuzzy sets. In fact, the property that pro-
vokes their bad behavior is that for h"0, then
I(0, y)'0, ∀y3[0, 1]. That is, they "re rules with
matching degree 0.

On the other hand, the four conditions that char-
acterizes the boolean conjunction extensions are:

1. I(1, 0)"0,

2. I(1, 1)"1,
(6.2)

3. I(0, 1)"0,

4. I(0, 0)"0.

We observe that the "rst condition is contained
by property (a). The second one could be con-
sidered as an additional complement to property
(b) in order to have robust implication operators, in
fact, condition 2 seems to be necessary. Under this
reasoning, we have the following expression as an
extension of property (b).

I(h, 1)'0, ∀h3(0, 1) and I(1, 1)"1. (6.3)

The other two (3 and 4) are not veri"ed by the
extensions of the boolean implication (implication
functions and I34, I35, and I36). Both are in contra-
diction with I (0, y)'0, ∀y3[0, 1], veri"ed by
these implication operators. Therefore, the ques-
tion that we may discuss is:

Would it be enough to verify
(1) properties (a) and (b), and
(2) to be a generalization of the boolean conjunc-
tion in order to have a robust implication operator?

The answer is no. We can "nd the following
operator that veri"es all the properties but would
not have a robust behavior:

I(x, y)"G
1
2
min(x, y)

if x"0 and y3(0, 1),

otherwise.
(6.4)

Using this operator, we "re the rules with the
matching degree 0 (h"0). Therefore, we again "nd
the problem of "ring rules with matching degree 0,
even when it is a generalization of the boolean
conjunction.

We observe that all robust force implications and
t-norms verify a property that generalizes the con-
ditions 3 and 4 (¹ (0, 1)"0, ¹ (0, 0)"0), i.e., they
do not infer an output fuzzy set when the matching
degree is equal to 0.

I(0, y)"0, ∀y3[0, 1]. (6.5)

In fact, this property is the opposite to the condi-
tion veri"ed by the implication functions that pro-
vokes the non robust behavior of GoK del and
Goguen implication functions.

We consider this to be the third property for
having robust implication operators. Therefore, the
three properties considered as basic ones for robust
implication operators would be the following:

(a) I(h, 0)"0, ∀h3[0, 1],

(b) I(h, 1)'0, ∀h3(0, 1) and I (1, 1)"1, (6.6)

(c) I (0, y)"0, ∀y3[0, 1].

7. Concluding remarks

In this contribution we have presented an analy-
sis on the two main families of implication oper-
ators: those operators that extend the boolean
implication and those ones that extend the boolean
conjunction, as a base for the problem of searching
for basic properties obtaining robust implication
operators in fuzzy control.
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In view of the results obtained in this com-
parative study, we have drawn the following
conclusions:

Robust implication operators may be considered
to be those that verify the properties shown below:

(a) I(h, 0)"0, ∀h3[0, 1],

(b) I(h, 1)'0, ∀h3(0, 1) and I(1, 1)"1, (7.1)

(c) I (0, y)"0, ∀y3[0, 1].

On the other hand, it is appropriate to underline
the following considerations about the defuzzi"-
cation methods, and the said robust engineering
implications:
f As was pointed out by Mendel in [15], &&Many

defuzzi"ers have been proposed in the literature,
however, there are no scienti"c bases for any of
them (2); consequently, defuzzi"cation is an art
rather than a science2''.

f Secondly, to emphasize the results presented in
Tables 2 and 4 (adaptation degree with the best
defuzzi"cation method and their mean for the
di!erent families of implication operators), we
observe that we are able to "nd an appropriate
defuzzi"cation method that allows us to obtain
good results in combination with every implica-
tion operator.
According to Mendel, there are no scienti"c

bases for all the defuzzi"cation operators, and as
was introduced in Section 3, we can choose be-
tween two ways of working, aggregation "rst and
defuzzi"cation after, and defuzzi"cation "rst and
aggregation after, and a lot of defuzzi"cation pro-
posals. In Table 2, we "nd that for every implica-
tion operator, there is either a good defuzzi"cation
method for the three applications or di!erent ap-
propiate defuzzi"cation methods in a few cases. In
fact, for the "rst and third applications the best
adaptation degree is presented by implication func-
tions, and in the second application the best one is
found in an FLC using a force implication based on
distances, all of them in combination with an ap-
propiate defuzzi"cation method. Therefore, we can
conclude that:

We can "nd or design an appropriate defuzzi"ca-
tion method (adequately managing the form of

B@
i
) that will guarantee a good behavior in the

inference process for every implication operator.

The last a$rmation may now lead us to the
following question posed by Dubois and Prade in
[7]. &&The proper use of implication-based fuzzy
rules is often misunderstood in fuzzy control2'',
and we can make the assessment on the necessity
for having defuzzi"cation proposals according to
the implication operator features.

The relation between the sets of implication func-
tions and defuzzi"cation methods is an open ques-
tion that will lead on to further work in the "eld.

Appendix: Applications

Three applications have been selected to analyze
the behavior of the fuzzy implication operators
selected in fuzzy control: the fuzzy modeling of the
simplest functional relation >"X and of two
three-dimensional surfaces.

The selection of the "rst application is based on
the studies developed in [2], which states that the
independence between the application considered
and the accuracy obtained by the FLC is a very
important fact in the comparison of the in#uence of
the fuzzy operators used to design it. Hence, in
order to avoid the lack of generality in a fuzzy
model, we are going to work with the simplest
functional relation>"X, making a fuzzy model of
it in the interval [0, 10].

In this case, the "ve linguistic labels MVS, S, M, L,
VLN are used to make a fuzzy partition of the
domain of the variables X and >, where:

VS is very small, S is small,

M is medium, L is large,

VL is very large.

The corresponding membership functions present-
ed in [2], are shown in Fig. 1, and the Knowledge
Base presents the following "ve control rules:

If X is VS then > is VS, If X is S then > is S,

If X is M then > is M, If X is L then > is L,

If X is VL then > is VL.

248 O. Cordo& n et al. / Fuzzy Sets and Systems 111 (2000) 237}251



Fig. 1. Fuzzy partition considered for the modeling of function
>"X.

Fig. 2. Graphical representation of function F
1
.

Fig. 3. Graphical representation of function F
2
.

Fig. 4. Fuzzy partition considered for the modeling of functions
F
1

and F
2
.

In this application, the set of evaluation data
used to compute the accuracy of the implication
operators is composed of 41 data pairs with a fre-
quency of 0.25 in the interval [0, 10].

The two three-dimensional surfaces F
1

and
F
2

are shown in Figs. 2 and 3, respectively, along
with their mathematical expressions.
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The domains of the input variables of F
1

are
fuzzy partitioned by using seven linguistic labels,
called MNB, NM, NS, ZR, PS, PM, PBN where:

NB is negative big, NM is negative medium,

NS is negative small, ZR is zero,

PS is positive small, PM is positive medium,

PB is positive big.

On the other hand, the domains of the output
variable of F

1
, and the input and output ones of

F
2

are based on 7 labels: MES, VS, S, M, L, VL, ELN
where:

ES is extremely small, VS is very small,

S is small, M is medium,

L is large, VL is very large,

EL is extremely large.

Fig. 4 shows the associated membership func-
tions in both cases.

For the experiments developed with functions
F
1

and F
2
, a Mamdani-type knowledge base (KB)

of 49 rules is generated from a training data set by
means of the Wang and Mendel generation process
[22]. Both KBs generated are shown respectively
in Tables 5 and 6. The process considered is
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Table 5
Rule base for F

1

x
2

NB NM NS ZR PS PM PB

NB EL L M M M L EL
NM L M S VS S M L
NS M S VS ES VS S M

x
1

ZR M VS ES ES ES VS M
PS M S VS ES VS S M
PM L M S VS S M L
PB EL L M M M L EL

Table 6
Rule base for F

2

x
2

ES VS S M L VL EL

ES ES ES ES ES ES ES ES
VS EL M S VS VS ES ES
S EL L M S VS VS ES

x
1

M EL VL L M S VS ES
L EL VL VL L M S ES
VL EL EL VL VL L M ES
EL EL EL EL EL EL EL ES

characterized by performing the rule generation fol-
lowing an inductive criterion related to the covering
of the data. Therefore, the KB obtained by this
method is not dependent on the concrete inference
system used to make inference, which is a major
requirement in order to compare adequately the
behavior of the implication operators. The training
data set, consisting of 1681 and 674 examples for
F
1

and F
2
, respectively, have been obtained by

generating the input variable values distributed
uniformly in the variable domains and by comput-
ing the associated output value using the expres-
sion of the function. Subsequently, two test data
sets, formed by 168 and 67 data, respectively, and
obtained by generating the state variable values at
random and computing the associated output vari-
able value, will be used to measure the accuracy of
the implication operators.
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